51
|
Okubo N, Minami Y, Fujiwara H, Umemura Y, Tsuchiya Y, Shirai T, Oda R, Inokawa H, Kubo T, Yagita K. Prolonged bioluminescence monitoring in mouse ex vivo bone culture revealed persistent circadian rhythms in articular cartilages and growth plates. PLoS One 2013; 8:e78306. [PMID: 24223788 PMCID: PMC3817244 DOI: 10.1371/journal.pone.0078306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
The bone is a metabolically active organ which undergoes repeated remodeling cycles of bone resorption and formation. In this study, we revealed a robust and extremely long-lasting circadian rhythm in ex vivo culture maintained for over six months from the femoral bone of a PERIOD2(Luciferase) mouse. Furthermore, we also identified robust circadian clocks in flat bones. High- or low-magnification real-time bioluminescence microscopic imaging revealed that the robust circadian rhythms emanated from the articular cartilage and the epiphyseal cartilage within the growth plate of juvenile animals. Stimulation by forskolin or dexamethasone treatment caused type 0 phase resetting, indicating canonical entraining properties of the bone clock. Together, our findings from long-term ex vivo culture revealed that "tissue-autonomous" circadian rhythm in the articular cartilage and the growth plate of femoral bone functions for several months even in an organ culture condition, and provided a useful in vitro assay system investigating the role of the biological clock in bone formation or development.
Collapse
Affiliation(s)
- Naoki Okubo
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichi Minami
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiro Umemura
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiharu Shirai
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ryo Oda
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Inokawa
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Musculoskeletal Chronobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Precursory Research for Embryonic Science and Technology (PREST), Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
52
|
Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. Handb Exp Pharmacol 2013:289-309. [PMID: 23604484 DOI: 10.1007/978-3-642-25950-0_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The circadian clock is an evolutionary conserved intrinsic timekeeping mechanism that controls daily variations in multiple biological processes. One important process that is modulated by the circadian clock is an organism's response to genotoxic stress, such as that induced by anticancer drug and radiation treatments. Numerous observations made in animal models have convincingly demonstrated that drug-induced toxicity displays prominent daily variations; therefore, undesirable side effects could be significantly reduced by administration of drugs at specific times when they are better tolerated. In some cases, these critical times of the day coincide with increased sensitivity of tumor cells allowing for a greater therapeutic index. Despite encouraging results of chronomodulated therapies, our knowledge of molecular mechanisms underlying these observations remains sketchy. Here we review recent progress in deciphering mechanistic links between circadian and stress response pathways with a focus on how these findings could be applied to anticancer clinical practice. We discuss the potential for using high-throughput screens to identify small molecules that can modulate basic parameters of the entire circadian machinery as well as functional activity of its individual components. We also describe the discovery of several small molecules that can pharmacologically modulate clock and that have a potential to be developed into therapeutic drugs. We believe that translational applications of clock-targeting pharmaceuticals are twofold: they may be developed into drugs to treat circadian-related disorders or used in combination with existing therapeutic strategies to improve therapeutic index of a given genotoxic treatment via the intrinsic clock mechanism.
Collapse
|
53
|
Cheon S, Park N, Cho S, Kim K. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm. Nucleic Acids Res 2013; 41:6161-74. [PMID: 23620290 PMCID: PMC3695510 DOI: 10.1093/nar/gkt307] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm.
Collapse
Affiliation(s)
- Solmi Cheon
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Noheon Park
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Sehyung Cho
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| | - Kyungjin Kim
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul 151-742, Korea, Brain Research Center for the 21st Century Frontier R&D Program in Neuroscience, Seoul 151-742, Korea, Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea and Department of Physiology, Neurodegeneration Control Research Center, Kyung Hee University School of Medicine, Seoul 130-701, Korea
| |
Collapse
|
54
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Although circadian rhythms in mammalian physiology and behavior are dependent upon a biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, the molecular mechanism of this clock is in fact cell autonomous and conserved in nearly all cells of the body. Thus, the SCN serves in part as a "master clock," synchronizing "slave" clocks in peripheral tissues, and in part directly orchestrates circadian physiology. In this chapter, we first consider the detailed mechanism of peripheral clocks as compared to clocks in the SCN and how mechanistic differences facilitate their functions. Next, we discuss the different mechanisms by which peripheral tissues can be entrained to the SCN and to the environment. Finally, we look directly at how peripheral oscillators control circadian physiology in cells and tissues.
Collapse
Affiliation(s)
- Steven A Brown
- Institute of Pharmacology and Toxicology, 190 Winterthurerstrasse, 8057 Zürich, Switzerland.
| | | |
Collapse
|
56
|
Greenham T, Altosaar I. Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 2013; 956:311-26. [PMID: 23135861 DOI: 10.1007/978-1-62703-194-3_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of plants as bioreactors for the large-scale production of recombinant proteins has emerged as an exciting area of research. The current shortages in protein therapeutics due to the capacity and economic bottlenecks faced with modern protein production platforms (microbial, yeast, mammalian) has driven considerable attention towards molecular pharming. Utilizing plants for the large-scale production of recombinant proteins is estimated to be 2-10% the cost of microbial platforms, and up to 1,000-fold more cost effective than mammalian platforms (Twyman et al. Trends Biotechnol 21:570-578, 2003; Sharma and Sharma, Biotechnol Adv 27:811-832, 2009). In order to achieve an economically feasible plant production host, protein expression and accumulation must be optimized. The seed, and more specifically the rice seed has emerged as an ideal candidate in molecular pharming due to its low protease activity, low water content, stable protein storage environment, relatively high biomass, and the molecular tools available for manipulation (Lau and Sun, Biotechnol Adv 27:1015-1022, 2009).
Collapse
Affiliation(s)
- Trevor Greenham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
57
|
Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci 2012; 70:2985-98. [PMID: 23161063 PMCID: PMC3760145 DOI: 10.1007/s00018-012-1207-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 12/11/2022]
Abstract
Circadian clocks orchestrate 24-h oscillations of essential physiological and behavioral processes in response to daily environmental changes. These clocks are remarkably precise under constant conditions yet highly responsive to resetting signals. With the molecular composition of the core oscillator largely established, recent research has increasingly focused on clock-modifying mechanisms/molecules. In particular, small molecule modifiers, intrinsic or extrinsic, are emerging as powerful tools for understanding basic clock biology as well as developing putative therapeutic agents for clock-associated diseases. In this review, we will focus on synthetic compounds capable of modifying the period, phase, or amplitude of circadian clocks, with particular emphasis on the mammalian clock. We will discuss the potential of exploiting these small molecule modifiers in both basic and translational research.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030
- To whom correspondence should be addressed: ;
| | - Seung-Hee Yoo
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- To whom correspondence should be addressed: ;
| |
Collapse
|
58
|
Background-dependent effects of polyglutamine variation in the Arabidopsis thaliana gene ELF3. Proc Natl Acad Sci U S A 2012; 109:19363-7. [PMID: 23129635 DOI: 10.1073/pnas.1211021109] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tandem repeats (TRs) have extremely high mutation rates and are often considered to be neutrally evolving DNA. However, in coding regions, TR copy number mutations can significantly affect phenotype and may facilitate rapid adaptation to new environments. In several human genes, TR copy number mutations that expand polyglutamine (polyQ) tracts beyond a certain threshold cause incurable neurodegenerative diseases. PolyQ-containing proteins exist at a considerable frequency in eukaryotes, yet the phenotypic consequences of natural variation in polyQ tracts that are not associated with disease remain largely unknown. Here, we use Arabidopsis thaliana to dissect the phenotypic consequences of natural variation in the polyQ tract encoded by EARLY FLOWERING 3 (ELF3), a key developmental gene. Changing ELF3 polyQ tract length affected complex ELF3-dependent phenotypes in a striking and nonlinear manner. Some natural ELF3 polyQ variants phenocopied elf3 loss-of-function mutants in a common reference background, although they are functional in their native genetic backgrounds. To test the existence of background-specific modifiers, we compared the phenotypic effects of ELF3 polyQ variants between two divergent backgrounds, Col and Ws, and found dramatic differences. In fact, the Col-ELF3 allele, encoding the shortest known ELF3 polyQ tract, was haploinsufficient in Ws × Col F(1) hybrids. Our data support a model in which variable polyQ tracts drive adaptation to internal genetic environments.
Collapse
|
59
|
Jiao Y, Rosa BA, Oh S, Montgomery BL, Qin W, Chen J. Detection and decomposition: treatment-induced cyclic gene expression disruption in high-throughput time-series datasets. J Bioinform Comput Biol 2012; 10:1271002. [PMID: 23075209 DOI: 10.1142/s0219720012710023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Higher organisms possess many genes which cycle under normal conditions, to allow the organism to adapt to expected environmental conditions throughout the course of a day. However, treatment-induced disruption of regular cyclic gene expression patterns presents a significant challenge in novel gene discovery experiments because these disruptions can induce strong differential regulation events for genes that are not involved in an adaptive response to the treatment. To address this cycle disruption problem, we reviewed the state-of-art periodic pattern detection algorithms and a pattern decomposition algorithm (PRIISM), which is a knowledge-based Fourier analysis algorithm designed to distinguish the cyclic patterns from the rest gene expression patterns, and discussed potential future improvements.
Collapse
Affiliation(s)
- Yuhua Jiao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Ramanathan C, Khan SK, Kathale ND, Xu H, Liu AC. Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. J Vis Exp 2012:4234. [PMID: 23052244 DOI: 10.3791/4234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere. Individual cells are the functional units for generation and maintenance of circadian rhythms, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms. Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection or stable transduction. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.
Collapse
|
61
|
Chu G, Misawa I, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation. Am J Physiol Endocrinol Metab 2012; 302:E645-53. [PMID: 22205630 DOI: 10.1152/ajpendo.00470.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The involvement of FSH and triiodothyronine (T(3)) in circadian clocks was investigated using immature granulosa cells of ovaries during the progress of cell maturation. Granulosa cells were prepared from preantral follicles of mouse Period2 (Per2)-dLuc reporter gene transgenic rats injected subcutaneously with the synthetic nonsteroidal estrogen diethylstilbestrol. Analysis of the cellular clock of the immature granulosa cells was performed partly using a serum-free culture system. Several bioluminescence oscillations of Per2-dLuc promoter activity were generated in the presence of FSH + fetal bovine serum, but not in the presence of either FSH or serum. As revealed by bioluminescence recording and analysis of clock gene expression, the granulosa cells lack the functional cellular clock at the immature stage, although Lhr was greatly expressed during the period of cell maturation. The granulosa cells gained a strong circadian rhythm of bioluminescence during stimulation with FSH, whereas LH reset the cellular clock of matured granulosa cells. During strong circadian rhythms of clock genes, the Star gene showed significant expression in matured granulosa cells. In contrast, T(3) showed an inhibitory effect on the development of the functional cellular clock during the period of cell maturation. These results indicate that FSH provides a cue for the development of the functional cellular clock of the immature granulosa cells, and T(3) blocks the development of the cellular clock.
Collapse
Affiliation(s)
- Guiyan Chu
- Dept. of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka-shi, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
62
|
A Systems Biomedicine Approach for Chronotherapeutics Optimization: Focus on the Anticancer Drug Irinotecan. NEW CHALLENGES FOR CANCER SYSTEMS BIOMEDICINE 2012. [DOI: 10.1007/978-88-470-2571-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
63
|
Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 2011; 32:451-65. [PMID: 21802440 DOI: 10.1016/j.yfrne.2011.07.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/25/2011] [Accepted: 07/06/2011] [Indexed: 12/27/2022]
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in other brain regions as well as peripheral tissues. Since the local oscillators in most cells contain a similar molecular makeup to that in the central pacemaker, determining the role of the peripheral clocks in the regulation of rhythmic physiology and behavior is an important issue. Glucocorticoids (GCs) are a class of multi-functional adrenal steroid hormones, which exhibit a robust circadian rhythm, with a peak linked with the onset of the daily activity phase. It has long been believed that the production and secretion of GC is primarily governed through the hypothalamus-pituitary-adrenal (HPA) neuroendocrine axis in mammals. Growing evidence, however, strongly supports the notion that the periodicity of GC involves the integrated activity of multiple regulatory mechanisms related to circadian timing system along with the classical HPA neuroendocrine regulation. The adrenal-intrinsic oscillator as well as the central pacemaker plays a pivotal role in its rhythmicity. GC influences numerous biological processes, such as metabolic, cardiovascular, immune and even higher brain functions, and also acts as a resetting signal for the ubiquitous peripheral clocks, suggesting its importance in harmonizing circadian physiology and behavior. In this review, we will therefore focus on the recent advances in our understanding of the circadian regulation of adrenal GC and its functional relevance.
Collapse
Affiliation(s)
- Gi Hoon Son
- Department of Biological Sciences, Seoul National University, Brain Research Center for the 21st Century Frontier Program in Neuroscience, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
64
|
Ballesta A, Dulong S, Abbara C, Cohen B, Okyar A, Clairambault J, Levi F. A combined experimental and mathematical approach for molecular-based optimization of irinotecan circadian delivery. PLoS Comput Biol 2011; 7:e1002143. [PMID: 21931543 PMCID: PMC3169519 DOI: 10.1371/journal.pcbi.1002143] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/16/2011] [Indexed: 11/26/2022] Open
Abstract
Circadian timing largely modifies efficacy and toxicity of many anticancer drugs. Recent findings suggest that optimal circadian delivery patterns depend on the patient genetic background. We present here a combined experimental and mathematical approach for the design of chronomodulated administration schedules tailored to the patient molecular profile. As a proof of concept we optimized exposure of Caco-2 colon cancer cells to irinotecan (CPT11), a cytotoxic drug approved for the treatment of colorectal cancer. CPT11 was bioactivated into SN38 and its efflux was mediated by ATP-Binding-Cassette (ABC) transporters in Caco-2 cells. After cell synchronization with a serum shock defining Circadian Time (CT) 0, circadian rhythms with a period of 26 h 50 (SD 63 min) were observed in the mRNA expression of clock genes REV-ERBα, PER2, BMAL1, the drug target topoisomerase 1 (TOP1), the activation enzyme carboxylesterase 2 (CES2), the deactivation enzyme UDP-glucuronosyltransferase 1, polypeptide A1 (UGT1A1), and efflux transporters ABCB1, ABCC1, ABCC2 and ABCG2. DNA-bound TOP1 protein amount in presence of CPT11, a marker of the drug PD, also displayed circadian variations. A mathematical model of CPT11 molecular pharmacokinetics-pharmacodynamics (PK-PD) was designed and fitted to experimental data. It predicted that CPT11 bioactivation was the main determinant of CPT11 PD circadian rhythm. We then adopted the therapeutics strategy of maximizing efficacy in non-synchronized cells, considered as cancer cells, under a constraint of maximum toxicity in synchronized cells, representing healthy ones. We considered exposure schemes in the form of an initial concentration of CPT11 given at a particular CT, over a duration ranging from 1 to 27 h. For any dose of CPT11, optimal exposure durations varied from 3h40 to 7h10. Optimal schemes started between CT2h10 and CT2h30, a time interval corresponding to 1h30 to 1h50 before the nadir of CPT11 bioactivation rhythm in healthy cells. Treatment timing within the 24-h timescale, that is, circadian (circa, about; dies, day) timing, can change by several fold the tolerability and antitumor efficacy of anticancer agents both in experimental models and in cancer patients. Chronotherapeutics aims at improving the tolerability and/or the efficacy of medications through the administration of treatments according to biological rhythms. Recent findings highlight the need of individualizing circadian delivery schedules according to the patient genetic background. In order to address this issue, we propose a combined experimental and mathematical approach in which molecular mathematical models are fitted to experimental measurements of critical biological variables in the studied experimental model or patient. Optimization procedures are then applied to the calibrated mathematical model for the design of theoretically optimal circadian delivery patterns. As a first proof of concept we focused on the anticancer drug irinotecan. A mathematical model of the drug molecular PK-PD was built and fitted to experimental data in Caco-2 colon cancer cells. Numerical algorithms were then applied to theoretically optimize the chronomodulated exposure of Caco-2 cells to irinotecan.
Collapse
|
65
|
Robertson JB, Johnson CH. Luminescence as a continuous real-time reporter of promoter activity in yeast undergoing respiratory oscillations or cell division rhythms. Methods Mol Biol 2011; 734:63-79. [PMID: 21468985 DOI: 10.1007/978-1-61779-086-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes a method for generating yeast respiratory oscillations in continuous culture and monitoring rhythmic promoter activity of the culture by automated real-time recording of luminescence. These techniques chiefly require the use of a strain of Saccharomyces cerevisiae that has been genetically modified to express firefly luciferase under the control of a promoter of interest and a continuous culture bioreactor that incorporates a photomultiplier apparatus for detecting light emission. Additionally, this chapter describes a method for observing rhythmic (cell cycle-related) promoter activity in small batch cultures of yeast through luminescence monitoring.
Collapse
Affiliation(s)
- J Brian Robertson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
66
|
Fick LJ, Fick GH, Belsham DD. Rhythmic clock and neuropeptide gene expression in hypothalamic mHypoE-44 neurons. Mol Cell Endocrinol 2010; 323:298-306. [PMID: 20211689 DOI: 10.1016/j.mce.2010.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 01/05/2023]
Abstract
The rhythmic expression of specific clock genes: Bmal1, Per2, Clock and Rev-Erbalpha; and specific hypothalamic neuropeptides: NPY, Crh, AgRP, neurotensin and preproghrelin, expressed in clonal hypothalamic neuronal cell lines, was assayed and analyzed using a novel non-linear least squares statistical analysis to determine rhythmicity in an in vitro milieu. In silico analysis of the neuropeptide promoter regions identified putative E-box motifs and a motif in the NPY promoter is bound to in an oscillatory fashion. Within the mHypoE-44 neurons, we demonstrate that mRNA of four core circadian components: Bmal1, Clock, Per2 and Rev-Erbalpha, oscillate with approximate 24h rhythms. NPY and NT demonstrated significant 24h gene expression. However, CRH and preproghrelin mRNA cycled significantly in an ultradian fashion, oscillating approximately every 18h. AgRP mRNA did not show a significant rhythm. We speculate that endogenous rhythmic neuropeptide expression contributes to neuroendocrine homeostasis, which may include energy balance.
Collapse
Affiliation(s)
- Laura J Fick
- Department of Physiology , University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
67
|
Abstract
Two prominent timekeeping systems, the cell cycle, which controls cell division, and the circadian system, which controls 24-h rhythms of physiology and behavior, are found in nearly all living organisms. A distinct feature of circadian rhythms is that they are temperature-compensated such that the period of the rhythm remains constant (approximately 24 h) at different ambient temperatures. Even though the speed of cell division, or growth rate, is highly temperature-dependent, the cell-mitosis rhythm is temperature-compensated. Twenty-four-hour fluctuations in cell division have also been observed in numerous species, suggesting that the circadian system is regulating the timing of cell division. We tested whether the cell-cycle rhythm was coupled to the circadian system in immortalized rat-1 fibroblasts by monitoring cell-cycle gene promoter-driven luciferase activity. We found that there was no consistent phase relationship between the circadian and cell cycles, and that the cell-cycle rhythm was not temperature-compensated in rat-1 fibroblasts. These data suggest that the circadian system does not regulate the cell-mitosis rhythm in rat-1 fibroblasts. These findings are inconsistent with numerous studies that suggest that cell mitosis is regulated by the circadian system in mammalian tissues in vivo. To account for this discrepancy, we propose two possibilities: (i) There is no direct coupling between the circadian rhythm and cell cycle but the timing of cell mitosis is synchronized with the rhythmic host environment, or (ii) coupling between the circadian rhythm and cell cycle exists in normal cells but it is disconnected in immortalized cells.
Collapse
|
68
|
Dolatshad H, Cary AJ, Davis FC. Differential expression of the circadian clock in maternal and embryonic tissues of mice. PLoS One 2010; 5:e9855. [PMID: 20352049 PMCID: PMC2844431 DOI: 10.1371/journal.pone.0009855] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Background Molecular feedback loops involving transcription and translation and several key genes are at the core of circadian regulatory cycles affecting cellular pathways and metabolism. These cycles are active in most adult animal cells but little is known about their expression or influence during development. Methodology/Principal Findings To determine if circadian cycles are active during mammalian development we measured the expression of key circadian genes during embryogenesis in mice using quantitative real-time RT-PCR. All of the genes examined were expressed in whole embryos beginning at the earliest age examined, embryonic day 10. In contrast to adult tissues, circadian variation was absent for all genes at all of the embryonic ages examined in either whole embryos or individual tissues. Using a bioluminescent fusion protein that tracks translation of the circadian gene, per2, we also analyzed protein levels. Similar to mRNA, a protein rhythm was observed in adult tissue but not in embryonic tissues collected in-vivo. In contrast, when tissues were placed in culture for the continuous assay of bioluminescence, rhythms were observed in embryonic (E18) tissues. We found that placing embryonic tissues in culture set the timing (phase) of these rhythms, suggesting the importance of a synchronizing signal for the expression of circadian cycles in developing tissues. Conclusions/Significance These results show that embryonic tissues express key circadian genes and have the capacity to express active circadian regulatory cycles. In vivo, circadian cycles are not expressed in embryonic tissues as they are in adult tissues. Individual cells might express oscillations, but are not synchronized until later in development.
Collapse
Affiliation(s)
- Hamid Dolatshad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Andrew J. Cary
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Fred C. Davis
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
69
|
Lévi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian Timing in Cancer Treatments. Annu Rev Pharmacol Toxicol 2010; 50:377-421. [DOI: 10.1146/annurev.pharmtox.48.113006.094626] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The circadian timing system is composed of molecular clocks, which drive 24-h changes in xenobiotic metabolism and detoxification, cell cycle events, DNA repair, apoptosis, and angiogenesis. The cellular circadian clocks are coordinated by endogenous physiological rhythms, so that they tick in synchrony in the host tissues that can be damaged by anticancer agents. As a result, circadian timing can modify 2- to 10-fold the tolerability of anticancer medications in experimental models and in cancer patients. Improved efficacy is also seen when drugs are given near their respective times of best tolerability, due to (a) inherently poor circadian entrainment of tumors and (b) persistent circadian entrainment of healthy tissues. Conversely, host clocks are disrupted whenever anticancer drugs are administered at their most toxic time. On the other hand, circadian disruption accelerates experimental and clinical cancer processes. Gender, circadian physiology, clock genes, and cell cycle critically affect outcome on cancer chronotherapeutics. Mathematical and systems biology approaches currently develop and integrate theoretical, experimental, and technological tools in order to further optimize and personalize the circadian administration of cancer treatments.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif, F-94807, France
| | - Alper Okyar
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul, Turkey
| | - Sandrine Dulong
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
| | - Pasquale F. Innominato
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif, F-94807, France
| | - Jean Clairambault
- INSERM, U776 Rythmes Biologiques et Cancers, Hôpital Paul Brousse, Villejuif, F-94807, France
- Univ Paris-Sud, UMR-S0776, Orsay, F-91405, France
- INRIA Rocquencourt, Domaine de Voluceau, BP 105, F-78153 Rocquencourt, France;, , , ,
| |
Collapse
|
70
|
Abstract
The circadian clock is an evolutionarily conserved time-keeping system that coordinates the physiology of the organism with daily changes in the environment. A growing body of evidence gradually leads to the conception that virtually all aspects of the biochemical, physiological, and behavioral functions of the animal are linked to circadian regulation. Moreover, proper synchronization of various processes through the activity of circadian components is important for the well-being of many organisms, including humans. The focus of this review is the circadian control of an organism's response to genotoxic stress, which is a major contributor to life-threatening human pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm & Carlton St, Buffalo, NY 14263, USA.
| | | |
Collapse
|
71
|
Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation. Mol Cell Biol 2010; 30:197-205. [PMID: 19858287 DOI: 10.1128/mcb.01154-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian circadian rhythm is observed not only at the suprachiasmatic nucleus, a master pacemaker, but also throughout the peripheral tissues. Its conserved molecular basis has been thought to consist of intracellular transcriptional feedback loops of key clock genes. However, little is known about posttranscriptional regulation of these genes. In the present study, we investigated the role of the 3'-untranslated region (3'UTR) of the mouse cryptochrome 1 (mcry1) gene at the posttranscriptional level. Mature mcry1 mRNA has a 610-nucleotide 3'UTR and mediates its own degradation. The middle part of the 3'UTR contains a destabilizing cis-acting element. The deletion of this element led to a dramatic increase in mRNA stability, and heterogeneous nuclear ribonucleoprotein D (hnRNP D) was identified as an RNA binding protein responsible for this effect. Cytoplasmic hnRNP D levels displayed a pattern that was reciprocal to the mcry1 oscillation. Knockdown of hnRNP D stabilized mcry1 mRNA and resulted in enhancement of the oscillation amplitude and a slight delay of the phase. Our results suggest that hnRNP D plays a role as a fine regulator contributing to the mcry1 mRNA turnover rate and the modulation of circadian rhythm.
Collapse
|
72
|
Kolmos E, Nowak M, Werner M, Fischer K, Schwarz G, Mathews S, Schoof H, Nagy F, Bujnicki JM, Davis SJ. Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP JOURNAL 2009; 3:350-66. [PMID: 20357892 DOI: 10.2976/1.3218766] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/07/2009] [Indexed: 01/16/2023]
Abstract
The circadian clock is a timekeeping mechanism that enables anticipation of daily environmental changes. In the plant Arabidopsis thaliana, the circadian system is a multiloop series of interlocked transcription-translation feedbacks. Several genes have been arranged in these oscillation loops, but the position of the core-clock gene ELF4 in this network was previously undetermined. ELF4 lacks sequence similarity to known domains, and functional homologs have not yet been identified. Here we show that ELF4 is functionally conserved within a subclade of related sequences, and forms an alpha-helical homodimer with a likely electrostatic interface that could be structurally modeled. We support this hypothesis by expression analysis of new elf4 hypomorphic alleles. These weak mutants were found to have expression level phenotypes of both morning and evening clock genes, implicating multiple entry points of ELF4 within the multiloop network. This could be mathematically modeled. Furthermore, morning-expression defects were particular to some elf4 alleles, suggesting predominant ELF4 action just preceding dawn. We provide a new hypothesis about ELF4 in the oscillator-it acts as a homodimer to integrate two arms of the circadian clock.
Collapse
|
73
|
Antoch MP, Chernov MV. Pharmacological modulators of the circadian clock as potential therapeutic drugs. Mutat Res 2009; 679:17-23. [PMID: 20161366 DOI: 10.1016/j.mrgentox.2009.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circadian clocks are molecular time-keeping systems that underlie daily fluctuations in multiple physiological and biochemical processes. It is well recognized now that dysfunctions of the circadian system (both genetically and environmentally induced) are associated with the development of various pathological conditions. Here we describe the application of high throughput screening approach designed to search for small molecules capable of pharmacological modulation of the molecular clock. We provide evidence for the feasibility and value of this approach for both scientific and therapeutic purposes.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
74
|
Tsuchiya Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E. Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci Signal 2009; 2:ra26. [PMID: 19491384 DOI: 10.1126/scisignal.2000305] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Posttranslational modifications of clock proteins are crucial to generating proper circadian rhythms of the correct length and amplitude. Here, we show that the protein kinase CK2 (casein kinase 2) plays a role in regulating the mammalian circadian clock. We found that inhibiting CK2 activity resulted in a decrease in the amplitude and an increase in the period of oscillations in circadian gene expression. CK2 specifically bound and phosphorylated PERIOD2 (PER2) and collaborated with the protein kinase CKIepsilon to promote PER2 degradation. We also identified a CK2 phosphorylation site (serine-53) in PER2, whose phosphorylation played a role in fine-tuning circadian rhythms and regulating PER2 stability but was dispensable for the cooperative effect of CK2 and CKIepsilon. Thus, our study identifies CK2 as a regulatory element of mammalian circadian rhythms and uncovers a role for CK2 in PER2 degradation.
Collapse
Affiliation(s)
- Yoshiki Tsuchiya
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Gamsby JJ, Loros JJ, Dunlap JC. A phylogenetically conserved DNA damage response resets the circadian clock. J Biol Rhythms 2009; 24:193-202. [PMID: 19465696 PMCID: PMC3683861 DOI: 10.1177/0748730409334748] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mammalian circadian clock influences the timing of many biological processes such as the sleep/wake cycle, metabolism, and cell division. Environmental cues such as light exposure can influence the timing of this system through the posttranslational modification of key components of the core molecular oscillator. We have previously shown that DNA damage can reset the circadian clock in a time-of-day-dependent manner in the filamentous fungus Neurospora crassa through the modulation of negative regulator FREQUENCY levels by PRD-4 (homologue of mammalian Chk2). We show that DNA damage, generated with either the radiomimetic drug methyl methane sulfonate or UV irradiation, in mouse embryonic fibroblasts isolated from PER2::LUC transgenic mice or in the NIH3T3 cell line, elicits similar responses. In addition to induction of phase advances, DNA damage caused a decrease in luciferase signal in PER2::LUC mouse embryonic fibroblast cells that is indicative of PER2 degradation. Finally, we show that the activity of the BMAL1 promoter is enhanced during DNA damage. These findings provide further evidence that the DNA damage-mediated response of the clock is conserved from lower eukaryotes to mammals.
Collapse
Affiliation(s)
- Joshua J. Gamsby
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire
| |
Collapse
|
76
|
Minimum criteria for DNA damage-induced phase advances in circadian rhythms. PLoS Comput Biol 2009; 5:e1000384. [PMID: 19424508 PMCID: PMC2677641 DOI: 10.1371/journal.pcbi.1000384] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/07/2009] [Indexed: 12/11/2022] Open
Abstract
Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK. Molecular components and mechanisms that connect cell cycle and circadian rhythms are important for the well-being of an organism. Cell cycle machinery regulates the progress of cell growth and division while the circadian rhythm network generates an ∼24 h time-keeping mechanism that regulates the daily processes of an organism (i.e. metabolism, bowel movements, body temperature, etc.). It is observed that cell divisions usually occur during a certain time window of a day, which indicated that there are circadian-gated cell divisions. Moreover, it's been shown that mice are more prone to develop cancer when certain clock genes are mutated resulting in an arrhythmic clock. Recently, a cell cycle checkpoint regulator, Chk2, was identified as a component that influences a core clock component and creates mostly phase advances (i.e., jet lags due to traveling east) in circadian rhythms upon DNA damage. This phase response with minimum delays is an unexpected result, and the molecular mechanism behind this phenomenon remains unknown. Our computational analyses of a mathematical model reveal two molecular criteria that account for the experimentally observed phase responses of the circadian clock upon DNA damage. These results demonstrate how circadian clock regulation by cell cycle checkpoint controllers provides another layer of complexity for efficient DNA damage responses.
Collapse
|
77
|
Saifullah ASM, Page TL. Circadian regulation of olfactory receptor neurons in the cockroach antenna. J Biol Rhythms 2009; 24:144-52. [PMID: 19346451 DOI: 10.1177/0748730408331166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the cockroach, olfactory sensitivity as measured by the amplitude of the electroantennogram (EAG) is regulated by the circadian system. We wished to determine how this rhythm in antennal response was reflected in the activity of individual olfactory receptor neurons. The amplitude of the EAG and the activity of olfactory receptor neurons (ORNs) in single olfactory sensilla were recorded simultaneously for 3 to 5 days in constant darkness from an antenna of the cockroach Leucophaea maderae. Both EAG amplitude and the spike frequency of the ORNs exhibited circadian rhythms with peak amplitude/activity occurring in the subjective day. The phases of the rhythms were dependent on the phase of the prior light cycle and thus were entrainable by light. Ablation of the optic lobes abolished the rhythm in EAG amplitude as has been previously reported. In contrast, the rhythm in ORN response persisted following surgery. These results indicated that a circadian clock outside the optic lobes can regulate the responses of olfactory receptor neurons and further that this modulation of the ORN response is not dependent on the circadian rhythm in EAG amplitude.
Collapse
Affiliation(s)
- A S M Saifullah
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
78
|
Marpegan L, Krall TJ, Herzog ED. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythms 2009; 24:135-43. [PMID: 19346450 DOI: 10.1177/0748730409332042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many mammalian cell types show daily rhythms in gene expression driven by a circadian pacemaker. For example, cultured astrocytes display circadian rhythms in Period1 and Period2 expression. It is not known, however, how or which intercellular factors synchronize and sustain rhythmicity in astrocytes. Because astrocytes are highly sensitive to vasoactive intestinal polypeptide (VIP), a neuropeptide released by neurons and important for the coordination of daily cycling, the authors hypothesized that VIP entrains circadian rhythms in astrocytes. They used astrocyte cultures derived from knock-in mice containing a bioluminescent reporter of PERIOD2 (PER2) protein, to assess the effects of VIP on the rhythmic properties of astrocytes. VIP induced a dose-dependent increase in the peak-to-trough amplitude of the ensemble rhythms of PER2 expression with maximal effects near 100 nM VIP and threshold values between 0.1 and 1 nM. VIP also induced dose- and phase-dependent shifts in PER2 rhythms and daily VIP administration entrained bioluminescence rhythms of astrocytes to a predicted phase angle. This is the first demonstration that a neuropeptide can entrain glial cells to a phase predicted by a phase-response curve. The authors conclude that VIP potently entrains astrocytes in vitro and is a candidate for coordinating daily rhythms among glia in the brain.
Collapse
Affiliation(s)
- Luciano Marpegan
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
79
|
Hemming MN, Fieg S, Peacock WJ, Dennis ES, Trevaskis B. Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics 2009; 282:107-17. [PMID: 19404679 DOI: 10.1007/s00438-009-0449-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/14/2009] [Indexed: 12/25/2022]
Abstract
Activity of the VERNALIZATION1 (VRN1) gene is required for flowering in temperate cereals such as wheat and barley. In varieties that require prolonged exposure to cold to flower (vernalization), VRN1 is expressed at low levels and is induced by vernalization to trigger flowering. In other varieties, deletions or insertions in the first intron of the VRN1 gene are associated with increased VRN1 expression in the absence of cold treatment, reducing or eliminating the requirement for vernalization. To characterize natural variation in VRN1, the first intron of the barley (Hordeum vulgare) VRN1 gene (HvVRN1) was assayed for deletions or insertions in a collection of 1,000 barleys from diverse geographical regions. Ten alleles of HvVRN1 containing deletions or insertions in the first intron were identified, including three alleles that have not been described previously. Different HvVRN1 alleles were associated with differing levels of HvVRN1 expression in non-vernalized plants and with different flowering behaviour. Using overlapping deletions, we delineated regions in the HvVRN1 first intron that are associated with low levels of HvVRN1 expression in non-vernalized plants. Deletion of these intronic regions does not prevent induction of HvVRN1 by cold or the maintenance of increased HvVRN1 expression following cold treatment. We suggest that regions within the first intron of HvVRN1 are required to maintain low levels of HvVRN1 expression prior to winter but act independently of the regulatory mechanisms that mediate induction of HvVRN1 by cold during winter.
Collapse
Affiliation(s)
- Megan N Hemming
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organisation, ACT, Australia
| | | | | | | | | |
Collapse
|
80
|
Meng QJ, McMaster A, Beesley S, Lu WQ, Gibbs J, Parks D, Collins J, Farrow S, Donn R, Ray D, Loudon A. Ligand modulation of REV-ERBalpha function resets the peripheral circadian clock in a phasic manner. J Cell Sci 2009; 121:3629-35. [PMID: 18946026 DOI: 10.1242/jcs.035048] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor REV-ERBalpha is a key negative-feedback regulator of the biological clock. REV-ERBalpha binds to ROR elements of the Bmal1 (Arntl) promoter and represses Bmal1 transcription. This stabilizing negative loop is important for precise control of the circadian pacemaker. In the present study, we identified a novel synthetic REV-ERBalpha ligand, which enhances the recruitment of nuclear receptor co-repressor (NCoR) to REV-ERBalpha. In order to explore REV-ERBalpha action on resetting responses of the molecular clock, we first established the rhythmic transcription profile and expression level of REV-ERBalpha in Rat-1 fibroblasts. When applied at different phases of the circadian oscillation to cell models containing stably transfected Bmal1::Luc or Per2::Luc, the REV-ERBalpha ligand induced phase-dependent bi-directional phase shifts. When the phase changes were plotted against time, a clear phase response curve was revealed, with a significant peak-to-trough amplitude of ca. 5 hours. The phase-resetting effect was also observed when the compound was applied to primary lung fibroblasts and ectopic lung slices from transgenic PER2::Luc mice. Therefore, similar regulation of REV-ERBalpha function by endogenous ligands, such as heme, is likely to be an important mechanism for clock resetting. In addition, we identify a new means to generate phasic shifts in the clock.
Collapse
Affiliation(s)
- Qing Jun Meng
- Faculty of Life Sciences, A. V. Hill Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gibbs JE, Beesley S, Plumb J, Singh D, Farrow S, Ray DW, Loudon ASI. Circadian timing in the lung; a specific role for bronchiolar epithelial cells. Endocrinology 2009; 150:268-76. [PMID: 18787022 PMCID: PMC4340583 DOI: 10.1210/en.2008-0638] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology.
Collapse
Affiliation(s)
- J E Gibbs
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
82
|
Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT. Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation. Nucleic Acids Res 2008; 37:26-37. [PMID: 19010962 PMCID: PMC2615616 DOI: 10.1093/nar/gkn893] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Circadian mRNA oscillations are the main feature of core clock genes. Among them, period 2 is a key component in negative-feedback regulation, showing robust diurnal oscillations. Moreover, period 2 has been found to have a physiological role in the cell cycle or the tumor suppression. The present study reports that 3′-untranslated region (UTR)-dependent mRNA decay is involved in the regulation of circadian oscillation of period 2 mRNA. Within the mper2 3′UTR, both the CU-rich region and polypyrimidine tract-binding protein (PTB) are more responsible for mRNA stability and degradation kinetics than are other factors. Depletion of PTB with RNAi results in mper2 mRNA stabilization. During the circadian oscillations of mper2, cytoplasmic PTB showed a reciprocal expression profile compared with mper2 mRNA and its peak amplitude was increased when PTB was depleted. This report on the regulation of mper2 proposes that post-transcriptional mRNA decay mediated by PTB is a fine-tuned regulatory mechanism that includes dampening-down effects during circadian mRNA oscillations.
Collapse
Affiliation(s)
- Kyung-Chul Woo
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | |
Collapse
|
83
|
Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proc Natl Acad Sci U S A 2008; 105:17988-93. [PMID: 19004762 DOI: 10.1073/pnas.0809482105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of luciferase reporters has become a precise, noninvasive, high-throughput method for real-time monitoring of promoter activity in living cells, especially for rhythmic biological processes such as circadian rhythms. We developed a destabilized firefly luciferase as a reporter for rhythmic promoter activity in both the cell division and respiratory cycles of the budding yeast Saccharomyces cerevisiae in which real-time luminescence reporters have not been previously applied. The continuous output of light from luciferase reporters allowed us to explore the relationship between the cell division cycle and the yeast respiratory oscillation, including the observation of responses to chemicals that cause phase shifting of the respiratory oscillations. Destabilized firefly luciferase is a good reporter of cell cycle position in synchronized or partially synchronized yeast cultures, in both batch and continuous cultures. In addition, the oxygen dependence of luciferase can be used under certain conditions as a genetically encodable oxygen monitor. Finally, we use this reporter to show that there is a direct correlation between premature induction of cell division and phase resetting of the respiratory oscillation under the continuous culture conditions tested.
Collapse
|
84
|
Chalmers JA, Martino TA, Tata N, Ralph MR, Sole MJ, Belsham DD. Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). Am J Physiol Regul Integr Comp Physiol 2008; 295:R1529-38. [DOI: 10.1152/ajpregu.90572.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian system in mammals is a hierarchy of oscillators throughout the organism that are coordinated by the circadian clock in the hypothalamic suprachiasmatic nucleus. Peripheral clocks act to integrate time-of-day information from neural or hormonal signals, regulating gene expression, and, subsequently, organ physiology. However, the mechanisms by which the central clock communicates with peripheral oscillators are not understood and are likely tissue specific. In this study, we establish a mouse vascular cell model suitable for investigations of these mechanisms at a molecular level. Using the immortalized vascular smooth muscle cell line Movas-1, we determined that these cells express the circadian clock machinery with robust rhythms in mRNA expression over a 36-h period after serum shock synchronization. Furthermore, norepinephrine and forskolin were able to synchronize circadian rhythms in bmal1. With synchronization, we observed cycling of specific genes, including the tissue inhibitor of metalloproteinase 1 and 3 ( timp1, timp3), collagen 3a1 ( col3a1), transgelin 1 ( sm22α), and calponin 1 ( cnn1). Diurnal expression of these genes was also found in vivo in mouse aortic tissue, using microarray and real-time RT-PCR analysis. Both of these revealed ultradian rhythms in genes similar to the cycling observed in Movas-1 in vitro. These findings highlight the cyclical nature of structurally important genes in the vasculature that is similar both in vivo and in vitro. This study establishes the Movas-1 cells as a novel cell model from which to further investigate the molecular mechanisms of clock regulation in the vasculature.
Collapse
|
85
|
Nakamura TJ, Sellix MT, Menaker M, Block GD. Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am J Physiol Endocrinol Metab 2008; 295:E1025-31. [PMID: 18728223 PMCID: PMC2584820 DOI: 10.1152/ajpendo.90392.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
86
|
Price TS, Baggs JE, Curtis AM, Fitzgerald GA, Hogenesch JB. WAVECLOCK: wavelet analysis of circadian oscillation. ACTA ACUST UNITED AC 2008; 24:2794-5. [PMID: 18931366 DOI: 10.1093/bioinformatics/btn521] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
UNLABELLED Oscillations in mRNA and protein of circadian clock components can be continuously monitored in vitro using synchronized cell lines. These rhythms can be highly variable due to culture conditions and are non-stationary due to baseline trends, damping and drift in period length. We present a technique for characterizing the modal frequencies of oscillation using continuous wavelet decomposition to non-parametrically model changes in amplitude and period while removing baseline effects and noise. AVAILABILITY The method has been implemented as the package waveclock for the free statistical software program R and is available for download from http://cran.r-project.org/
Collapse
Affiliation(s)
- Tom S Price
- Institute of Psychiatry, Kings College London.
| | | | | | | | | |
Collapse
|
87
|
Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis AL, Mikros E, Meijer L. Soluble 3',6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. J Med Chem 2008; 51:6421-31. [PMID: 18816110 DOI: 10.1021/jm800648y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase -3 (GSK-3) is a key enzyme involved in numerous physiological events and in major diseases, such as Alzheimer's disease, diabetes, and cardiac hypertrophy. Indirubins are bis-indoles that can be generated from various natural sources or chemically synthesized. While rather potent and selective as GSK-3 inhibitors, most indirubins exhibit low water solubility. To address the issue of solubility, we have designed novel analogues of 6-bromo-indirubin-3'-oxime with increased hydrophilicity based on the GSK-3/indirubins cocrystal structures. The new derivatives with an extended amino side chain attached at position 3' showed potent GSK-3 inhibitory activity, enhanced selectivity, and dramatically increased water solubility. Furthermore, some of them displayed little or no cytotoxicity. The new indirubins inhibit GSK-3 in a cellular reporter model. They alter the circadian period measured in rhythmically expressing cell cultures, suggesting that they might constitute tools to investigate circadian rhythm regulation.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GTJ. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol 2008; 18:286-91. [PMID: 18291650 DOI: 10.1016/j.cub.2008.01.047] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 12/26/2022]
Abstract
To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian output processes can feed back into the clock, we investigated whether DNA damage affects the mammalian circadian clock. By using Rat-1 fibroblasts expressing an mPer2 promoter-driven luciferase reporter, we show that ionizing radiation exclusively phase advances circadian rhythms in a dose- and time-dependent manner. Notably, this in vitro finding translates to the living animal, because ionizing radiation also phase advanced behavioral rhythms in mice. The underlying mechanism involves ATM-mediated damage signaling as radiation-induced phase shifting was suppressed in fibroblasts from cancer-predisposed ataxia telangiectasia and Nijmegen breakage syndrome patients. Ionizing radiation-induced phase shifting depends on neither upregulation or downregulation of clock gene expression nor on de novo protein synthesis and, thus, differs mechanistically from dexamethasone- and forskolin-provoked clock resetting [5]. Interestingly, ultraviolet light and tert-butyl hydroperoxide also elicited a phase-advancing effect. Taken together, our data provide evidence that the mammalian circadian clock, like that of the lower eukaryote Neurospora[6], responds to DNA damage and suggest that clock resetting is a universal property of DNA damage.
Collapse
Affiliation(s)
- Małgorzata Oklejewicz
- Department of Genetics, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
89
|
Fan Y, Hida A, Anderson DA, Izumo M, Johnson CH. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol 2007; 17:1091-100. [PMID: 17583506 PMCID: PMC3434691 DOI: 10.1016/j.cub.2007.05.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND An interlocked transcriptional-translational feedback loop (TTFL) is thought to generate the mammalian circadian clockwork in both the central pacemaker residing in the hypothalamic suprachiasmatic nuclei and in peripheral tissues. The core circadian genes, including Period1 and Period2 (Per1 and Per2), Cryptochrome1 and Cryptochrome2 (Cry1 and Cry2), Bmal1, and Clock are indispensable components of this biological clockwork. The cycling of the PER and CRY clock proteins has been thought to be necessary to keep the mammalian clock ticking. RESULTS We provide a novel cell-permeant protein approach for manipulating cryptochrome protein levels to evaluate the current transcription and translation feedback model of the circadian clockwork. Cell-permeant cryptochrome proteins appear to be functional on the basis of several criteria, including the abilities to (1) rescue circadian properties in Cry1(-/-)Cry2(-/-) mouse fibroblasts, (2) act as transcriptional repressors, and (3) phase shift the circadian oscillator in Rat-1 fibroblasts. By using cell-permeant cryptochrome proteins, we demonstrate that cycling of CRY1, CRY2, and BMAL1 is not necessary for circadian-clock function in fibroblasts. CONCLUSIONS These results are not supportive of the current version of the transcription and translation feedback-loop model of the mammalian clock mechanism, in which cycling of the essential clock proteins CRY1 and CRY2 is thought to be necessary.
Collapse
Affiliation(s)
- Yunzhen Fan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Akiko Hida
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Daniel A. Anderson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Mariko Izumo
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| |
Collapse
|
90
|
McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ. ELF4 is required for oscillatory properties of the circadian clock. PLANT PHYSIOLOGY 2007; 144:391-401. [PMID: 17384164 PMCID: PMC1913775 DOI: 10.1104/pp.107.096206] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Circadian clocks are required to coordinate metabolism and physiology with daily changes in the environment. Such clocks have several distinctive features, including a free-running rhythm of approximately 24 h and the ability to entrain to both light or temperature cycles (zeitgebers). We have previously characterized the EARLY FLOWERING4 (ELF4) locus of Arabidopsis (Arabidopsis thaliana) as being important for robust rhythms. Here, it is shown that ELF4 is necessary for at least two core clock functions: entrainment to an environmental cycle and rhythm sustainability under constant conditions. We show that elf4 demonstrates clock input defects in light responsiveness and in circadian gating. Rhythmicity in elf4 could be driven by an environmental cycle, but an increased sensitivity to light means the circadian system of elf4 plants does not entrain normally. Expression of putative core clock genes and outputs were characterized in various ELF4 backgrounds to establish the molecular network of action. ELF4 was found to be intimately associated with the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LONG ELONGATED HYPOCOTYL (LHY)-TIMING OF CAB EXPRESSION1 (TOC1) feedback loop because, under free run, ELF4 is required to regulate the expression of CCA1 and TOC1 and, further, elf4 is locked in the evening phase of this feedback loop. ELF4, therefore, can be considered a component of the central CCA1/LHY-TOC1 feedback loop in the plant circadian clock.
Collapse
Affiliation(s)
- Harriet G McWatters
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 2007; 3:e68. [PMID: 17432930 PMCID: PMC1851983 DOI: 10.1371/journal.pcbi.0030068] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 02/27/2007] [Indexed: 01/02/2023] Open
Abstract
The suprachiasmatic nuclei (SCN) host a robust, self-sustained circadian pacemaker that coordinates physiological rhythms with the daily changes in the environment. Neuronal clocks within the SCN form a heterogeneous network that must synchronize to maintain timekeeping activity. Coherent circadian output of the SCN tissue is established by intercellular signaling factors, such as vasointestinal polypeptide. It was recently shown that besides coordinating cells, the synchronization factors play a crucial role in the sustenance of intrinsic cellular rhythmicity. Disruption of intercellular signaling abolishes sustained rhythmicity in a majority of neurons and desynchronizes the remaining rhythmic neurons. Based on these observations, the authors propose a model for the synchronization of circadian oscillators that combines intracellular and intercellular dynamics at the single-cell level. The model is a heterogeneous network of circadian neuronal oscillators where individual oscillators are damped rather than self-sustained. The authors simulated different experimental conditions and found that: (1) in normal, constant conditions, coupled circadian oscillators quickly synchronize and produce a coherent output; (2) in large populations, such oscillators either synchronize or gradually lose rhythmicity, but do not run out of phase, demonstrating that rhythmicity and synchrony are codependent; (3) the number of oscillators and connectivity are important for these synchronization properties; (4) slow oscillators have a higher impact on the period in mixed populations; and (5) coupled circadian oscillators can be efficiently entrained by light-dark cycles. Based on these results, it is predicted that: (1) a majority of SCN neurons needs periodic synchronization signal to be rhythmic; (2) a small number of neurons or a low connectivity results in desynchrony; and (3) amplitudes and phases of neurons are negatively correlated. The authors conclude that to understand the orchestration of timekeeping in the SCN, intracellular circadian clocks cannot be isolated from their intercellular communication components.
Collapse
Affiliation(s)
- Samuel Bernard
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece.
| | | | | | | | | |
Collapse
|