51
|
Fu X, Guo M, Liu J, Li C. circRNA432 enhances the coelomocyte phagocytosis via regulating the miR-2008-ELMO1 axis in Vibrio splendidus-challenged Apostichopus japonicus. Commun Biol 2023; 6:115. [PMID: 36709365 PMCID: PMC9884281 DOI: 10.1038/s42003-023-04516-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Circular RNAs (circRNAs) are a kind of extensive and diverse covalently closed circular endogenous RNA, which exert crucial functions in immune regulation in mammals. However, the functions and mechanisms of circRNAs in invertebrates are largely unclarified. In our previous work, 261 differentially expressed circRNAs including circRNA432 (circ432) were identified from skin ulcer syndrome (SUS) diseased sea cucumber Apostichopus japonicus by RNA-seq. To better address the functional role of sea cucumber circRNAs, circ432 was first found to be significantly induced by Vibrio splendidus challenge and LPS exposure in this study. Knock-down circ432 could depress the V. splendidus-induced coelomocytes phagocytosis. Moreover, circ432 is validated to serve as the sponge of miR-2008, a differential expressed miRNA in SUS-diseased sea cucumbers, by Argonaute 2-RNA immunoprecipitation (AGO2-RIP) assay, luciferase reporter assay and RNA fluorescence in situ hybridization (FISH) in vitro. Engulfment and cell motility protein 1 (AjELMO1) is further demonstrated to be the target of miR-2008, and silencing AjELMO1 inhibits the V. splendidus-induced coelomocytes phagocytosis, and this phenomenon could be further suppressed by supplementing with miR-2008 mimics, suggesting that circ432 might regulate coelomocytes phagocytosis via miR-2008-AjELMO1 axis. We further confirm that the depressed coelomocytes' phagocytosis by circ432 silencing is consistent with the decreased abundance of AjELMO1, and could be recovered by miR-2008 inhibitors transfection. All our results provide the evidence that circ432 is involved in regulating pathogen-induced coelomocyte phagocytosis via sponge miR-2008 and promotes the abundance of AjELMO1. These findings will enrich the regulatory mechanism of phagocytosis in echinoderm and provide theoretical data for SUS disease prevention and control in sea cucumbers.
Collapse
Affiliation(s)
- Xianmu Fu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Ming Guo
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Jiqing Liu
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China
| | - Chenghua Li
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, 315211 Ningbo, P. R. China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266071 Qingdao, P. R. China
| |
Collapse
|
52
|
Auger NA, Medina-Feliciano JG, Quispe-Parra DJ, Colón-Marrero S, Ortiz-Zuazaga H, García-Arrarás JE. Characterization and Expression of Holothurian Wnt Signaling Genes during Adult Intestinal Organogenesis. Genes (Basel) 2023; 14:309. [PMID: 36833237 PMCID: PMC9957329 DOI: 10.3390/genes14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/β-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/β-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.
Collapse
Affiliation(s)
- Noah A. Auger
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | | | - David J. Quispe-Parra
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Stephanie Colón-Marrero
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| |
Collapse
|
53
|
Liu BZ, Cong JJ, Su WY, Hao ZL, Sun ZH, Chang YQ. Identification and functional analysis of Dmrt1 gene and the SoxE gene in the sexual development of sea cucumber, Apostichopus japonicus. Front Genet 2023; 14:1097825. [PMID: 36741310 PMCID: PMC9894652 DOI: 10.3389/fgene.2023.1097825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Members of the Doublesex and Mab-3-related transcription factor (Dmrt) gene family handle various vital functions in several biological processes, including sex determination/differentiation and gonad development. Dmrt1 and Sox9 (SoxE in invertebrates) exhibit a very conserved interaction function during testis formation in vertebrates. However, the dynamic expression pattern and functional roles of the Dmrt gene family and SoxE have not yet been identified in any echinoderm species. Herein, five members of the Dmrt gene family (Dmrt1, 2, 3a, 3b and 5) and the ancestor SoxE gene were identified from the genome of Apostichopus japonicus. Expression studies of Dmrt family genes and SoxE in different tissues of adult males and females revealed different expression patterns of each gene. Transcription of Dmrt2, Dmrt3a and Dmrt3b was higher expressed in the tube feet and coelomocytes instead of in gonadal tissues. The expression of Dmrt1 was found to be sustained throughout spermatogenesis. Knocking-down of Dmrt1 by means of RNA interference (RNAi) led to the downregulation of SoxE and upregulation of the ovarian regulator foxl2 in the testes. This indicates that Dmrt1 may be a positive regulator of SoxE and may play a role in the development of the testes in the sea cucumber. The expression level of SoxE was higher in the ovaries than in the testes, and knocking down of SoxE by RNAi reduced SoxE and Dmrt1 expression but conversely increased the expression of foxl2 in the testes. In summary, this study indicates that Dmrt1 and SoxE are indispensable for testicular differentiation, and SoxE might play a functional role during ovary differentiation in the sea cucumber.
Collapse
|
54
|
Guo C, Zhang X, Li Y, Xie J, Gao P, Hao P, Han L, Zhang J, Wang W, Liu P, Ding J, Chang Y. Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese Apostichopus japonicus. BMC Genomics 2023; 24:25. [PMID: 36647018 PMCID: PMC9843871 DOI: 10.1186/s12864-023-09113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. RESULT In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. CONCLUSIONS This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pingping Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
- Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Jinyuan Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Peng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, People's Republic of China.
| |
Collapse
|
55
|
Biological mass spectrometry analysis for traceability of production method and harvesting seasons of sea cucumber (Apostichopus japonicus). Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
56
|
Mohsen M, Chenggang L, Sui Y, Yang H. Fate of Microplastic Fibers in the Coelomic Fluid of the Sea Cucumber Apostichopus japonicus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:205-212. [PMID: 36345956 DOI: 10.1002/etc.5513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Sea cucumbers are economical and ecologically important species, playing a crucial role in nutrient recycling in the ocean and providing valuable bioactive compounds for nutrition. Previous research has demonstrated that microplastic fibers, which are widely recognized as emerging contaminants, are transferred to the perivisceral coelomic fluid during respiration in sea cucumbers; however, their fate in sea cucumbers is still not well understood. We tracked the status of sea cucumbers (Apostichopus japonicus) with polyester microplastic fibers in their coelomic fluid in clean water. The results showed that after transferring sea cucumbers to clean water, the number of microplastic fibers transferred significantly decreased in the coelomic fluid, but at least one microplastic fiber was found up to 60 days. In addition, sea cucumbers recovered from the effect of microplastic fiber transfer, as indicated by enzyme levels and histological observations. Furthermore, single microplastic fiber transfer over a 60-day farmed period did not significantly affect the growth of sea cucumbers. However, repetitive microplastic fiber transfer (i.e., twice and thrice a week over 60 days) significantly decreased the growth rate (p < 0.05). Accordingly, increasing microplastic fibers in sea cucumber habitats pose a threat to sea cucumbers because they can disrupt development. Thus, farmers are advised to select locations for farming sea cucumbers where low microplastic fiber concentrations are expected. Environ Toxicol Chem 2023;42:205-212. © 2022 SETAC.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Lin Chenggang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
| | - Yanming Sui
- Yancheng Institute of Technology, College of Marine and Biological Engineering, Yancheng, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
57
|
Xia Y, Wang C, Yu D, Hou H. Methods of simultaneous preparation of various active substances from Stichopus chloronotus and functional evaluation of active substances. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yu Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Changwei Wang
- Qingdao Institute of Marine Biomedicine, Qingdao, People’s Republic of China
| | - Dejun Yu
- Qingdao Institute of Marine Biomedicine, Qingdao, People’s Republic of China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| |
Collapse
|
58
|
Shao G, He T, Mu Y, Mu P, Ao J, Lin X, Ruan L, Wang Y, Gao Y, Liu D, Zhang L, Chen X. The genome of a hadal sea cucumber reveals novel adaptive strategies to deep-sea environments. iScience 2022; 25:105545. [PMID: 36444293 PMCID: PMC9700323 DOI: 10.1016/j.isci.2022.105545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
How organisms cope with coldness and high pressure in the hadal zone remains poorly understood. Here, we sequenced and assembled the genome of hadal sea cucumber Paelopatides sp. Yap with high quality and explored its potential mechanisms for deep-sea adaptation. First, the expansion of ACOX1 for rate-limiting enzyme in the DHA synthesis pathway, increased DHA content in the phospholipid bilayer, and positive selection of EPT1 may maintain cell membrane fluidity. Second, three genes for translation initiation factors and two for ribosomal proteins underwent expansion, and three ribosomal protein genes were positively selected, which may ameliorate the protein synthesis inhibition or ribosome dissociation in the hadal zone. Third, expansion and positive selection of genes associated with stalled replication fork recovery and DNA repair suggest improvements in DNA protection. This is the first genome sequence of a hadal invertebrate. Our results provide insights into the genetic adaptations used by invertebrate in deep oceans.
Collapse
Affiliation(s)
- Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingqun Ao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xihuang Lin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Lingwei Ruan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - YuGuang Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Yuan Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dinggao Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519000, China
| |
Collapse
|
59
|
Xing L, Liu S, Zhang L, Yang H, Sun L. MITF Contributes to the Body Color Differentiation of Sea Cucumbers Apostichopus japonicus through Expression Differences and Regulation of Downstream Genes. BIOLOGY 2022; 12:biology12010001. [PMID: 36671694 PMCID: PMC9854957 DOI: 10.3390/biology12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Melanin, which is a pigment produced in melanocytes, is an important contributor to sea cucumber body color. MITF is one of the most critical genes in melanocyte development and melanin synthesis pathways. However, how MITF regulates body color and differentiation in sea cucumbers is poorly understood. In this study, we analyzed the expression level and location of MITF in white, purple, and green sea cucumbers and identified the genes regulated by MITF using chromatin immunoprecipitation followed by sequencing. The mRNA and protein expression levels of MITF were all highest in purple morphs and lowest in white morphs. In situ hybridization indicated that MITF mRNA were mainly expressed in the epidermis. We also identified 984, 732, and 1191 peaks of MITF binding in green, purple, and white sea cucumbers, which were associated with 727, 557, and 887 genes, respectively. Our findings suggested that MITF contributed to the body color differentiation of green, purple, and white sea cucumbers through expression differences and regulation of downstream genes. These results provided a basis for future studies to determine the mechanisms underlying body color formation and provided insights into gene regulation in sea cucumbers.
Collapse
Affiliation(s)
- Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel./Fax: +86-532-8289-8610
| |
Collapse
|
60
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
61
|
Mittal V, Reid RW, Machado DJ, Mashanov V, Janies DA. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. BMC Genom Data 2022; 23:75. [PMID: 36274129 PMCID: PMC9590158 DOI: 10.1186/s12863-022-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Here we release a new version of EchinoDB, EchinoDB v2.0 ( https://echinodb.uncc.edu ). EchinoDB is a database of genomic and transcriptomic data on echinoderms. The initial database consisted of groups of 749,397 orthologous and paralogous transcripts arranged in orthoclusters by sequence similarity. RESULTS The updated version of EchinoDB includes two new major datasets: the RNA-Seq data of the brittle star Ophioderma brevispinum and the high-quality genomic assembly data of the green sea urchin Lytechinus variegatus. In addition, we enabled keyword searches for annotated data and installed an updated version of Sequenceserver to allow Basic Local Alignment Search Tool (BLAST) searches. The data are downloadable in FASTA format. The first version of EchinoDB appeared in 2016 and was implemented in GO on a local server. The new version has been updated using R Shiny to include new features and improvements in the application. Furthermore, EchinoDB now runs entirely in the cloud for increased reliability and scaling. CONCLUSION EchinoDB serves a user base drawn from the fields of phylogenetics, developmental biology, genomics, physiology, neurobiology, and regeneration. As use cases, we illustrate the function of EchinoDB in retrieving components of signaling pathways involved in the tissue regeneration process of different echinoderms, including the emerging model species Ophioderma brevispinum. Moreover, we use EchinoDB to shed light on the conservation of the molecular components involved in two echinoderm-specific phenomena: spicule matrix proteins involved in the formation of stereom endoskeleton and the tensilin protein that contributes to the capacity of the connective tissues to quickly change its mechanical properties. The genes involved in the former had been previously studied in echinoids, while gene sequences involved in the latter had been previously described in holothuroids. Specifically, we ask (a) if the biomineralization-related proteins previously reported only in sea urchins are also present in other, non-echinoid, echinoderms and (b) if tensilin, the protein responsible for the control of stiffness of the mutable collagenous tissue, previously described in sea cucumbers, is conserved across the phylum.
Collapse
Affiliation(s)
- Varnika Mittal
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA.
| | - Robert W Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 91 Technology Way NE, Winston-Salem, NC, 27101, USA
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| |
Collapse
|
62
|
Zeng C, Guo M, Xiang Y, Song M, Xiao K, Li C. Mesentery AjFGF4-AjFGFR2-ERK pathway modulates intestinal regeneration via targeting cell cycle in echinoderms. Cell Prolif 2022; 56:e13351. [PMID: 36263902 PMCID: PMC9890533 DOI: 10.1111/cpr.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES The purpose of the study aims to understand the regeneration process and its cytology mechanism in economic echinoderms. MATERIALS AND METHODS The intestine regeneration process of Apostichopus japonicus was investigated by immunohistochemistry and the cell proliferation was detected by immunofluorescence and flow cytometry. Fibroblast growth factor 4 of A. japonicus (AjFGF4) was screened by RNA-seq analysis and validated to regulate cell proliferation by siAjFGF4 and recombinant-AjFGF4 treatment. The binding and co-localization of AjFGF4 and AjFGFR2 were verified by Co-IP, GST-pull down, and immunofluorescence. Then, the AjFGF4-AjFGFR2-ERK-cell cycle axis was examined by western blot, immunofluorescence, and flow cytometry techniques. RESULTS The mesentery was served as the epicenter of intestinal regeneration via activating cell proliferation and other cellular events. Mechanically, AjFGF4-mediated cell proliferation was dependent on the binding to its receptor AjFGFR2, and then triggered the conserved ERK-MAPK pathway but not JNK and p38 pathway. The activated ERK-MAPK subsequently mediated the expression of cell cycle regulatory proteins of CDK2, Cyclin A, and Cyclin B to promote cell proliferation. CONCLUSIONS We provide the first functional evidence that AjFGF4-AjFGFR2-ERK-cell cycle axis mediated cell proliferation was the engine for mesentery-derived intestine regeneration in echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina
| | - Yangxi Xiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina
| | - Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐ProductsNingbo UniversityNingboChina,Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
63
|
De novo genome assembly and annotation of Holothuria scabra (Jaeger, 1833) from nanopore sequencing reads. Genes Genomics 2022; 44:1487-1498. [DOI: 10.1007/s13258-022-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
64
|
Pilus NSM, Muhamad A, Shahidan MA, Yusof NYM. Potential of Epidermal Growth Factor-like Peptide from the Sea Cucumber Stichopus horrens to Increase the Growth of Human Cells: In Silico Molecular Docking Approach. Mar Drugs 2022; 20:md20100596. [PMID: 36286420 PMCID: PMC9605497 DOI: 10.3390/md20100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber is prominent as a traditional remedy among Asians for wound healing due to its high capacity for regeneration after expulsion of its internal organs. A short peptide consisting of 45 amino acids from transcriptome data of Stichopus horrens (Sh-EGFl-1) shows a convincing capability to promote the growth of human melanoma cells. Molecular docking of Sh-EGFl-1 peptide with human epidermal growth factor receptor (hEGFR) exhibited a favorable intermolecular interaction, where most of the Sh-EGFl-1 residues interacted with calcium binding-like domains. A superimposed image of the docked structure against a human EGF–EGFR crystal model also gave an acceptable root mean square deviation (RMSD) value of less than 1.5 Å. Human cell growth was significantly improved by Sh-EGFl-1 peptide at a lower concentration in a cell proliferation assay. Gene expression profiling of the cells indicated that Sh-EGFl-1 has activates hEGFR through five epidermal growth factor signaling pathways; phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase C gamma (PLC-gamma), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras homologous (Rho) pathways. All these pathways triggered cells’ proliferation, differentiation, survival and re-organization of the actin cytoskeleton. Overall, this marine-derived, bioactive peptide has the capability to promote proliferation and could be further explored as a cell-growth-promoting agent for biomedical and bioprocessing applications.
Collapse
Affiliation(s)
- Nur Shazwani Mohd Pilus
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| | - Azira Muhamad
- Department of Structural Biology and Functional Omics, Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Kajang 43000, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| |
Collapse
|
65
|
Su F, Sun L, Li X, Cui W, Yang H. Characterization and Expression Analysis of Regeneration-Associated Protein (Aj-Orpin) during Intestinal Regeneration in the Sea Cucumber Apostichopus japonicus. Mar Drugs 2022; 20:568. [PMID: 36135757 PMCID: PMC9501386 DOI: 10.3390/md20090568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Apostichopus japonicus achieves intestinal regeneration in a short period after evisceration, and multiple genes are involved in this process. The transcriptome of A. japonicus was screened for regeneration-associated protein (Aj-Orpin), a gene that is specifically upregulated during intestinal regeneration. The expression and function of Aj-Orpin were identified and investigated in this study. The 5' and 3' RACE polymerase chain reaction (PCR) was used to clone the full-length cDNA of Aj-Orpin. The open reading frame codes for a 164 amino-acid protein with an EF-hand_7 domain and overlapping signal peptides and transmembrane regions. Moreover, Aj-Orpin mRNA and protein expression during intestinal regeneration was investigated using real-time quantitative PCR and Western blot. The expression pattern of Aj-Orpin in the regenerating intestine was investigated using immunohistochemistry. The results showed that Aj-Orpin is an exocrine protein with two EF-hand-like calcium-binding domains. Expression levels were higher in the regenerating intestine than in the normal intestine, but protein expression changes lagged behind mRNA expression changes. Aj-Orpin was found to play a role in the formation of blastema and lumen. It was primarily expressed in the serosal layer and submucosa, suggesting that it might be involved in proliferation. These observations lay the foundation for understanding the role of Orpin-like in echinoderm intestinal regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Xiaoni Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
66
|
Li C, Zheng Y, Cong X, Liu H, Storey KB, Chen M. Molecular and functional characterization of the luqin-type neuropeptide signaling system in the sea cucumber Apostichopus japonicus. Peptides 2022; 155:170839. [PMID: 35839946 DOI: 10.1016/j.peptides.2022.170839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 11/18/2022]
Abstract
The functional characteristics of neuropeptides in marine invertebrates have attracted significant attention recently although functional studies of luqin-type neuropeptides are still very limited, especially in deuterostomes. The sea cucumber, Apostichopus japonicus, is a representative species of deuterostomian Holothurian invertebrates. The species has high nutritional and medicinal value in China. In this study, we report the first comprehensive histological, biochemical and pharmacological characterization of luqin-type neuropeptide signaling in the sea cucumber A. japonicus. The A. japonicus luqin-like neuropeptide precursor (AjLQP) contains a single typical deuterostomian luqin-like neuropeptide AjLQ with an xFxRWamide motif. AjLQ was identified as the ligand for a luqin-type neuropeptide receptor AjLQR, that was previously predicted to be a tachykinin-type receptor, and triggers a rapid intracellular mobilization of Ca2+, followed by receptor internalization and a transient increase in ERK1/2 phosphorylation. In situ hybridization, immunohistochemistry and qRT-PCR analysis revealed extensive expression of AjLQP and AjLQ in A. japonicus tissues, especially in locomotion-related organs. In vitro pharmacological tests revealed that AjLQ caused 12.69% ± 1.99% (p < 0.01) relaxation of longitudinal muscle preparations at 10-7 M concentration. Furthermore, we observed significantly increased expression of AjLQP (about 17.63 fold, p < 0.01) in intestine of deeply aestivating sea cucumbers, which suggests that AjLQ might be involved in feeding inhibition during aestivation. The present study provides a first insight into the experimental characterization of luqin-type neuropeptide signaling in a sea cucumber. The results will broaden our understanding of the potential function of neuropeptides during important biological processes in marine invertebrates and provide theoretical support for optimizing sea cucumber aquaculture technology.
Collapse
Affiliation(s)
- Chenyi Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
67
|
Wang Y, Song Y, Chang Y, Liu Y, Chen G, Xue C. Dynamic changes of peptidome and release of polysaccharide in sea cucumber (Apostichopus japonicus) hydrolysates depending on enzymatic hydrolysis approaches. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
68
|
Huo D, Su F, Cui W, Liu S, Zhang L, Yang H, Sun L. Heat stress and evisceration caused lipid metabolism and neural transduction changes in sea cucumber: Evidence from metabolomics. MARINE POLLUTION BULLETIN 2022; 182:113993. [PMID: 35952546 DOI: 10.1016/j.marpolbul.2022.113993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
When encountering adverse environmental conditions, some holothurians can eject their internal organs in a process called evisceration. As global warming intensified, eviscerated and intact sea cucumbers both experience heat stress, but how they performed was uncertain. We constructed 24 metabolomics profiles to reveal the metabolite changes of eviscerated and intact sea cucumbers under normal and high temperature conditions, respectively. Carboxylic acids and fatty acyls were the most abundant metabolic categories in evisceration and heat stress treatments, respectively. Neural transduction was involved in sea cucumber evisceration and stress response, and the commonly enriched pathway was "neuroactive ligand-receptor interaction". Lipid metabolism in eviscerated sea cucumbers differed from those of intact individuals and was more seriously affected by heat stress. Choline is a key metabolite for revealing the evisceration mechanism. Our results contribute to understanding the mechanisms of evisceration in sea cucumbers, and how sea cucumbers might respond to increasingly warming ocean conditions.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
69
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
70
|
Zhu X, Ni P, Sturrock M, Wang Y, Ding J, Chang Y, Hu J, Bao Z. Fine-mapping and association analysis of candidate genes for papilla number in sea cucumber, Apostichopus japonicus. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:343-355. [PMID: 37073167 PMCID: PMC10077181 DOI: 10.1007/s42995-022-00139-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/03/2022] [Indexed: 05/03/2023]
Abstract
The papilla number is one of the most economically important traits of sea cucumber in the China marketing trade. However, the genetic basis for papilla number diversity in holothurians is still scarce. In the present study, we conducted genome-wide association studies (GWAS) for the trait papilla number of sea cucumbers utilizing a set of 400,186 high-quality SNPs derived from 200 sea cucumbers. Two significant trait-associated SNPs that passed Bonferroni correction (P < 1.25E-7) were located in the intergenic region near PATS1 and the genic region of EIF4G, which were reported to play a pivotal role in cell growth and proliferation. The fine-mapping regions around the top two lead SNPs provided precise causative loci/genes related to papilla formation and cellular activity, including PPP2R3C, GBP1, and BCAS3. Potential SNPs with P < 1E-4 were acquired for the following GO and KEGG enrichment analysis. Moreover, the two lead SNPs were verified in another population of sea cucumber, and the expressive detection of three potential candidate genes PATS1, PPP2R3C, and EIF4G that near or cover the two lead SNPs was conducted in papilla tissue of TG (Top papilla number group) and BG (Bottom papilla number group) by qRT-PCR. We found the significantly higher expression profile of PATS1 (3.34-fold), PPP2R3C (4.90-fold), and EIF4G (4.23-fold) in TG, implying their potential function in papilla polymorphism. The present results provide valuable information to decipher the phenotype differences of the papilla trait and will provide a scientific basis for selective breeding in sea cucumbers. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00139-w.
Collapse
Affiliation(s)
- Xinghai Zhu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Ping Ni
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77 Ireland
| | - Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Jun Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023 China
| | - Jingjie Hu
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000 China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
71
|
Duan X, Shao Y, Che Z, Zhao X, Guo M, Li C, Liang W. Genome-wide identification m 6A modified circRNAs revealed their key roles in skin ulceration syndrome disease development in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:748-757. [PMID: 35835384 DOI: 10.1016/j.fsi.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs (ncRNAs) and can be acted as competing endogenous RNAs (ceRNAs) to regulate microRNA (miRNA) and downstream gene expression. Recently, m6A modification has been found in circRNA, and m6A circRNAs also play important roles in various biological processes and a variety of diseases. Our previous study had been demonstrated that circRNAs were differentially expressed in skin ulceration syndrome (SUS) diseased sea cucumber Apostichopus japonicus. However, whether the function of circRNAs are dependent on m6A levels are largely unknown. Here, we firstly investigated the genome-wide map of m6A circRNAs in sea cucumbers with different stages of Vibrio splendidus challenge, that's Control group, SUS-diseased group, and SUS-resistant group. MeRIP-seq revealed that m6A abundances were enriched in circRNAs in all three groups, especially for SUS-resistant group. Among them, more than 62% of modified circRNAs harbor only a single m6A peak and about 55% of m6A sites in circRNAs were derived from sense overlapping in each group. After V. splendidus infection, we found that most of m6A peaks in circRNAs were upregulated and less were downregulated in both SUS-diseased and SUS-resistant groups when compared with Control. Furthermore, GO analysis indicated that the host genes of circRNAs with dysregulated m6A peaks in SUS-diseased and SUS-resistant groups were both mainly enriched in the adhesion pathway. More importantly, we discovered that more than 50% m6A circRNAs showed a positive correlation between the circRNAs expression and m6A methylation levels both in SUS-diseased and SUS-resistant groups. Therefore, a core circRNA-miRNA-mRNA (ceRNA) network whether influenced by m6A modification was constructed based on conjoint analysis. Our results indicated that several selected m6A circRNAs bind with miRNAs were mainly targeting to ubiquitylation system and adhesion pathway. What's more, three candidate m6A circRNAs and three target genes were validated by MeRIP-qPCR and qPCR, whose m6A levels in circRNA and mRNA expressions were consistent with disease occurrence or disease resistance. All of our current findings suggested that m6A circRNAs could play important roles during pathogen infection and might be served as a new molecular biomarker in SUS disease diagnose of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Zhongjie Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
72
|
Su F, Yang H, Sun L. A Review of Histocytological Events and Molecular Mechanisms Involved in Intestine Regeneration in Holothurians. BIOLOGY 2022; 11:1095. [PMID: 35892951 PMCID: PMC9332576 DOI: 10.3390/biology11081095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
Most species of the class Holothuroidea are able to regenerate most of their internal organs following a typical evisceration process, which is a unique mechanism that allows sea cucumbers to survive in adverse environments. In this review, we compare autotomy among different type of sea cucumber and summarize the histocytological events that occur during the five stages of intestinal regeneration. Multiple cytological activities, such as apoptosis and dedifferentiation, take place during wound healing and anlage formation. Many studies have focused on the molecular regulation mechanisms that underlie regeneration, and herein we describe the techniques that have been used as well as the development-related signaling pathways and key genes that are significantly expressed during intestinal regeneration. Future analyses of the underlying mechanisms responsible for intestinal regeneration should include mapping at the single-cell level. Studies of visceral regeneration in echinoderms provide a unique perspective for understanding whole-body regeneration or appendage regeneration.
Collapse
Affiliation(s)
- Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.S.); (H.Y.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| |
Collapse
|
73
|
Lv J, Wang Y, Ni P, Lin P, Hou H, Ding J, Chang Y, Hu J, Wang S, Bao Z. Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks. Genomics 2022; 114:110426. [PMID: 35820495 DOI: 10.1016/j.ygeno.2022.110426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022]
Abstract
High-throughput single nucleotide polymorphism (SNP) genotyping assays are powerful tools for genetic studies and genomic breeding applications for many species. Though large numbers of SNPs have been identified in sea cucumber (Apostichopus japonicus), but, as yet, no high-throughput genotyping platform is available for this species. In this study, we designed and developed a high-throughput 24 K SNP genotyping array named HaishenSNP24K for A. japonicus, based on the multi-objective-local optimization (MOLO) algorithm and HD-Marker genotyping method. The SNP array exhibited a relatively high genotyping call rate (> 96%), genotyping accuracy (>95%) and exhibited highly polymorphic in sea cucumber populations. In addition, we also assessed its application in genomic selection (GS). Deep neural networks (DNN) that can capture the complicated interactions of genes have been proposed as a promising tool in GS for SNP-based genomic prediction of complex traits in animal breeding. To overcome the problem of over-fitting when using the HaishenSNP24K array as high-dimensional DNN input, we developed minmax concave penalty (MCP) regularization for sparse deep neural networks (DNN-MCP) that finds an optimal sparse structure of a DNN by minimizing the square error subject to the non-convex penalty MCP on the parameters (weights and biases). Compared to two linear models, namely RR-GBLUP and Bayes B, and the nonlinear model DNN, DNN-MCP has greatly improved the genomic prediction ability for three quantitative traits (e.g., wet weight, dry weight and survival time) in the sea cucumber population. To the best of our knowledge, this is the first work to develop a high-throughput SNP array for A. japonicus and a new model DNN-MCP for genomic prediction of complex traits in GS. The present results provide evidence that supports the HaishenSNP24K array with DNN-MCP will be valuable for genetic studies and molecular breeding in A. japonicus.
Collapse
Affiliation(s)
- Jia Lv
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yangfan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Ping Ni
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ping Lin
- Division of Mathematics, University of Dundee, Dundee DD1 4HN, UK
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jun Ding
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Yaqing Chang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Jingjie Hu
- Ocean University China, Sanya Oceanog Inst, Lab Trop Marine Germplasm Res & Breeding Engn, Sanya 572000, China.
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
74
|
Biosynthesis of saponin defensive compounds in sea cucumbers. Nat Chem Biol 2022; 18:774-781. [PMID: 35761075 PMCID: PMC9236903 DOI: 10.1038/s41589-022-01054-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Soft-bodied slow-moving sea creatures such as sea stars and sea cucumbers lack an adaptive immune system and have instead evolved the ability to make specialized protective chemicals (glycosylated steroids and triterpenes) as part of their innate immune system. This raises the intriguing question of how these biosynthetic pathways have evolved. Sea star saponins are steroidal, while those of the sea cucumber are triterpenoid. Sterol biosynthesis in animals involves cyclization of 2,3-oxidosqualene to lanosterol by the oxidosqualene cyclase (OSC) enzyme lanosterol synthase (LSS). Here we show that sea cucumbers lack LSS and instead have two divergent OSCs that produce triterpene saponins and that are likely to have evolved from an ancestral LSS by gene duplication and neofunctionalization. We further show that sea cucumbers make alternate sterols that confer protection against self-poisoning by their own saponins. Collectively, these events have enabled sea cucumbers to evolve the ability to produce saponins and saponin-resistant sterols concomitantly. ![]()
Sea stars and sea cucumbers biosynthesize protective glycosylated steroids and triterpenes via divergent oxidosqualene cyclases (OSCs) that produce these distinct saponins in different species as well as in different tissues of a single species.
Collapse
|
75
|
Wang Y, Yang Y, Li Y, Chen M. Identification of sex determination locus in sea cucumber Apostichopus japonicus using genome-wide association study. BMC Genomics 2022; 23:391. [PMID: 35606723 PMCID: PMC9128100 DOI: 10.1186/s12864-022-08632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/12/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sex determination mechanisms are complicated and diverse across taxonomic categories. Sea cucumber Apostichopus japonicus is a benthic echinoderm, which is the closest group of invertebrates to chordate, and important economic and ecologically aquaculture species in China. A. japonicus is dioecious, and no phenotypic differences between males and females can be detected before sexual maturation. Identification of sex determination locus will broaden knowledge about sex-determination mechanism in echinoderms, which allows for the identification of sex-linked markers and increases the efficiency of sea cucumber breeding industry. Results Here, we integrated assembly of a novel chromosome-level genome and resequencing of female and male populations to investigate the sex determination mechanisms of A. japonicus. We built a chromosome-level genome assembly AJH1.0 using Hi-C technology. The assembly AJH1.0 consists of 23 chromosomes ranging from 22.4 to 60.4 Mb. To identify the sex-determination locus of A. japonicus, we conducted genome-wide association study (GWAS) and analyses of distribution characteristics of sex-specific SNPs and fixation index FST. The GWAS analysis showed that multiple sex-associated loci were located on several chromosomes, including chromosome 4 (24.8%), followed by chromosome 9 (10.7%), chromosome 17 (10.4%), and chromosome 18 (14.1%). Furthermore, analyzing the homozygous and heterozygous genotypes of plenty of sex-specific SNPs in females and males confirmed that A. japonicus might have a XX/XY sex determination system. As a physical region of 10 Mb on chromosome 4 included the highest number of sex-specific SNPs and higher FST values, this region was considered as the candidate sex determination region (SDR) in A. japonicus. Conclusions In the present study, we integrated genome-wide association study and analyses of sex-specific variations to investigate sex determination mechanisms. This will bring novel insights into gene regulation during primitive gonadogenesis and differentiation and identification of master sex determination gene in sea cucumber. In the sea cucumber industry, investigation of molecular mechanisms of sex determination will be helpful for artificial fertilization and precise breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08632-3.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Yulong Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (CAS), Chinese Academy of Sciences (CAS), Qingdao, China
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
76
|
Álvarez-Armada N, Cameron CB, Bauer JE, Rahman IA. Heterochrony and parallel evolution of echinoderm, hemichordate and cephalochordate internal bars. Proc Biol Sci 2022; 289:20220258. [PMID: 35538784 PMCID: PMC9091856 DOI: 10.1098/rspb.2022.0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Deuterostomes comprise three phyla with radically different body plans. Phylogenetic bracketing of the living deuterostome clades suggests the latest common ancestor of echinoderms, hemichordates and chordates was a bilaterally symmetrical worm with pharyngeal openings, with these characters lost in echinoderms. Early fossil echinoderms with pharyngeal openings have been described, but their interpretation is highly controversial. Here, we critically evaluate the evidence for pharyngeal structures (gill bars) in the extinct stylophoran echinoderms Lagynocystis pyramidalis and Jaekelocarpus oklahomensis using virtual models based on high-resolution X-ray tomography scans of three-dimensionally preserved fossil specimens. Multivariate analyses of the size, spacing and arrangement of the internal bars in these fossils indicate they are substantially more similar to gill bars in modern enteropneust hemichordates and cephalochordates than to other internal bar-like structures in fossil blastozoan echinoderms. The close similarity between the internal bars of the stylophorans L. pyramidalis and J. oklahomensis and the gill bars of extant chordates and hemichordates is strong evidence for their homology. Differences between these internal bars and bar-like elements of the respiratory systems in blastozoans suggest these structures might have arisen through parallel evolution across deuterostomes, perhaps underpinned by a common developmental genetic mechanism.
Collapse
Affiliation(s)
| | - Christopher B Cameron
- Département de sciences biologiques, Université de Montréal C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Jennifer E Bauer
- University of Michigan Museum of Paleontology, Ann Arbor, MI 48109-1085, USA
| | - Imran A Rahman
- The Natural History Museum, London SW7 5BD, UK.,Oxford University Museum of Natural History, Oxford OX1 3PW, UK
| |
Collapse
|
77
|
Xu D, Fang H, Liu J, Chen Y, Gu Y, Sun G, Xia B. ChIP-seq assay revealed histone modification H3K9ac involved in heat shock response of the sea cucumber Apostichopus japonicus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153168. [PMID: 35051475 DOI: 10.1016/j.scitotenv.2022.153168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Heat stress poses an increasing threat for the marine invertebrate Apostichopus japonicus. Histone lysine acetylation is a central chromatin modification for epigenetic regulation of gene expression during stress response. In this study, a genome-wide characterization for acetylated lysine 9 on histone H3 (H3K9ac) binding regions in normal temperature (18 °C) and heat-stress conditions (26 °C) via ChIP-seq were carried out. The results that revealed H3K9ac was an extensive epigenetic modulation in A. japonicus. The GO terms "regulation of transcription, DNA-templated" and "transcription coactivator activity" were significantly enriched in both groups. Particularly, various transcriptional factors (TFs) families showed notable modification of H3K9ac. Differentially acetylated regions (DARs) with H3K9ac modification under heat stress were identified with 24 hyperacetylated and 23 hypoacetylated peaks, respectively. We further examined the transcriptional expression for 13 genes with dysregulated H3K9ac level in the promoter regions by qRT-PCR. Combined H3K9ac ChIP-seq characteristics with the transcriptional expression, 5 up-up genes (ZCCHC3, RPA70, MTRR, β-Gal and PHTF2) and 2 down-down genes (PRPF39 and BSL78_10147) were identified. Surprisingly, the increasing mRNA expression of NECAP1 under heat stress was negatively related to the decreasing H3K9ac level in its promoter region. Our research is the first genome-wide characterization for the epigenetic modification H3K9ac in A. japonicus, and will help to advance the understanding of the roles of H3K9ac in transcriptional regulation under heat-stress condition.
Collapse
Affiliation(s)
- Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Huahua Fang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong 264025, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
78
|
Sun JJ, Sun ZH, Wei JL, Ding J, Song J, Chang YQ. Identification and functional analysis of foxl2 and nodal in sea cucumber, Apostichopus japonicus. Gene Expr Patterns 2022; 44:119245. [PMID: 35381371 DOI: 10.1016/j.gep.2022.119245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
Sea cucumber (Apostichopus japonicus) is an important mariculture species in China. To date, the mechanisms of sex determination and differentiation in sea cucumber remain unclear. Identifying sex-specific molecular markers is an effective method for revealing the genetic basis of sex determination and sex differentiation. In this study, foxl2 and nodal homologous genes were identified in A. japonicus. Foxl2 exhibited dynamic and sexually dimorphic expression patterns in the gonads, with prominent expression in the ovaries and minimal expression in the testis according to real-time quantitative PCR (RT-qPCR) study. As nodal was specifically expressed in the ovary, it could serve as an ovary-specific marker in sea cucumber. Additionally, knockdown of foxl2 or nodal using RNA interference (RNAi) led to the down-regulation of piwi, germ cell-less, and dmrt1, suggesting that foxl2 and nodal may play important roles in gonad maintenance of sea cucumber. Overall, this study adds to our understanding of the roles of foxl2 and nodal in the gonadal development of A. japonicus, which provides further insight into the mechanisms of sea cucumber sex determination and differentiation.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
79
|
Manik SMN, Quamruzzaman M, Zhao C, Johnson P, Hunt I, Shabala S, Zhou M. Genome-Wide Association Study Reveals Marker Trait Associations (MTA) for Waterlogging-Triggered Adventitious Roots and Aerenchyma Formation in Barley. Int J Mol Sci 2022; 23:ijms23063341. [PMID: 35328762 PMCID: PMC8954902 DOI: 10.3390/ijms23063341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
Waterlogging is an environmental stress, which severely affects barley growth and development. Limited availability of oxygen in the root zone negatively affects the metabolism of the whole plant. Adventitious roots (AR) and root cortical aerenchyma (RCA) formation are the most important adaptive traits that contribute to a plant's ability to survive in waterlogged soil conditions. This study used a genome-wide association (GWAS) approach using 18,132 single nucleotide polymorphisms (SNPs) in a panel of 697 barley genotypes to reveal marker trait associations (MTA) conferring the above adaptive traits. Experiments were conducted over two consecutive years in tanks filled with soil and then validated in field experiments. GWAS analysis was conducted using general linear models (GLM), mixed linear models (MLM), and fixed and random model circulating probability unification models (FarmCPU model), with the FarmCPU showing to be the best suited model. Six and five significant (approximately -log10 (p) ≥ 5.5) MTA were identified for AR and RCA formation under waterlogged conditions, respectively. The highest -log10 (p) MTA for adventitious root and aerenchyma formation were approximately 9 and 8 on chromosome 2H and 4H, respectively. The combination of different MTA showed to be more effective in forming RCA and producing more AR under waterlogging stress. Genes from major facilitator superfamily (MFS) transporter and leucine-rich repeat (LRR) families for AR formation, and ethylene responsive factor (ERF) family genes and potassium transporter family genes for RCA formation were the potential candidate genes involved under waterlogging conditions. Several genotypes, which performed consistently well under different conditions, can be used in breeding programs to develop waterlogging-tolerant varieties.
Collapse
Affiliation(s)
- S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Md Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Peter Johnson
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Ian Hunt
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS 7250, Australia; (S.M.N.M.); (M.Q.); (C.Z.); (P.J.); (I.H.); (S.S.)
- Correspondence:
| |
Collapse
|
80
|
Zhang L, He J, Tan P, Gong Z, Qian S, Miao Y, Zhang HY, Tu G, Chen Q, Zhong Q, Han G, He J, Wang M. The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment. Commun Biol 2022; 5:224. [PMID: 35273345 PMCID: PMC8913654 DOI: 10.1038/s42003-022-03176-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cold seeps and hydrothermal vents are deep-sea reducing environments that are characterized by lacking oxygen and photosynthesis-derived nutrients. Most animals acquire nutrition in cold seeps or hydrothermal vents by maintaining epi- or endosymbiotic relationship with chemoautotrophic microorganisms. Although several seep- and vent-dwelling animals hosting symbiotic microbes have been well-studied, the genomic basis of adaptation to deep-sea reducing environment in nonsymbiotic animals is still lacking. Here, we report a high-quality genome of Chiridota heheva Pawson & Vance, 2004, which thrives by extracting organic components from sediment detritus and suspended material, as a reference for nonsymbiotic animal's adaptation to deep-sea reducing environments. The expansion of the aerolysin-like protein family in C. heheva compared with other echinoderms might be involved in the disintegration of microbes during digestion. Moreover, several hypoxia-related genes (Pyruvate Kinase M2, PKM2; Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase, LHPP; Poly(A)-specific Ribonuclease Subunit PAN2, PAN2; and Ribosomal RNA Processing 9, RRP9) were subject to positive selection in the genome of C. heheva, which contributes to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Peipei Tan
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyu Qian
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Miao
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Han-Yu Zhang
- Hainan Key Laboratory of Marine Georesource and Prospecting, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guangxian Tu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Chen
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiqi Zhong
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guanzhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, 525435, China.
| |
Collapse
|
81
|
Jobson S, Hamel JF, Mercier A. Rainbow bodies: Revisiting the diversity of coelomocyte aggregates and their synthesis in echinoderms. FISH & SHELLFISH IMMUNOLOGY 2022; 122:352-365. [PMID: 35167932 DOI: 10.1016/j.fsi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The innate immunity of echinoderms has been a research focus since the early twentieth century, consistently providing ever deeper knowledge of its complexity and evolutionary aspects. At its core are coelomocytes, which are diverse cells collectively known to respond in a variety of ways, including via movement, phagocytosis, and aggregation. However, features of cellular immunity have never been compared in echinoderms from phylogenetic and distributional perspectives, to provide insight into ecological and evolutionary patterns. The present study catalyzed and characterized the formation of coelomocyte aggregates in members of all five extant classes of echinoderms. The morphological characteristics of these aggregates (including their colour, shape, texture, size) were assessed, as well as the major cells composing them. Coelomocyte diversity (both as free and aggregated forms) was determined to be maximum in class Holothuroidea, followed by Echinoidea, with the other classes showing similar levels of diversity. The colours of coelomocyte aggregates appeared to be more closely linked to phylogeny (classes, orders) rather than geographic range, or external colour of the species themselves. Asteroids and ophiuroids displayed primarily light-coloured aggregates, from transparent to green; while holothuroids, echinoids and crinoids demonstrated more vivid variants, from red to deep purple. The kinetics of aggregate formation and expulsion were monitored in selected species, showing immediate cellular response to foreign particulate matter in the form of encapsulation and various methods of expulsion, including through the dermal papillae of asteroids and the anus (cloaca) of holothuroids. The findings support that coelomocyte aggregate formation is a conserved immune response across all five extant classes of echinoderms with variations in their cell catalysts, complexity, shape, colour, and size.
Collapse
Affiliation(s)
- Sara Jobson
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland, Canada.
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment, St. Philips, Newfoundland, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
82
|
Gao L, Yuan Z, Li Y, Ma Z. Genome-wide comparative analysis of DNAJ genes and their co-expression patterns with HSP70s in aestivation of the sea cucumber Apostichopus japonicus. Funct Integr Genomics 2022; 22:317-330. [PMID: 35195842 DOI: 10.1007/s10142-022-00830-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
DNAJ proteins function as co-chaperones of HSP70 and play key roles in cell physiology to promote protein folding and degradation, especially under environmental stress. Based on our previous study on HSP70, a systematic study of DNAJ was performed in sea cucumber Apostichopus japonicus using the transcriptomic and genomic data, identifying 43 AjDNAJ genes, including six AjDNAJA genes, eight AjDNAJB genes, and 29 AjDNAJC genes. Slight expansion and conserved genomic structure were observed using the phylogenetic and syntenic analysis. Differential period-specific and tissue-specific expression patterns of AjDNAJs were observed between adult and juvenile individuals during aestivation. Strong tissue-specific expression correlations between AjDNAJ and AjHSP70 genes were found, indicating that the involvements of AjHSP70IVAs in the aestivation of sea cucumbers were regulated by AjDNAJs. Several key genes with significant expression correlations, such as AjDNAJB4L and AjHSP70IVAs, were suggested to function together under heat stress. Together, these findings provide early insight into the involvement of AjDNAJs in the aestivation and their roles as co-chaperones of AjHSP70s.
Collapse
Affiliation(s)
- Lei Gao
- Dalian Ocean University, Dalian, 116023, Liaoning, China. .,Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China.
| | - Zihao Yuan
- The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yunfeng Li
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, Liaoning, China
| | - Zhen Ma
- Dalian Ocean University, Dalian, 116023, Liaoning, China.
| |
Collapse
|
83
|
Tan J, Wang X, Wang L, Zhou X, Liu C, Ge J, Bian L, Chen S. Transcriptomic responses to air exposure stress in coelomocytes of the sea cucumber, Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100963. [PMID: 35131601 DOI: 10.1016/j.cbd.2022.100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
During rearing in hatcheries and transportation to restocking sites, sea cucumbers are often exposed to air for several hours, which may depress their non-specific immunity and lead to mass mortality. We performed transcriptome analysis of Apostichopus japonicus coelomocytes after air exposure to identify stress-related genes and pathways. After exposure to air for 1 h, individuals were re-submerged in aerated seawater and coelomocytes were collected at 0, 1, 4, and 16 h (B, H1, H4, and H16, respectively). We identified 6148 differentially expressed genes, of which 3216 were upregulated and 2932 were downregulated. Many genes involved in the immune response, antioxidant defense, and apoptosis were highly induced in response to air exposure. Enrichment analysis of Gene Ontology terms showed that the most abundant terms in the biological process category were oxidation-reduction process, protein folding and phosphorylation, and receptor-mediated endocytosis for the comparison of H1 vs. B, H4 vs. H1, and H16 vs. H4, respectively. Kyoto Eecyclopedia of Genes and Genomes enrichment analysis showed that six pathways related to the metabolism of proteins, fats, and carbohydrates were shared among the three comparisons. These results indicated that sea cucumbers regulate the expression of genes related to the antioxidant system and energy metabolism to resist the negative effects of air exposure stress. These findings may be applied to optimize juvenile sea cucumber production, and facilitate molecular marker-assisted selective breeding of an anoxia-resistant strain.
Collapse
Affiliation(s)
- Jie Tan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xuejiang Wang
- Wuzhoufeng Agricultural Science and Technology Co., LTD, Yantai 264000, China.
| | - Liang Wang
- Yantai Marine Economic Research Institute, Yantai 264003, China.
| | - Xiaoqun Zhou
- Yantai Marine Economic Research Institute, Yantai 264003, China
| | - Changlin Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Jianlong Ge
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Bian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Siqing Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
84
|
Shao Y, Wang Z, Chen K, Li D, Lv Z, Zhang C, Zhang W, Li C. Xenophagy of invasive bacteria is differentially activated and modulated via a TLR-TRAF6-Beclin1 axis in echinoderms. J Biol Chem 2022; 298:101667. [PMID: 35120925 PMCID: PMC8902612 DOI: 10.1016/j.jbc.2022.101667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
In marine environments, organisms are confronted with numerous microbial challenges, although the differential regulation of xenophagy in response to different pathogenic bacterial species remains relatively unknown. Here, we addressed this issue using Apostichopus japonicus as a model. We identified 39 conserved autophagy-related genes by genome-wide screening, which provided a molecular basis for autophagy regulation in sea cucumbers. Furthermore, xenophagy of two Gram-negative bacteria, Vibrio splendidus and Escherichia coli, but not a Gram-positive bacteria, Micrococcus luteus, was observed in different autophagy assays. Surprisingly, a significantly higher autophagy capacity was found in the E. coli–challenged group than in the V. splendidus–challenged group. To confirm these findings, two different lipopolysaccharides, LPSV. splendidus and LPSE. coli, were isolated; we found that these LPS species differentially activated coelomocyte xenophagy. To explore the molecular mechanism mediating differential levels of xenophagy, we used an siRNA knockdown assay and confirmed that LPSV. splendidus-mediated xenophagy was dependent on an AjTLR3-mediated pathway, whereas LPSE. coli-mediated xenophagy was dependent on AjToll. Moreover, the activation of different AjTLRs resulted in AjTRAF6 ubiquitination and subsequent activation of K63-linked ubiquitination of AjBeclin1. Inversely, the LPSV. splendidus-induced AjTLR3 pathway simultaneously activated the expression of AjA20, which reduced the extent of K63-linked ubiquitination of AjBeclin1 and impaired the induction of autophagy; however, this finding was no t evident with LPSE. coli. Our present results provide the first evidence showing that xenophagy could be differentially induced by different bacterial species to yield differential autophagy levels in echinoderms.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhenhui Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Dongdong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chundan Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
85
|
Lv Z, Guo M, Zhao X, Shao Y, Zhang W, Li C. IL-17/IL-17 Receptor Pathway-Mediated Inflammatory Response in Apostichopus japonicus Supports the Conserved Functions of Cytokines in Invertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:464-479. [PMID: 34965964 DOI: 10.4049/jimmunol.2100047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023]
Abstract
Inflammation participates in host defenses against infectious agents and contributes to the pathophysiology of many diseases. IL-17 is a well-known proinflammatory cytokine that contributes to various aspects of inflammation in vertebrates. However, the functional role of invertebrate IL-17 in inflammatory regulation is not well understood. In this study, we first established an inflammatory model in the Vibrio splendidus-challenged sea cucumber Apostichopus japonicus (Echinodermata). Typical inflammatory symptoms, such as increased coelomocyte infiltration, tissue vacuoles, and tissue fractures, were observed in the V. splendidus-infected and diseased tissue of the body wall. Interestingly, A. japonicus IL-17 (AjIL-17) expression in the body wall and coelomocytes was positively correlated with the development of inflammation. The administration of purified recombinant AjIL-17 protein also directly promoted inflammation in A. japonicus Through genome searches and ZDOCK prediction, a novel IL-17R counterpart containing FNIII and hypothetical TIR domains was identified in the sea cucumber genome. Coimmunoprecipitation, far-Western blotting, and laser confocal microscopy confirmed that AjIL-17R could bind AjIL-17. A subsequent cross-linking assay revealed that the AjIL-17 dimer mediates the inflammatory response by the specific binding of dimeric AjIL-17R upon pathogen infection. Moreover, silencing AjIL-17R significantly attenuated the LPS- or exogenous AjIL-17-mediated inflammatory response. Functional analysis revealed that AjIL-17/AjIL-17R modulated inflammatory responses by promoting A. japonicus TRAF6 ubiquitination and p65 nuclear translocation and evenly mediated coelomocyte proliferation and migration. Taken together, our results provide functional evidence that IL-17 is a conserved cytokine in invertebrates and vertebrates associated with inflammatory regulation via the IL-17-IL-17R-TRAF6 axis.
Collapse
Affiliation(s)
- Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, People's Republic of China; and .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
86
|
Construction of a High-Density Genetic Linkage Map for the Mapping of QTL Associated with Growth-Related Traits in Sea Cucumber (Apostichopus japonicus). BIOLOGY 2021; 11:biology11010050. [PMID: 35053048 PMCID: PMC8772784 DOI: 10.3390/biology11010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary Slow growth and germplasm degradation have restricted the sustainable commercial development of the sea cucumber industry. To analyze the genetic mechanism of growth traits of sea cucumbers, we constructed a high-density genetic linkage map based on single nucleotide polymorphism (SNP) molecular markers and performed a quantitative trait loci (QTL) mapping analysis. We annotated a critical candidate gene related to growth traits and explored mRNA expression levels. The results showed that the gene was significantly highly expressed during the larval developmental stages. These results can be used to genetically improve the growth traits of sea cucumbers. Abstract Genetic linkage maps have become an indispensable tool for genetics and genomics research. Sea cucumber (Apostichopus japonicus), which is an economically important mariculture species in Asia, is an edible echinoderm with medicinal properties. In this study, the first SNP-based high-density genetic linkage map was constructed by sequencing 132 A. japonicus individuals (2 parents and 130 offspring) according to a genotyping-by-sequencing (GBS) method. The consensus map was 3181.54 cM long, with an average genetic distance of 0.52 cM. A total of 6144 SNPs were assigned to 22 linkage groups (LGs). A Pearson analysis and QTL mapping revealed the correlations among body weight, body length, and papillae number. An important growth-related candidate gene, protein still life, isoforms C/SIF type 2 (sif), was identified in LG18. The gene was significantly highly expressed during the larval developmental stages. Its encoded protein reportedly functions as a guanine nucleotide exchange factor. These results would facilitate the genetic analysis of growth traits and provide valuable genomic resources for the selection and breeding of new varieties of sea cucumbers with excellent production traits.
Collapse
|
87
|
Medina-Feliciano JG, García-Arrarás JE. Regeneration in Echinoderms: Molecular Advancements. Front Cell Dev Biol 2021; 9:768641. [PMID: 34977019 PMCID: PMC8718600 DOI: 10.3389/fcell.2021.768641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Which genes and gene signaling pathways mediate regenerative processes? In recent years, multiple studies, using a variety of animal models, have aimed to answer this question. Some answers have been obtained from transcriptomic and genomic studies where possible gene and gene pathway candidates thought to be involved in tissue and organ regeneration have been identified. Several of these studies have been done in echinoderms, an animal group that forms part of the deuterostomes along with vertebrates. Echinoderms, with their outstanding regenerative abilities, can provide important insights into the molecular basis of regeneration. Here we review the available data to determine the genes and signaling pathways that have been proposed to be involved in regenerative processes. Our analyses provide a curated list of genes and gene signaling pathways and match them with the different cellular processes of the regenerative response. In this way, the molecular basis of echinoderm regenerative potential is revealed, and is available for comparisons with other animal taxa.
Collapse
|
88
|
Zhang S, Shao Y, Li C. Characterization of Host lncRNAs in Response to Vibrio splendidus Infection and Function as Efficient miRNA Sponges in Sea Cucumber. Front Immunol 2021; 12:792040. [PMID: 34868083 PMCID: PMC8635200 DOI: 10.3389/fimmu.2021.792040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to play critical roles during pathogen infection and innate immune response in mammals. Such observation inspired us to explore the expression profiles and functions of lncRNAs in invertebrates upon bacterial infection. Here, the lncRNAs of sea cucumber (Apostichopus japonicus) involved in Vibrio splendidus infection were characterized. RNA-seq obtained 2897 differentially expressed lncRNAs from Vibrio splendidus infected coelomocytes of sea cucumbers. The potential functions of the significant differentially expressed lncRNAs were related to immunity and metabolic process based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, we identify a lncRNA (XLOC_028509), which is downregulated with Vibrio splendidus challenged, further study indicated that XLOC_028509 adsorb miR-2008 and miR-31 as competing endogenous RNAs (ceRNAs) through base complementarity, which in turn decreased the amount of miRNAs (microRNAs) bound to the 3’UTRs (untranslated regions) of mRNAs to reduce their inhibition of target gene translation. These data demonstrated that the lncRNAs of invertebrates might be important regulators in pathogen-host interactions by sponging miRNAs.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
89
|
Huo D, Sun L, Sun J, Lin C, Liu S, Zhang L, Yang H. Emerging roles of circRNAs in regulating thermal and hypoxic stresses in Apostichopus japonicus (Echinodermata: Holothuroidea). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112994. [PMID: 34839139 DOI: 10.1016/j.ecoenv.2021.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Some sea cucumbers are economically and ecologically important, but they are threatened by thermal and hypoxic stress in changing oceanographic conditions. We construct circRNAs profiles, reveal circRNAs characters, and illustrate the potential regulatory roles of circRNAs in one commercially important species of sea cucumber, Apostichopus japonicus. Reads are distributed in intergenic (44.14%), exonic (48.26%) and intronic (7.60%) regions of the genome. A total of 1684 circRNAs were identified, and the most common spliced length is 269 nt in the present study. In three treatments (HT [thermal stress], LO [hypoxic stress], and HL [combined thermal and hypoxic stress]), 24, 27 and 27 differentially expressed (DE) circRNAs were identified, respectively. Five novel DE-circRNAs commonly occur in these treatments (novel_circ_0003311, novel_circ_0000229, novel_circ_0003944, novel_circ_0001458 and novel_circ_0000707), and based on them, potential circRNA-miRNA binding pairs were predicted. Sanger sequencing, RNase R treatment experiment and qPCR validation identified the accuracy of the circRNAs. Key circRNAs identified in the present study were covalently closed and were more stable under RNase R treatment than linear RNAs. Based on function analysis, circRNAs could regulate metabolic process, signal transduction, and ion responses in A. japonicus when exposed to thermal and hypoxic stress, and 'regulation of response to stimulus' is a common gene ontology (GO) term that is significantly enriched in each treatment; GO terms for 'DNA' and 'stress' are commonly enriched in heat-related treatments (HT and HL); and GO terms for 'protein' are commonly enriched in hypoxia-related treatments (LO and HL). When environmentally stressed, 'metabolism,' 'transport and catabolism,' 'membrane transport,' and 'signal transduction' were significantly responded in sea cucumber based on KEGG analysis. We provide insights into circRNA functions in stress regulation and lay a foundation for invertebrate circRNA research.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| | - Jingchun Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
90
|
Liu C, Yuan J, Zhang X, Jin S, Li F, Xiang J. tRNA copy number and codon usage in the sea cucumber genome provide insights into adaptive translation for saponin biosynthesis. Open Biol 2021; 11:210190. [PMID: 34753322 PMCID: PMC8580430 DOI: 10.1098/rsob.210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic tRNA copy numbers determine cytoplasmic tRNA abundances, which in turn influence translation efficiency, but the underlying mechanism is not well understood. Using the sea cucumber Apostichopus japonicus as a model, we combined genomic sequence, transcriptome expression and ecological food resource data to study its codon usage adaptation. The results showed that, unlike intragenic non-coding RNAs, transfer RNAs (tRNAs) tended to be transcribed independently. This may be attributed to their specific Pol III promoters that lack transcriptional regulation, which may underlie the correlation between genomic copy number and cytoplasmic abundance of tRNAs. Moreover, codon usage optimization was mostly restrained by a gene's amino acid sequence, which might be a compromise between functionality and translation efficiency for stress responses were highly optimized for most echinoderms, while enzymes for saponin biosynthesis (LAS, CYPs and UGTs) were especially optimized in sea cucumbers, which might promote saponin synthesis as a defence strategy. The genomic tRNA content of A. japonicus was positively correlated with amino acid content in its natural food particles, which should promote its efficiency in protein synthesis. We propose that coevolution between genomic tRNA content and codon usage of sea cucumbers facilitates their saponin synthesis and survival using food resources with low nutrient content.
Collapse
Affiliation(s)
- Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
91
|
Yu Z, Xue Z, Liu C, Zhang A, Fu Q, Yang K, Zhang F, Ran L. Distinct microbiota assembly mechanisms revealed in different reconstruction stages during gut regeneration in the sea cucumber Apostichopus japonicus. Microbiologyopen 2021; 10:e1250. [PMID: 34964292 PMCID: PMC8608568 DOI: 10.1002/mbo3.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
Apostichopus japonicus is a useful model for studying organ regeneration, and the gut microbiota is important for host organ regeneration. However, the reconstruction process and the mechanisms of gut microbiota assembly during gut regeneration in sea cucumbers have not been well studied. In the present study, gut regeneration was induced (via evisceration) in A. japonicus, and gut immune responses and bacterial diversity were investigated to reveal gut microbiota assembly and its possible mechanisms during gut regeneration. The results revealed that bacterial community reconstruction involved two stages with distinct assembly mechanisms, where the reconstructed community was initiated from the bacterial consortium in the residual digestive tract and tended to form a novel microbiota in the later stage of reconstruction. Together, the results of immunoenzyme assays, community phylogenetic analysis, and source tracking suggested that the host deterministic process was stronger in the initial stage than in the later stage. The bacterial interactions that occurred were significantly different between the two stages. Positive interactions dominated in the initial stage, while more complex and competitive interactions developed in the later stage. Such a dynamic bacterial community could provide the host with energetic and immune benefits that promote gut regeneration and functional recovery. The results of the present study provide insights into the processes and mechanisms of gut microbiota assembly during intestinal regeneration that are valuable for understanding gut regeneration mechanisms mediated by the microbiota.
Collapse
Affiliation(s)
- Zichao Yu
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Chao Liu
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Anguo Zhang
- National Marine Environmental Monitoring Center, Ministry of Ecology and EnvironmentDalianChina
| | - Qiang Fu
- Liaoning Key Laboratory of Marine Animal ImmunologyDalian Ocean UniversityDalianChina
| | - Kun Yang
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Fang Zhang
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liyuan Ran
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
92
|
Wang J, Guo Y, Yin X, Wang X, Qi X, Xue Z. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Crit Rev Biochem Mol Biol 2021; 57:113-132. [PMID: 34601979 DOI: 10.1080/10409238.2021.1979458] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triterpenoids are one of the largest groups of secondary metabolites and exhibit diverse structures, which are derived from C30 skeletons that are biosynthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene. Triterpenoids have a wide range of biological activities, and are used in functional foods, drugs, and as industrial materials. Due to the low content levels in their native plants and limited feasibility and efficiency of chemical synthesis, heterologous biosynthesis of triterpenoids is the most promising strategy. Herein, we classified 121 triterpene alcohols/ketones according to their conformation and ring numbers, among which 51 skeletons have been experimentally characterized as the products of oxidosqualene cyclases (OSCs). Interestingly, 24 skeletons that have not been reported from nature source were generated by OSCs in heterologous expression. Comprehensive evolutionary analysis of the identified 152 OSCs from 75 species in 25 plant orders show that several pentacyclic triterpene synthases repeatedly originated in multiple plant lineages. Comparative analysis of OSC catalytic reaction revealed that stabilization of intermediate cations, steric hindrance, and conformation of active center amino acid residues are primary factors affecting triterpene formation. Optimization of OSC could be achieved by changing of side-chain orientations of key residues. Recently, methods, such as rationally design of pathways, regulation of metabolic flow, compartmentalization engineering, etc., were introduced in improving chassis for the biosynthesis of triterpenoids. We expect that extensive study of natural variation of large number of OSCs and catalytical mechanism will provide basis for production of high level of triterpenoids by application of synthetic biology strategies.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China.,Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Yanhong Guo
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
93
|
Yuasa H, Kajitani R, Nakamura Y, Takahashi K, Okuno M, Kobayashi F, Shinoda T, Toyoda A, Suzuki Y, Thongtham N, Forsman Z, Bronstein O, Seveso D, Montalbetti E, Taquet C, Eyal G, Yasuda N, Itoh T. Elucidation of the speciation history of three sister species of crown-of-thorns starfish (Acanthaster spp.) based on genomic analysis. DNA Res 2021; 28:6350483. [PMID: 34387305 DOI: 10.1093/dnares/dsab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.
Collapse
Affiliation(s)
- Hideaki Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Fumiya Kobayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takahiro Shinoda
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima City, Shizuoka 411-8540, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 272-8562, Japan
| | | | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | | | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
94
|
Mohsen M, Sun L, Lin C, Huo D, Yang H. Mechanism underlying the toxicity of the microplastic fibre transfer in the sea cucumber Apostichopus japonicus. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125858. [PMID: 34492807 DOI: 10.1016/j.jhazmat.2021.125858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Microscopic plastic particles (0.1 µm-5 mm) are widespread hazardous pollutants, and microfibres (MFs) are their dominant shape in habitats. Previous field and laboratory studies have demonstrated that MFs enter the coelomic fluid of sea cucumbers from the water through the respiratory tree. However, the possible mechanism underlying the toxicity of this process is not well understood. Herein, RNA-Seq was used to examine the responses of the respiratory tree during the MF transfer process in the sea cucumber Apostichopus japonicus. Polyester synthetic MFs were used, and the number of transferred MFs was controlled to the amount reported from the field. The results showed that the MFs altered gene expression as the transfer process increased. The top genes regulated by MF transfer were mainly related to metabolic processes and signal transduction pathways, with upregulated genes following low MF transfer and downregulated genes following high MF transfer. Functional enrichment analysis revealed the pathways in which differentially expressed genes were enriched under different MF transfer scenarios. The transcriptomic findings were further supported by histological observations, which revealed injury and loss of cell components. This study contributes to understanding the effects of MFs in a valuable echinoderm species through transcriptomic and histological examinations.
Collapse
Affiliation(s)
- Mohamed Mohsen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chenggang Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
95
|
Liu C, Yuan J, Zhang X, Jin S, Li F, Xiang J. Clustering genomic organization of sea cucumber miRNAs impacts their evolution and expression. Genomics 2021; 113:3544-3555. [PMID: 34371099 DOI: 10.1016/j.ygeno.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Echinoderms are marine deuterostomes with fascinating adaptation features such as aestivation and organ regeneration. However, post-transcriptional gene regulation by microRNAs (miRNAs) underlying these features are largely unexplored. Here, using homology-based and de novo approaches supported by expression data, we provided a comprehensive annotation of miRNA genes in the sea cucumber Apostichopus japonicus. By linkage and phylogenic analyses, we characterized miRNA genomic organization, evolutionary history and expression regulation. The results showed that sea cucumbers evolved a large number of new miRNAs, which tended to form polycistronic clusters via tandem duplication that had been especially active in the echinoderms. Most new miRNAs were weakly expressed, but miRNA clustering increased the expression level of clustered new miRNAs. The most abundantly expressed new miRNAs were organized in a single tandem cluster (cluster n2), which was activated during aestivation and intestine regeneration. Overall, our analyses suggest that clustering of miRNAs is important for their evolutionary origin, expression control, and functional cooperation.
Collapse
Affiliation(s)
- Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Songjun Jin
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
96
|
Mildenberger J, Remm M, Atanassova M. Self-assembly potential of bioactive peptides from Norwegian sea cucumber Parastichopus tremulus for development of functional hydrogels. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
97
|
Feng J, Zhang L, Tang X, Xia X, Hu W, Zhou P. Season and geography induced variation in sea cucumber (Stichopus japonicus) nutritional composition and gut microbiota. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
98
|
Li C, Zhao W, Qin C, Yu G, Ma Z, Guo Y, Pan W, Fu Z, Huang X, Chen J. Comparative transcriptome analysis reveals changes in gene expression in sea cucumber (Holothuria leucospilota) in response to acute temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100883. [PMID: 34303260 DOI: 10.1016/j.cbd.2021.100883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Ambient temperature is an important abiotic factor that influences growth performance and physiological functions in sea cucumbers. To understand the molecular responses of the sea cucumber Holothuria leucospilota to acute temperature stress, we performed a de novo transcriptome analysis of body wall tissue from H. leucospilota exposed to 2 hoursh of acute heat (35 ± 1 °C) and cold stress (15 ± 1 °C). A total of 99,015 unigenes were obtained after assembly of the sequenced reads. Compared with a control group maintained at 25.0 ± 1 °C, 1169 differentially expressed unigenes (DEGs) were identified after heat stress, 781 were up-regulated and 388 were down-regulated. After cold stress, 1464 DEGs were identified; 900 were up-regulated and 564 were down-regulated. The annotation of DEGs revealed that heat shock proteins play important roles in protecting H. leucospilota from high temperature stress. Furthermore, KEGG pathway enrichment analysis showed that the categories: "Ribosome" and "Protein processing in endoplasmic reticulum" were strongly affected by heat stress. These two pathways are associated with biosynthesis and processing of proteins, and refolding of misfolded proteins. The lipid metabolism pathways "Sphingolipid metabolism" and "Ether lipid metabolism", were affected by cold stress. The RNA-Seq results for eight selected DEGs were verified the expression by quantitative real-time PCR analysis. Our results will improve the understanding of the molecular response mechanisms of H. leucospilota to ambient temperature stress.
Collapse
Affiliation(s)
- Changlin Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Wang Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China.
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China.
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Wanni Pan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| | - Zhengyi Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xingmei Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jisheng Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; National Fishery Resources and Environment Dapeng Observation and Experimental Station, Shenzhen, China
| |
Collapse
|
99
|
Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ 2021; 9:e11799. [PMID: 34316411 PMCID: PMC8286064 DOI: 10.7717/peerj.11799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
Background Some insulin/IGF-related peptides (irps) stimulate a receptor tyrosine kinase (RTK) that transfers the extracellular hormonal signal into an intracellular response. Other irps, such as relaxin, do not use an RTK, but a G-protein coupled receptor (GPCR). This is unusual since evolutionarily related hormones typically either use the same or paralogous receptors. In arthropods three different irps, i.e. arthropod IGF, gonadulin and Drosophila insulin-like peptide 7 (dilp7), likely evolved from a gene triplication, as in several species genes encoding these three peptides are located next to one another on the same chromosomal fragment. These arthropod irps have homologs in vertebrates, suggesting that the initial gene triplication was perhaps already present in the last common ancestor of deuterostomes and protostomes. It would be interesting to know whether this is indeed so and how insulin might be related to this trio of irps. Methodology Genes encoding irps as well as their putative receptors were identified in genomes and transcriptomes from echinoderms and hemichordates. Results A similar triplet of genes coding for irps also occurs in some ambulacrarians. Two of these are orthologs of arthropod IGF and dilp7 and the third is likely a gonadulin ortholog. In echinoderms, two novel irps emerged, gonad stimulating substance (GSS) and multinsulin, likely from gene duplications of the IGF and dilp7-like genes respectively. The structures of GSS diverged considerably from IGF, which would suggest they use different receptors from IGF, but no novel irp receptors evolved. If IGF and GSS use different receptors, and the evolution of GSS from a gene duplication of IGF is not associated with the appearance of a novel receptor, while irps are known to use two different types of receptors, the ancestor of GSS and IGF might have acted on both types of receptors while one or both of its descendants act on only one. There are three ambulacrarian GPCRs that have amino acid sequences suggestive of being irp GPCRs, two of these are orthologs of the gonadulin and dilp7 receptors. This suggests that the third might be an IGF receptor, and that by deduction, GSS only acts on the RTK. The evolution of GSS from IGF may represent a pattern, where IGF gene duplications lead to novel genes coding for shorter peptides that activate an RTK. It is likely this is how insulin and the insect neuroendocrine irps evolved independently from IGF. Conclusion The local gene triplication described from arthropods that yielded three genes encoding irps was already present in the last common ancestor of protostomes and deuterostomes. It seems plausible that irps, such as those produced by neuroendocrine cells in the brain of insects and echinoderm GSS evolved independently from IGF and, thus, are not true orthologs, but the result of convergent evolution.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, Gironde, France
| |
Collapse
|
100
|
Yan LJ, Sun LC, Cao KY, Chen YL, Zhang LJ, Liu GM, Jin T, Cao MJ. Type I collagen from sea cucumber (Stichopus japonicus) and the role of matrix metalloproteinase-2 in autolysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|