51
|
Yi Y, Tamagawa M. Development of a novel hybrid method combining finite difference method and dissipative particle dynamics to simulate thrombus formation on orifice flow. Comput Methods Biomech Biomed Engin 2020; 23:611-626. [PMID: 32310682 DOI: 10.1080/10255842.2020.1755274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In our previous works, the transport of activated platelets (APs) on orifice flow has been simulated by finite difference method (FDM). And the distribution of AP concentration on the flow was obtained. However, the effect of platelet aggregation on the distribution of AP concentration can't be investigated by FDM because FDM can't simulate platelet aggregation. On the other hand, platelet aggregation has been simulated by dissipative particle dynamics (DPD). In this paper, a hybrid method combining FDM and DPD is proposed to investigate the effect of platelet aggregation on the distribution of AP concentration. And the hybrid method is used to simulate thrombus formation on orifice flow. As for the effect of platelet aggregation, it is found that the distribution of AP concentration in the hybrid method is different from the distribution in FDM at the places of platelet aggregation. It is considered that the difference is induced by platelet aggregation. As for the distribution of thrombus, higher AP concentration and more aggregated APs are found around the reattachment point and in the recirculation area. It is considered that thrombus is mainly distributed at these places in the simulation. And according to our previous experimental results, thrombus is mainly distributed around the reattachment point and in the recirculation area. It is concluded that the effect of platelet aggregation on the distribution of AP concentration can be investigated by the hybrid method, and the computational results agree with our previous experimental results.
Collapse
Affiliation(s)
- Y Yi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - M Tamagawa
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
52
|
Zheng X, Yazdani A, Li H, Humphrey JD, Karniadakis GE. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput Biol 2020; 16:e1007709. [PMID: 32343724 PMCID: PMC7224566 DOI: 10.1371/journal.pcbi.1007709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/14/2020] [Accepted: 02/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mechanical interactions between flowing and coagulated blood (thrombus) are crucial in dictating the deformation and remodeling of a thrombus after its formation in hemostasis. We propose a fully-Eulerian, three-dimensional, phase-field model of thrombus that is calibrated with existing in vitro experimental data. This phase-field model considers spatial variations in permeability and material properties within a single unified mathematical framework derived from an energy perspective, thereby allowing us to study effects of thrombus microstructure and properties on its deformation and possible release of emboli under different hemodynamic conditions. Moreover, we combine this proposed thrombus model with a particle-based model which simulates the initiation of the thrombus. The volume fraction of a thrombus obtained from the particle simulation is mapped to an input variable in the proposed phase-field thrombus model. The present work is thus the first computational study to integrate the initiation of a thrombus through platelet aggregation with its subsequent viscoelastic responses to various shear flows. This framework can be informed by clinical data and potentially be used to predict the risk of diverse thromboembolic events under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoning Zheng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - George E. Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
53
|
Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol 2020; 8:123. [PMID: 32226783 PMCID: PMC7080654 DOI: 10.3389/fbioe.2020.00123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.
Collapse
Affiliation(s)
| | - Ali E Dabiri
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
54
|
Zavyalova EG, Ustinov NB, Kopylov AM. Exploring the efficiency of thrombin inhibitors with a quantitative model of the coagulation cascade. FEBS Lett 2019; 594:995-1004. [PMID: 31736051 DOI: 10.1002/1873-3468.13684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 11/07/2022]
Abstract
A detailed mathematical description of the coagulation cascade is a challenging task due to a huge set of protein-protein interactions. Simplified models do not permit quantitative description of anticoagulants. The detailed mathematical model presented here was constructed with 98 reactions between 70 species. The model was verified using experimental data on thrombin generation. Four thrombin inhibitors, which have different inhibitory mechanisms, were incorporated into the model. All four thrombin inhibitors delayed prothrombin conversion into thrombin, but did not preclude it. At high inhibitor concentration, thrombin-mediated positive feedback loops were strongly inhibited and the proportion of prothrombin, converted with factor Xa only, was considerably increased. The most potent inhibitor of prothrombin conversion was aptamer NU172, which also binds prothrombin and inhibits its conversion.
Collapse
|
55
|
Yesudasan S, Averett RD. Recent advances in computational modeling of fibrin clot formation: A review. Comput Biol Chem 2019; 83:107148. [PMID: 31751883 PMCID: PMC6918949 DOI: 10.1016/j.compbiolchem.2019.107148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The field of thrombosis and hemostasis is crucial for understanding and developing new therapies for pathologies such as deep vein thrombosis, diabetes related strokes, pulmonary embolisms, and hemorrhaging related diseases. In the last two decades, an exponential growth in studies related to fibrin clot formation using computational tools has been observed. Despite this growth, the complete mechanism behind thrombus formation and hemostasis has been long and rife with obstacles; however, significant progress has been made in the present century. The computational models and methods used in this context are diversified into different spatiotemporal scales, yet there is no single model which can predict both physiological and mechanical properties of fibrin clots. In this review, we list the major strategies employed by researchers in modeling fibrin clot formation using recent and existing computational techniques. This review organizes the computational strategies into continuum level, system level, discrete particle (DPD), and multi-scale methods. We also discuss strengths and weaknesses of various methods and future directions in which computational modeling of fibrin clots can advance.
Collapse
Affiliation(s)
- Sumith Yesudasan
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602
| | - Rodney D Averett
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, 597 D.W. Brooks Drive, Athens, GA 30602.
| |
Collapse
|
56
|
Kim D, Bresette C, Liu Z, Ku DN. Occlusive thrombosis in arteries. APL Bioeng 2019; 3:041502. [PMID: 31768485 PMCID: PMC6863762 DOI: 10.1063/1.5115554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Thrombus formation in major arteries is life threatening. In this review article, we discuss how an arterial thrombus can form under pathologically high shear stresses, with bonding rates estimated to be the fastest Kon values in biochemistry. During occlusive thrombosis in arteries, the growth rate of the thrombus explodes to capture a billion platelets in about 10 min. Close to 100% of all platelets passing the thrombus are captured by long von Willebrand factor (vWF) strands that quickly form tethered nets. The nets grow in patches where shear stress is high, and the local concentration of vWF is elevated due to α-granule release by previously captured platelets. This rapidly formed thrombus has few red blood cells and so has a white appearance and is much stronger and more porous than clots formed through coagulation. Understanding and modeling the biophysics of this event can predict totally new approaches to prevent and treat heart attacks and strokes.
Collapse
Affiliation(s)
- Dongjune Kim
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Christopher Bresette
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - Zixiang Liu
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | - David N Ku
- GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| |
Collapse
|
57
|
Novel morphometric analysis of higher order structure of human radial peri-papillary capillaries: relevance to retinal perfusion efficiency and age. Sci Rep 2019; 9:13464. [PMID: 31530831 PMCID: PMC6748979 DOI: 10.1038/s41598-019-49443-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/24/2019] [Indexed: 11/30/2022] Open
Abstract
We apply novel analyses to images of superficial capillaries that are located near and around the optic disc of the human retina: the radial peri-papillary capillaries (RPCs). Due to their unique perfusion of the nerve fibre layer the RPCs are particularly significant for optic-neuropathies. The inputs to the analysis were z-stacks from 3D confocal fluorescence microscopy from 62 human retinas aged 9 to 84 years. Our aim was to find morphometric correlates of age. The retinas had no ophthalmic history. The analysis was undertaken in two stages: (1) converting the z-stacks to 3D tubular networks of vessels, and (2) characterizing the tubular networks using features derived from the Minkowski functionals (MFs). The MFs measure: the capillary volume, surface area, mean breadth, and Euler number. The mean breadth is related to tortuosity, wall shear stress and resistance to flow, and the Euler number is related to the density of loops (collaterals). Features derived from the surface area, mean breadth and Euler number were most related to age (all p ≤ 0.006). The results indicate the importance of pressure-equalizing loops and tortuosity as quantitative measures related to perfusion efficiency. The novel morphometric analysis could quantify disease-related accelerated aging and vessel malformation.
Collapse
|
58
|
Danes N, Leiderman K. A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3212. [PMID: 31117155 PMCID: PMC6718345 DOI: 10.1002/cnm.3212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/05/2019] [Accepted: 05/02/2019] [Indexed: 05/17/2023]
Abstract
Upon injury to a blood vessel, flowing platelets will aggregate at the injury site, forming a plug to prevent blood loss. Through a complex system of biochemical reactions, a stabilizing mesh forms around the platelet aggregate forming a blood clot that further seals the injury. Computational models of clot formation have been developed to a study intravascular thrombosis, where a vessel injury does not cause blood leakage outside the blood vessel but blocks blood flow. To model scenarios in which blood leaks from a main vessel out into the extravascular space, new computational tools need to be developed to handle the complex geometries that represent the injury. We have previously modeled intravascular clot formation under flow using a continuum approach wherein the transport of platelet densities into some spatial location is limited by the platelet fraction that already reside in that location, i.e., the densities satisfy a maximum packing constraint through the use of a hindered transport coefficient. To extend this notion to extravascular injury geometries, we have modified a finite element method flux-corrected transport (FEM-FCT) scheme by prelimiting antidiffusive nodal fluxes. We show that our modified scheme, under a variety of test problems, including mesh refinement, structured vs unstructured meshes, and for a range of reaction rates, produces numerical results that satisfy a maximum platelet-density packing constraint.
Collapse
|
59
|
Xiao LL, Lin CS, Chen S, Liu Y, Fu BM, Yan WW. Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Biomech Model Mechanobiol 2019; 19:159-171. [PMID: 31297646 DOI: 10.1007/s10237-019-01202-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/06/2019] [Indexed: 11/25/2022]
Abstract
In order to figure out whether red blood cell (RBC) aggregation is beneficial or deleterious for the blood flow through a stenosis, fluid mechanics of a microvascular stenosis was examined through simulating the dynamics of deformable red blood cells suspended in plasma using dissipative particle dynamics. The spatial variation in time-averaged cell-free layer (CFL) thickness and velocity profiles indicated that the blood flow exhibits asymmetry along the flow direction. The RBC accumulation occurs upstream the stenosis, leading to a thinner CFL and reduced flow velocity. Therefore, the emergence of stenosis produces an increased blood flow resistance. In addition, an enhanced Fahraeus-Lindqvist effect was observed in the presence of the stenosis. Finally, the effect of RBC aggregation combined with decreased stenosis on the blood flow was investigated. The findings showed that when the RBC clusters pass through the stenosis with a throat comparable to the RBC core in diameter, the blood flow resistance decreases with increasing intercellular interaction strength. But if the RBC core is larger and even several times than the throat, the blood flow resistance increases largely under strong RBC aggregation, which may contribute to the mechanism of the microthrombus formation.
Collapse
Affiliation(s)
- L L Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.
| | - C S Lin
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - S Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Y Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - B M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| | - W W Yan
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, China
| |
Collapse
|
60
|
Gupta P, Zhang P, Sheriff J, Bluestein D, Deng Y. A Multiscale Model for Recruitment Aggregation of Platelets by Correlating with In Vitro Results. Cell Mol Bioeng 2019; 12:327-343. [PMID: 31662802 DOI: 10.1007/s12195-019-00583-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction We developed a multiscale model to simulate the dynamics of platelet aggregation by recruitment of unactivated platelets flowing in viscous shear flows by an activated platelet deposited onto a blood vessel wall. This model uses coarse grained molecular dynamics (CGMD) for platelets at the microscale and dissipative particle dynamics (DPD) for the shear flow at the macroscale. Under conditions of relatively low shear, aggregation is mediated by fibrinogen via αIIbβ3 receptors. Methods The binding of αIIbβ3 and fibrinogen is modeled by a molecular-level hybrid force field consisting of Morse potential and Hooke law for the nonbonded and bonded interactions, respectively. The force field, parametrized in two different interaction scales, is calculated by correlating with the platelet contact area measured in vitro and the detaching force between αIIbβ3 and fibrinogen. Results Using our model, we derived, the relationship between recruitment force and distance between the centers of mass of two platelets, by integrating the molecular-scale inter-platelet interactions during recruitment aggregation in shear flows. Our model indicates that assuming a rigid-platelet model, underestimates the contact area by 89% and the detaching force by 93% as compared to a model that takes into account the platelet deformability leading to a prediction of a significantly lower attachment during recruitment. Conclusions The molecular-level predictive capability of our model sheds a light on differences observed between transient and permanent platelet aggregation patterns. The model and simulation framework can be further adapted to simulate initial thrombus formation involving multiple flowing platelets as well as deposition and adhesion onto blood vessels.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA
| | - Peng Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA
| |
Collapse
|
61
|
Carboni EJ, Bognet BH, Cowles DB, Ma AWK. The Margination of Particles in Areas of Constricted Blood Flow. Biophys J 2019; 114:2221-2230. [PMID: 29742415 DOI: 10.1016/j.bpj.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is a leading cause of death globally and is caused by stenoses, abnormal narrowings of blood vessels. Recently, there has been an increased interest in shear-activated particle clusters for the treatment of stenosis, but there is a lack of literature investigating the impact of different stenosis geometries on particle margination. Margination refers to the movement of particles toward the blood vessel wall and is desirable for drug delivery. The current study investigated ten different geometries and their effects on margination. Microfluidic devices with a constricted area were fabricated to mimic a stenosed blood vessel with different extent of occlusion, constricted length, and eccentricity (gradualness of the constriction and expansion). Spherical fluorescent particles with a diameter of 2.11 μm were suspended in blood and tracked as they moved into, through, and out of the constricted area. A margination parameter, M, was used to quantify margination based on the particle distribution after velocity normalization. Experimental results suggested that a constriction leads to an enhanced margination, whereas an expansion is responsible for a decrease in margination. Further, margination was found to increase with increasing percent occlusion and constriction length, likely a result of higher shear rate and longer residence time, respectively. Margination decreases as the stenosis geometry becomes more gradual (eccentricity increases) with the exception of a sudden constriction/expansion geometry. The findings demonstrate the importance of geometric effects on margination and call for detailed numerical modeling and geometric characterization of the stenosed areas to fully understand the underlying physics.
Collapse
Affiliation(s)
- Erik J Carboni
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| | - Brice H Bognet
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| | - David B Cowles
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| | - Anson W K Ma
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
62
|
Obiweluozor FO, Tiwari AP, Lee JH, Batgerel T, Kim JY, Lee D, Park CH, Kim CS. Thromboresistant semi-IPN hydrogel coating: Towards improvement of the hemocompatibility/biocompatibility of metallic stent implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1274-1288. [DOI: 10.1016/j.msec.2019.02.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 02/09/2023]
|
63
|
Méndez Rojano R, Mendez S, Lucor D, Ranc A, Giansily-Blaizot M, Schved JF, Nicoud F. Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction. Biomech Model Mechanobiol 2019; 18:1139-1153. [DOI: 10.1007/s10237-019-01134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
|
64
|
Kadri OE, Chandran VD, Surblyte M, Voronov RS. In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images. Comput Biol Med 2019; 106:1-11. [PMID: 30660757 PMCID: PMC6390965 DOI: 10.1016/j.compbiomed.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/31/2022]
Abstract
Ischemia which leads to heart attacks and strokes is one of the major causes of death in the world. Whether an occlusion occurs or not depends on the ability of a growing thrombus to resist flow forces exerted on its structure. This manuscript provides the first known in vivo measurement of how much stress a clot can withstand, before yielding to the surrounding blood flow. Namely, Lattice-Boltzmann Method flow simulations are performed based on 3D clot geometries, which are estimated from intravital microscopy images of laser-induced injuries in cremaster microvasculature of live mice. In addition to reporting the blood clot yield stresses, we also show that the thrombus "core" does not experience significant deformation, while its "shell" does. This indicates that the shell is more prone to embolization. Therefore, drugs should be designed to target the shell selectively, while leaving the core intact to minimize excessive bleeding. Finally, we laid down a foundation for a nondimensionalization procedure which unraveled a relationship between clot mechanics and biology. Hence, the proposed framework could ultimately lead to a unified theory of thrombogenesis, capable of explaining all clotting events. Thus, the findings presented herein will be beneficial to the understanding and treatment of heart attacks, strokes and hemophilia.
Collapse
Affiliation(s)
- Olufemi Emmanuel Kadri
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vishnu Deep Chandran
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
65
|
Grande Gutierrez N, Mathew M, McCrindle BW, Tran JS, Kahn AM, Burns JC, Marsden AL. Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. Int J Cardiol 2019; 281:15-21. [PMID: 30728104 DOI: 10.1016/j.ijcard.2019.01.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/22/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Thrombosis is a major adverse outcome associated with coronary artery aneurysms (CAAs) resulting from Kawasaki disease (KD). Clinical guidelines recommend initiation of anticoagulation therapy with maximum CAA diameter (Dmax) ≥8 mm or Z-score ≥ 10. Here, we investigate the role of aneurysm hemodynamics as a superior method for thrombotic risk stratification in KD patients. METHODS AND RESULTS We retrospectively studied ten KD patients with CAAs, including five patients who developed thrombosis. We constructed patient-specific anatomic models from cardiac magnetic resonance images and performed computational hemodynamic simulations using SimVascular. Our simulations incorporated pulsatile flow, deformable arterial walls and boundary conditions automatically tuned to match patient-specific arterial pressure and cardiac output. From simulation results, we derived local hemodynamic variables including time-averaged wall shear stress (TAWSS), low wall shear stress exposure, and oscillatory shear index (OSI). Local TAWSS was significantly lower in CAAs that developed thrombosis (1.2 ± 0.94 vs. 7.28 ± 9.77 dynes/cm2, p = 0.006) and the fraction of CAA surface area exposed to low wall shear stress was larger (0.69 ± 0.17 vs. 0.25 ± 0.26%, p = 0.005). Similarly, longer residence times were obtained in branches where thrombosis was confirmed (9.07 ± 6.26 vs. 2.05 ± 2.91 cycles, p = 0.004). No significant differences were found for OSI or anatomical measurements such us Dmax and Z-score. Assessment of thrombotic risk according to hemodynamic variables had higher sensitivity and specificity compared to standard clinical metrics (Dmax, Z-score). CONCLUSIONS Hemodynamic variables can be obtained non-invasively via simulation and may provide improved thrombotic risk stratification compared to current diameter-based metrics, facilitating long-term clinical management of KD patients with persistent CAAs.
Collapse
Affiliation(s)
| | - Mathew Mathew
- The Hospital for Sick Children, University of Toronto, Canada
| | | | - Justin S Tran
- Department of Mechanical Engineering, Stanford University, USA
| | - Andrew M Kahn
- Department of Medicine, University of California San Diego School of Medicine, USA
| | - Jane C Burns
- Department of Pediatrics, University of California San Diego School of Medicine, USA
| | - Alison L Marsden
- Departments of Pediatrics, Bioengineering and Institute for Computational and Mathematical Engineering, Stanford University, USA.
| |
Collapse
|
66
|
Nechipurenko DY, Receveur N, Yakimenko AO, Shepelyuk TO, Yakusheva AA, Kerimov RR, Obydennyy SI, Eckly A, Léon C, Gachet C, Grishchuk EL, Ataullakhanov FI, Mangin PH, Panteleev MA. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler Thromb Vasc Biol 2019; 39:37-47. [DOI: 10.1161/atvbaha.118.311390] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive.
Approach and Results—
Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride–induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin (
MYH9
)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of
MYH9
-knockout mice, confirming a major role of thrombus contraction in this phenomenon.
Conclusions—
Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.
Collapse
Affiliation(s)
- Dmitry Y. Nechipurenko
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Nicolas Receveur
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Alena O. Yakimenko
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Taisiya O. Shepelyuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Russia (T.O.S.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Alexandra A. Yakusheva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Roman R. Kerimov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
| | - Sergei I. Obydennyy
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Anita Eckly
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Catherine Léon
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Christian Gachet
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.L.G.)
| | - Fazoil I. Ataullakhanov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| | - Pierre H. Mangin
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Mikhail A. Panteleev
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| |
Collapse
|
67
|
Gabriel SA, Ding Y, Feng Y. Modelling the period-average transport of species within pulsatile blood flow. J Theor Biol 2018; 457:258-269. [DOI: 10.1016/j.jtbi.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/31/2018] [Accepted: 07/06/2018] [Indexed: 12/23/2022]
|
68
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
69
|
Yazdani A, Karniadakis G. Moving toward realistic models: Comment on "Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones" by A.V. Belyaev et al. Phys Life Rev 2018; 26-27:96-99. [PMID: 30477688 DOI: 10.1016/j.plrev.2018.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, 170 Hope Street, Providence, RI 02906, United States of America.
| | - George Karniadakis
- Division of Applied Mathematics, Brown University, 170 Hope Street, Providence, RI 02906, United States of America.
| |
Collapse
|
70
|
Uluc N, Unlu MB, Gulsen G, Erkol H. Extended photoacoustic transport model for characterization of red blood cell morphology in microchannel flow. BIOMEDICAL OPTICS EXPRESS 2018; 9:2785-2809. [PMID: 30258691 PMCID: PMC6154189 DOI: 10.1364/boe.9.002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The dynamic response behavior of red blood cells holds the key to understanding red blood cell related diseases. In this regard, an understanding of the physiological functions of erythrocytes is significant before focusing on red blood cell aggregation in the microcirculatory system. In this work, we present a theoretical model for a photoacoustic signal that occurs when deformed red blood cells pass through a microfluidic channel. Using a Green's function approach, the photoacoustic pressure wave is obtained analytically by solving a combined Navier-Stokes and photoacoustic equation system. The photoacoustic wave expression includes determinant parameters for the cell deformability such as plasma viscosity, density, and red blood cell aggregation, as well as involving laser parameters such as beamwidth, pulse duration, and repetition rate. The effects of aggregation on blood rheology are also investigated. The results presented by this study show good agreements with the experimental ones in the literature. The comprehensive analytical solution of the extended photoacoustic transport model including a modified Morse type potential function sheds light on the dynamics of aggregate formation and demonstrates that the profile of a photoacoustic pressure wave has the potential for detecting and characterizing red blood cell aggregation.
Collapse
Affiliation(s)
- Nasire Uluc
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648,
Japan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA,
USA
| | - Gultekin Gulsen
- Department of Radiological Sciences, University of California, Irvine, CA,
USA
| | - Hakan Erkol
- Department of Physics, Bogazici University, 34342 Bebek, Istanbul,
Turkey
| |
Collapse
|
71
|
Tasso P, Raptis A, Matsagkas M, Lodi Rizzini M, Gallo D, Xenos M, Morbiducci U. Abdominal aortic aneurysm endovascular repair: profiling post-implantation morphometry and hemodynamics with image-based computational fluid dynamics. J Biomech Eng 2018; 140:2682796. [PMID: 30029263 DOI: 10.1115/1.4040337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/08/2022]
Abstract
Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N=10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N=10). The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that: (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly pro-thrombotic hemodynamic structures are strongly correlated with the geometry of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical follow up studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.
Collapse
Affiliation(s)
- Paola Tasso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Anastasios Raptis
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece
| | - Miltiadis Matsagkas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
| | - Maurizio Lodi Rizzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Michalis Xenos
- Department of Mathematics, University of Ioannina, Ioannina 45500, Greece
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino 10129, Italy
| |
Collapse
|
72
|
Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys Life Rev 2018; 26-27:57-95. [PMID: 29550179 DOI: 10.1016/j.plrev.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Abstract
Hemostasis is a complex physiological mechanism that functions to maintain vascular integrity under any conditions. Its primary components are blood platelets and a coagulation network that interact to form the hemostatic plug, a combination of cell aggregate and gelatinous fibrin clot that stops bleeding upon vascular injury. Disorders of hemostasis result in bleeding or thrombosis, and are the major immediate cause of mortality and morbidity in the world. Regulation of hemostasis and thrombosis is immensely complex, as it depends on blood cell adhesion and mechanics, hydrodynamics and mass transport of various species, huge signal transduction networks in platelets, as well as spatiotemporal regulation of the blood coagulation network. Mathematical and computational modeling has been increasingly used to gain insight into this complexity over the last 30 years, but the limitations of the existing models remain profound. Here we review state-of-the-art-methods for computational modeling of thrombosis with the specific focus on the analysis of unresolved challenges. They include: a) fundamental issues related to physics of platelet aggregates and fibrin gels; b) computational challenges and limitations for solution of the models that combine cell adhesion, hydrodynamics and chemistry; c) biological mysteries and unknown parameters of processes; d) biophysical complexities of the spatiotemporal networks' regulation. Both relatively classical approaches and innovative computational techniques for their solution are considered; the subjects discussed with relation to thrombosis modeling include coarse-graining, continuum versus particle-based modeling, multiscale models, hybrid models, parameter estimation and others. Fundamental understanding gained from theoretical models are highlighted and a description of future prospects in the field and the nearest possible aims are given.
Collapse
|
73
|
Tan J, Sinno T, Diamond SL. A parallel fluid-solid coupling model using LAMMPS and Palabos based on the immersed boundary method. JOURNAL OF COMPUTATIONAL SCIENCE 2018; 25:89-100. [PMID: 30220942 PMCID: PMC6136258 DOI: 10.1016/j.jocs.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the Jeffery orbits of an ellipsoid particle in shear flow, red blood cell stretching test, and effective blood viscosity flowing in tubes. It demonstrated essentially linear scaling from 512 to 8192 cores for both strong and weak scaling cases. The computing time for the coupling increased with the solid fraction. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code.
Collapse
Affiliation(s)
- Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
19104, USA
| |
Collapse
|
74
|
Yazdani A, Li H, Bersi MR, Di Achille P, Insley J, Humphrey JD, Karniadakis GE. Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Sci Rep 2018; 8:2515. [PMID: 29410467 PMCID: PMC5802786 DOI: 10.1038/s41598-018-20603-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Aortic dissection is a pathology that manifests due to microstructural defects in the aortic wall. Blood enters the damaged wall through an intimal tear, thereby creating a so-called false lumen and exposing the blood to thrombogenic intramural constituents such as collagen. The natural history of this acute vascular injury thus depends, in part, on thrombus formation, maturation, and possible healing within the false lumen. A key question is: Why do some false lumens thrombose completely while others thrombose partially or little at all? An ability to predict the location and extent of thrombus in subjects with dissection could contribute significantly to clinical decision-making, including interventional design. We develop, for the first time, a data-driven particle-continuum model for thrombus formation in a murine model of aortic dissection. In the proposed model, we simulate a final-value problem in lieu of the original initial-value problem with significantly fewer particles that may grow in size upon activation, thus representing the local concentration of blood-borne species. Numerical results confirm that geometry and local hemodynamics play significant roles in the acute progression of thrombus. Despite geometrical differences between murine and human dissections, mouse models can provide considerable insight and have gained popularity owing to their reproducibility. Our results for three classes of geometrically different false lumens show that thrombus forms and extends to a greater extent in regions with lower bulk shear rates. Dense thrombi are less likely to form in high-shear zones and in the presence of strong vortices. The present data-driven study suggests that the proposed model is robust and can be employed to assess thrombus formation in human aortic dissections.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA.
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Joseph Insley
- Argonne National Laboratory, Argonne, IL 60439; Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | | |
Collapse
|
75
|
Méndez Rojano R, Mendez S, Nicoud F. Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis. Biomech Model Mechanobiol 2018; 17:815-826. [PMID: 29302840 DOI: 10.1007/s10237-017-0994-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled with a fluid solver in order to evaluate the potential of the contact system to initiate thrombin production. The biochemical/fluid model is applied to a backward-facing step configuration, a flow configuration that frequently appears in medical devices. In contrast to the in vivo thrombosis models in which a specific thrombotic zone (injury region) is set a priori by the user to initiate the coagulation reaction, a reactive surface boundary condition is applied to the whole device wall. Simulation results show large thrombin concentration in regions related to recirculation zones without the need of an a priori knowledge of the thrombus location. The numerical results align well with the regions prone to thrombosis observed in experimental results reported in the literature. This approach could complement thrombus formation models that take into account platelet activity and thrombus growth to optimize a wide range of medical devices.
Collapse
Affiliation(s)
- Rodrigo Méndez Rojano
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Simon Mendez
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Franck Nicoud
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
76
|
Gülan U, Saguner A, Akdis D, Gotschy A, Manka R, Brunckhorst C, Holzner M, Duru F. Investigation of Atrial Vortices Using a Novel Right Heart Model and Possible Implications for Atrial Thrombus Formation. Sci Rep 2017; 7:16772. [PMID: 29196688 PMCID: PMC5711865 DOI: 10.1038/s41598-017-17117-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022] Open
Abstract
The main aim of this paper is to characterize vortical flow structures in the healthy human right atrium, their impact on wall shear stresses and possible implications for atrial thrombus formation. 3D Particle Tracking Velocimetry is applied to a novel anatomically accurate compliant silicone right heart model to study the phase averaged and fluctuating flow velocity within the right atrium, inferior vena cava and superior vena cava under physiological conditions. We identify the development of two vortex rings in the bulk of the right atrium during the atrial filling phase leading to a rinsing effect at the atrial wall which break down during ventricular filling. We show that the vortex ring formation affects the hemodynamics of the atrial flow by a strong correlation (ρ = 0.7) between the vortical structures and local wall shear stresses. Low wall shear stress regions are associated with absence of the coherent vortical structures which might be potential risk regions for atrial thrombus formation. We discuss possible implications for atrial thrombus formation in different regions of the right atrium.
Collapse
Affiliation(s)
- Utku Gülan
- ETH Zurich, Institute of Environmental Engineering, Zurich, 8093, Switzerland.
| | - Ardan Saguner
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland
| | - Deniz Akdis
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland
| | - Alexander Gotschy
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland.,Institute for Biomedical Engineering, University and ETH Zurich, Zurich, 8092, Switzerland
| | - Robert Manka
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland
| | - Corinna Brunckhorst
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland
| | - Markus Holzner
- ETH Zurich, Institute of Environmental Engineering, Zurich, 8093, Switzerland
| | - Firat Duru
- University Heart Center, Department of Cardiology, Zurich, 8091, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, 8091, Switzerland
| |
Collapse
|
77
|
Quantifying the influence of oscillatory flow disturbances on blood flow. J Theor Biol 2017; 430:195-206. [DOI: 10.1016/j.jtbi.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/29/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022]
|