51
|
Costanzi S. Modeling G protein-coupled receptors in complex with biased agonists. Trends Pharmacol Sci 2014; 35:277-83. [PMID: 24793542 DOI: 10.1016/j.tips.2014.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/01/2014] [Accepted: 04/03/2014] [Indexed: 01/09/2023]
Abstract
The biological response to the activation of G protein-coupled receptors (GPCRs) typically originates from the simultaneous modulation of various signaling pathways that lead to distinct biological consequences. Hence, 'biased agonists' (i.e., compounds that selectively activate one of the pathways while blocking the others) are highly sought-after molecules to provide fine-tuned pharmacological interventions. This review describes strategies that can be deployed to model the conformation of GPCRs in complex with ligands endowed with specific signaling profiles useful for the generation of hypotheses on the structural requirements for the activation of different signaling pathways or for rational computer-aided ligand discovery campaigns. In particular, it focuses on strategies potentially applicable to model the global or local conformational states of GPCRs stabilized by specific ligands.
Collapse
Affiliation(s)
- Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA; Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|
52
|
Miao Y, Nichols SE, McCammon JA. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Phys Chem Chem Phys 2014; 16:6398-406. [PMID: 24445284 PMCID: PMC3960983 DOI: 10.1039/c3cp53962h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022]
Abstract
G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute , University of California at San Diego , La Jolla , CA 92093 , USA .
| | - Sara E. Nichols
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Pharmacology , University of California at San Diego , La Jolla , CA 92093 , USA
| | - J. Andrew McCammon
- Howard Hughes Medical Institute , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Pharmacology , University of California at San Diego , La Jolla , CA 92093 , USA
| |
Collapse
|
53
|
Bai Q, Shen Y, Jin N, Liu H, Yao X. Molecular modeling study on the dynamical structural features of human smoothened receptor and binding mechanism of antagonist LY2940680 by metadynamics simulation and free energy calculation. Biochim Biophys Acta Gen Subj 2014; 1840:2128-38. [PMID: 24637074 DOI: 10.1016/j.bbagen.2014.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND The smoothened (SMO) receptor, one of the Class F G protein coupled receptors (GPCRs), is an essential component of the canonical hedgehog signaling pathway which plays a key role in the regulation of embryonic development in animals. The function of the SMO receptor can be modulated by small-molecule agonists and antagonists, some of which are potential antitumour agents. Understanding the binding mode of an antagonist in the SMO receptor is crucial for the rational design of new antitumour agents. METHODS Molecular dynamics (MD) simulation and dynamical network analysis are used to study the dynamical structural features of SMO receptor. Metadynamics simulation and free energy calculation are employed to explore the binding mechanism between the antagonist and SMO receptor. RESULTS The MD simulation results and dynamical network analysis show that the conserved KTXXXW motif in helix VIII has strong interaction with helix I. The α-helical extension of transmembrane 6 (TM6) is detected as part of the ligand-binding pocket and dissociation pathway of the antagonist. The metadynamics simulation results illustrate the binding mechanism of the antagonist in the pocket of SMO receptor, and free energy calculation shows the antagonist needs to overcome about 38kcal/mol of energy barrier to leave the binding pocket of SMO receptor. CONCLUSIONS The unusually long TM6 plays an important role on the binding behavior of the antagonist in the pocket of SMO receptor. GENERAL SIGNIFICANCE The results can not only profile the binding mechanism between the antagonist and Class F GPCRs, but also supply the useful information for the rational design of a more potential small molecule antagonist bound to SMO receptor.
Collapse
Affiliation(s)
- Qifeng Bai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yulin Shen
- Gansu Computing Center, Lanzhou, Gansu 730000, PR China
| | - Nengzhi Jin
- Gansu Computing Center, Lanzhou, Gansu 730000, PR China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, PR China.
| |
Collapse
|
54
|
Johnston JM, Filizola M. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:95-125. [PMID: 24158803 PMCID: PMC4074508 DOI: 10.1007/978-94-007-7423-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field.
Collapse
Affiliation(s)
- Jennifer M. Johnston
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
55
|
Vaidehi N, Bhattacharya S, Larsen AB. Structure and dynamics of G-protein coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:37-54. [PMID: 24158800 DOI: 10.1007/978-94-007-7423-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500, E. Duarte Road, Duarte, CA, 91010, USA,
| | | | | |
Collapse
|
56
|
Tikhonova IG, Selvam B, Ivetac A, Wereszczynski J, McCammon JA. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. Biochemistry 2013; 52:5593-603. [PMID: 23879802 PMCID: PMC3763781 DOI: 10.1021/bi400499n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signaling pathway a GPCR promotes intracellular signals though β-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signaling through the G protein and β-arrestin. Here we report on the dynamics of the β2 adrenergic receptor bound to the β-arrestin and G protein-biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring of the transition within the nanosecond time scale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the β-arrestin-biased agonist N-cyclopentylbutanepherine, we observe a different pattern of motions in helix 7 when compared to simulations with the G protein-biased agonist salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | | | |
Collapse
|
57
|
Bai Q, Zhang Y, Ban Y, Liu H, Yao X. Computational study on the different ligands induced conformation change of β2 adrenergic receptor-Gs protein complex. PLoS One 2013; 8:e68138. [PMID: 23922653 PMCID: PMC3726664 DOI: 10.1371/journal.pone.0068138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/24/2013] [Indexed: 01/23/2023] Open
Abstract
β2 adrenergic receptor (β2AR) regulated many key physiological processes by activation of a heterotrimeric GTP binding protein (Gs protein). This process could be modulated by different types of ligands. But the details about this modulation process were still not depicted. Here, we performed molecular dynamics (MD) simulations on the structures of β2AR-Gs protein in complex with different types of ligands. The simulation results demonstrated that the agonist BI-167107 could form hydrogen bonds with Ser2035.42, Ser2075.46 and Asn2936.55 more than the inverse agonist ICI 118,551. The different binding modes of ligands further affected the conformation of β2AR. The energy landscape profiled the energy contour map of the stable and dissociated conformation of Gαs and Gβγ when different types of ligands bound to β2AR. It also showed the minimum energy pathway about the conformational change of Gαs and Gβγ along the reaction coordinates. By using interactive essential dynamics analysis, we found that Gαs and Gβγ domain of Gs protein had the tendency to separate when the inverse agonist ICI 118,551 bound to β2AR. The α5-helix had a relatively quick movement with respect to transmembrane segments of β2AR when the inverse agonist ICI 118,551 bound to β2AR. Besides, the analysis of the centroid distance of Gαs and Gβγ showed that the Gαs was separated from Gβγ during the MD simulations. Our results not only could provide details about the different types of ligands that induced conformational change of β2AR and Gs protein, but also supplied more information for different efficacies of drug design of β2AR.
Collapse
Affiliation(s)
- Qifeng Bai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yihe Ban
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
58
|
Abstract
G-protein-coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. Although significant advances have been made in structural studies of GPCRs, details of their activation mechanism remain unclear. The X-ray crystal structure of the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes, was determined recently in an inactive antagonist-bound state. Here, activation of the M2 receptor is directly observed via accelerated molecular dynamics simulation, in contrast to previous microsecond-timescale conventional molecular dynamics simulations in which the receptor remained inactive. Receptor activation is characterized by formation of a Tyr206(5.58)-Tyr440(7.53) hydrogen bond and ∼6-Å outward tilting of the cytoplasmic end of transmembrane α-helix 6, preceded by relocation of Trp400(6.48) toward Phe195(5.47) and Val199(5.51) and flipping of Tyr430(7.43) away from the ligand-binding cavity. Network analysis reveals that communication in the intracellular domains is greatly weakened during activation of the receptor. Together with the finding that residue motions in the ligand-binding and G-protein-coupling sites of the apo receptor are correlated, this result highlights a dynamic network for allosteric regulation of the M2 receptor activation.
Collapse
|
59
|
Li J, Jonsson AL, Beuming T, Shelley JC, Voth GA. Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor. J Am Chem Soc 2013; 135:8749-59. [PMID: 23678995 PMCID: PMC4120839 DOI: 10.1021/ja404391q] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR's activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular, we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp246(6.48)). Our findings agree with a previously proposed view that, during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G-protein binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity, and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
| | - Amanda L. Jonsson
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
| | - Thijs Beuming
- Schrödinger, Inc., 120 West 45 Street, 17th Floor, New York, NY 10036
| | - John C. Shelley
- Schrödinger, Inc., 101 Southwest Main Street, Suite 1300, Portland, OR 97204
| | - Gregory A. Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637
| |
Collapse
|
60
|
Niesen MJM, Bhattacharya S, Grisshammer R, Tate CG, Vaidehi N. Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state. J Phys Chem B 2013; 117:7283-91. [PMID: 23697892 DOI: 10.1021/jp403207c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dynamic nature of GPCRs is a major hurdle in their purification and crystallization. Thermostabilization can facilitate GPCR structure determination, as has been shown by the structure of the thermostabilized β1-adrenergic receptor (β1AR) mutant, m23-β1AR, which has been thermostabilized in the inactive state. However, it is unclear from the structure how the six thermostabilizing mutations in m23-β1AR affect receptor dynamics. We have used molecular dynamics simulations in explicit solvent to compare the conformational ensembles for both wild type β1AR (wt-β1AR) and m23-β1AR. Thermostabilization results in an increase in the number of accessible microscopic conformational states within the inactive state ensemble, effectively increasing the side chain entropy of the inactive state at room temperature, while suppressing large-scale main chain conformational changes that lead to activation. We identified several diverse mechanisms of thermostabilization upon mutation. These include decrease of long-range correlated movement between residues in the G-protein coupling site to the extracellular region (Y227A(5.58), F338M(7.48)), formation of new hydrogen bonds (R68S), and reduction of local stress (Y227(5.58), F327(7.37), and F338(7.48)). This study provides insights into microscopic mechanisms underlying thermostability that leads to an understanding of the effect of these mutations on the structure of the receptor.
Collapse
Affiliation(s)
- Michiel J M Niesen
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
61
|
Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N. Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput Struct Biotechnol J 2013; 5:e201302011. [PMID: 24688704 PMCID: PMC3962124 DOI: 10.5936/csbj.201302011] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/26/2013] [Accepted: 02/08/2013] [Indexed: 12/20/2022] Open
Abstract
The past decade has witnessed a paradigm shift in preclinical drug discovery with structure-based drug design (SBDD) making a comeback while high-throughput screening (HTS) methods have continued to generate disappointing results. There is a deficit of information between identified hits and the many criteria that must be fulfilled in parallel to convert them into preclinical candidates that have a real chance to become a drug. This gap can be bridged by investigating the interactions between the ligands and their receptors. Accurate calculations of the free energy of binding are still elusive; however progresses were made with respect to how one may deal with the versatile role of water. A corpus of knowledge combining X-ray structures, bioinformatics and molecular modeling techniques now allows drug designers to routinely produce receptor homology models of increasing quality. These models serve as a basis to establish and validate efficient rationales used to tailor and/or screen virtual libraries with enhanced chances of obtaining hits. Many case reports of successful SBDD show how synergy can be gained from the combined use of several techniques. The role of SBDD with respect to two different classes of widely investigated pharmaceutical targets: (a) protein kinases (PK) and (b) G-protein coupled receptors (GPCR) is discussed. Throughout these examples prototypical situations covering the current possibilities and limitations of SBDD are presented.
Collapse
Affiliation(s)
- Valère Lounnas
- CMBI, NCMLS Radboud University, Nijmegen Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Tina Ritschel
- Computational Drug Discovery, CMBI, NCMLS, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Jan Kelder
- Beethovengaarde 97, 5344 CD Oss, The Netherlands
| | - Ross McGuire
- BioAxis Research BV, Pivot Park, Molenstraat 110, 5342 CC Oss, The Netherlands
| | | | | |
Collapse
|
62
|
Molecular signatures of G-protein-coupled receptors. Nature 2013; 494:185-94. [PMID: 23407534 DOI: 10.1038/nature11896] [Citation(s) in RCA: 1115] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.
Collapse
|
63
|
Taddese B, Simpson LM, Wall ID, Blaney FE, Reynolds CA. Modeling Active GPCR Conformations. Methods Enzymol 2013; 522:21-35. [DOI: 10.1016/b978-0-12-407865-9.00002-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
64
|
Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2012. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy.
| |
Collapse
|
65
|
Selvam B, Wereszczynski J, Tikhonova IG. Comparison of dynamics of extracellular accesses to the β(1) and β(2) adrenoceptors binding sites uncovers the potential of kinetic basis of antagonist selectivity. Chem Biol Drug Des 2012; 80:215-26. [PMID: 22530954 DOI: 10.1111/j.1747-0285.2012.01390.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
From the molecular mechanism of antagonist unbinding in the β(1) and β(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of β(1)-selective Esmolol and β(2)-selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the β(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the β(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the β(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the β(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface.
Collapse
Affiliation(s)
- Balaji Selvam
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | |
Collapse
|
66
|
Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput Biol 2012; 8:e1002473. [PMID: 22532793 PMCID: PMC3330085 DOI: 10.1371/journal.pcbi.1002473] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/26/2012] [Indexed: 11/19/2022] Open
Abstract
From computational simulations of a serotonin 2A receptor (5-HT2AR) model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD) simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011), we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i)-the involvement of cholesterol in the activation of the 5-HT2AR, and (ii)-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization. The 5-HT2A receptor for the neurotransmitter serotonin (5-HT) belongs to family A (rhodopsin-like) G-protein coupled receptors (GPCRs), one of the most important classes of membrane proteins that are targeted by an extensive and diverse collection of external stimuli. Recently we learned that different ligands targeting the same GPCR can elicit different biological responses, but the mechanisms remain unknown. We address this fundamental question for the serotonin 5-HT2A receptor, because it is known to respond to the binding of structurally diverse ligands by producing similar stimuli in the cell, and to the binding of quite similar ligands with dramatically different responses. Molecular dynamics simulations of molecular models of the serotonin 5-HT2A receptor in complex with pharmacologically distinct ligands show the dynamic rearrangements of the receptor molecule to be different for these ligands, and the nature and extents of the rearrangements reflect the known pharmacological properties of the ligands as full, partial or inverse activators of the receptor. The different rearrangements of the receptor molecule are shown to produce different rearrangements of the surrounding membrane, a remodeling of the environment that can have differential ligand-determined effects on receptor function and association in the cell's membrane.
Collapse
|
67
|
Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD, Brezina V, Sealfon SC, Filizola M, González-Maeso J, Logothetis DE. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 2012; 147:1011-23. [PMID: 22118459 DOI: 10.1016/j.cell.2011.09.055] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 08/16/2011] [Accepted: 09/30/2011] [Indexed: 02/06/2023]
Abstract
Atypical antipsychotic drugs, such as clozapine and risperidone, have a high affinity for the serotonin 5-HT(2A) G protein-coupled receptor (GPCR), the 2AR, which signals via a G(q) heterotrimeric G protein. The closely related non-antipsychotic drugs, such as ritanserin and methysergide, also block 2AR function, but they lack comparable neuropsychological effects. Why some but not all 2AR inhibitors exhibit antipsychotic properties remains unresolved. We now show that a heteromeric complex between the 2AR and the G(i)-linked GPCR, metabotropic glutamate 2 receptor (mGluR2), integrates ligand input, modulating signaling output and behavioral changes. Serotonergic and glutamatergic drugs bind the mGluR2/2AR heterocomplex, which then balances Gi- and Gq-dependent signaling. We find that the mGluR2/2AR-mediated changes in Gi and Gq activity predict the psychoactive behavioral effects of a variety of pharmocological compounds. These observations provide mechanistic insight into antipsychotic action that may advance therapeutic strategies for disorders including schizophrenia and dementia.
Collapse
Affiliation(s)
- Miguel Fribourg
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|