51
|
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet 2023; 69:77-89. [PMID: 36947241 DOI: 10.1007/s00294-023-01263-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Meena Tippana
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
52
|
Kakade P, Sircaik S, Maufrais C, Ene IV, Bennett RJ. Aneuploidy and gene dosage regulate filamentation and host colonization by Candida albicans. Proc Natl Acad Sci U S A 2023; 120:e2218163120. [PMID: 36893271 PMCID: PMC10089209 DOI: 10.1073/pnas.2218163120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023] Open
Abstract
Aneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen Candida albicans, which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid C. albicans strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection. Our analysis revealed that the presence of a Chr 7 trisomy resulted in decreased filamentation, both in vitro and during GI colonization, relative to isogenic euploid controls. A target gene approach demonstrated that NRG1, encoding a negative regulator of filamentation located on Chr 7, contributes to increased fitness of the aneuploid strain due to inhibition of filamentation in a gene dosage-dependent fashion. Together, these experiments establish how aneuploidy enables the reversible adaptation of C. albicans to its host via gene dosage-dependent regulation of morphology.
Collapse
Affiliation(s)
- Pallavi Kakade
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Shabnam Sircaik
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Corinne Maufrais
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris75015, France
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Richard J. Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| |
Collapse
|
53
|
Mediator Subunit Med15 Regulates Cell Morphology and Mating in Candida lusitaniae. J Fungi (Basel) 2023; 9:jof9030333. [PMID: 36983501 PMCID: PMC10053558 DOI: 10.3390/jof9030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.
Collapse
|
54
|
Lu H, Li W, Whiteway M, Wang H, Zhu S, Ji Z, Feng Y, Yan L, Fang T, Li L, Ni T, Zhang X, Lv Q, Ding Z, Qiu L, Zhang D, Jiang Y. A Small Molecule Inhibitor of Erg251 Makes Fluconazole Fungicidal by Inhibiting the Synthesis of the 14α-Methylsterols. mBio 2023; 14:e0263922. [PMID: 36475771 PMCID: PMC9973333 DOI: 10.1128/mbio.02639-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans. CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanqian Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Hongkang Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lijuan Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
55
|
Wakade RS, Ristow LC, Wellington M, Krysan DJ. Intravital imaging-based genetic screen reveals the transcriptional network governing Candida albicans filamentation during mammalian infection. eLife 2023; 12:e85114. [PMID: 36847358 PMCID: PMC9995110 DOI: 10.7554/elife.85114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. C. albicans pathogenesis is tightly linked to its ability to under a morphogenetic transition from typically budding yeast to filamentous forms of hyphae and pseudohyphae. Filamentous morphogenesis is the most intensively studied C. albicans virulence traits; however, nearly all of these studies have been based on in vitro induction of filamentation. Using an intravital imaging assay of filamentation during mammalian (mouse) infection, we have screened a library of transcription factor mutants to identify those that modulate both the initiation and maintenance of filamentation in vivo. We coupled this initial screen with genetic interaction analysis and in vivo transcription profiling to characterize the transcription factor network governing filamentation in infected mammalian tissue. Three core positive (Efg1, Brg1, and Rob1) and two core negative regulators (Nrg1 and Tup1) of filament initiation were identified. No previous systematic analysis of genes affecting the elongation step has been reported and we found that large set of transcription factors affect filament elongation in vivo including four (Hms1, Lys14, War1, Dal81) with no effect on in vitro elongation. We also show that the gene targets of initiation and elongation regulators are distinct. Genetic interaction analysis of the core positive and negative regulators revealed that the master regulator Efg1 primarily functions to mediate relief of Nrg1 repression and is dispensable for expression of hypha-associated genes in vitro and in vivo. Thus, our analysis not only provide the first characterization of the transcriptional network governing C. albicans filamentation in vivo but also revealed a fundamentally new mode of function for Efg1, one of the most widely studied C. albicans transcription factors.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Laura C Ristow
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of IowaIowa CityUnited States
- Departments of Microbiology and Immunology, Carver College of Medicine, University of IowaIowa CityUnited States
- Molecular Physiology and Biophysics, Carver College of Medicine, University of IowaIowa CityUnited States
| |
Collapse
|
56
|
Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. mBio 2023; 14:e0343422. [PMID: 36809010 PMCID: PMC10128014 DOI: 10.1128/mbio.03434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The ability to transition between yeast and filamentous growth states is critical for virulence of the leading human fungal pathogen Candida albicans. Large-scale genetic screens have identified hundreds of genes required for this morphological switch, but the mechanisms by which many of these genes orchestrate this developmental transition remain largely elusive. In this study, we characterized the role of Ent2 in governing morphogenesis in C. albicans. We showed that Ent2 is required for filamentous growth under a wide range of inducing conditions and is also required for virulence in a mouse model of systemic candidiasis. We found that the epsin N-terminal homology (ENTH) domain of Ent2 enables morphogenesis and virulence and does so via a physical interaction with the Cdc42 GTPase-activating protein (GAP) Rga2 and regulation of its localization. Further analyses revealed that overexpression of the Cdc42 effector protein Cla4 can overcome the requirement for the ENTH-Rga2 physical interaction, indicating that Ent2 functions, at least in part, to enable proper activation of the Cdc42-Cla4 signaling pathway in the presence of a filament-inducing cue. Overall, this work characterizes the mechanism by which Ent2 regulates hyphal morphogenesis in C. albicans, unveils the importance of this factor in enabling virulence in an in vivo model of systemic candidiasis and adds to the growing understanding of the genetic control of a key virulence trait. IMPORTANCE Candida albicans is a leading human fungal pathogen that can cause life-threatening infections in immunocompromised individuals, with mortality rates of ~40%. The ability of this organism to grow in both yeast and filamentous forms is critical for the establishment of systemic infection. Genomic screens have identified many genes required for this morphological transition, yet our understanding of the mechanisms that regulate this key virulence trait remains incomplete. In this study, we characterized Ent2 as a core regulator of C. albicans morphogenesis. We show that Ent2 regulates hyphal morphogenesis through an interaction between its ENTH domain and the Cdc42 GAP, Rga2, which signals through the Cdc42-Cla4 signaling pathway. Finally, we show that the Ent2 protein, and specifically its ENTH domain, is required for virulence in a mouse model of systemic candidiasis. Overall, this work identifies Ent2 as a key regulator of filamentation and virulence in C. albicans.
Collapse
|
57
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
58
|
Solis NV, Wakade RS, Filler SG, Krysan DJ. Candida albicans oropharyngeal infection is an exception to iron-based nutritional immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523704. [PMID: 36711857 PMCID: PMC9882133 DOI: 10.1101/2023.01.11.523704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Candida albicans is a commensal of the human gastrointestinal tract and one of the most causes of human fungal disease, including mucosal infections such as oropharyngeal candidiasis and disseminated infections of the bloodstream and deep organs. We directly compared the in vivo transcriptional profile of C. albicans during oral infection and disseminated infection of the kidney to identify niche specific features. Although the expression of a set of environmentally responsive genes were correlated in the two infection sites (Pearson R 2 , 0.6), XXX genes were differentially expressed. Virulence associated genes such as hyphae-specific transcripts were expressed similarly in the two sites. Genes expressed during growth in a poor carbon source ( ACS1 and PCK1 ) were upregulated in oral tissue relative to kidney. Most strikingly, C. albicans in oral tissue shows the transcriptional hallmarks of an iron-replete state while in the kidney it is in the expected iron starved state. Interestingly, C. albicans expresses genes associated with a low zinc environment in both niches. Consistent with these expression data, deletion of two transcription factors that activate iron uptake genes ( SEF1 , HAP5 ) have no effect on virulence in a mouse model of oral candidiasis. During microbial infection, the host sequesters iron and other metal nutrients to suppress growth of the pathogen in a process called nutritional immunity. Our results indicate that C. albicans is subject to iron and zinc nutritional immunity during disseminated infection but is exempted from iron nutritional immunity during oral infection.
Collapse
Affiliation(s)
- Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angles, CA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City IA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City IA
- Department of Molecular Physiology and Biophysics, Caver College of Medicine, University of Iowa, Iowa City IA
| |
Collapse
|
59
|
Maciel EI, Valle Arevalo A, Nobile CJ, Oviedo NJ. A Planarian Model System to Study Host-Pathogen Interactions. Methods Mol Biol 2023; 2680:231-244. [PMID: 37428381 PMCID: PMC10599129 DOI: 10.1007/978-1-0716-3275-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
This protocol is focused on using the recently established planarian infection model system to study host-pathogen interactions during fungal infection. Here, we describe in detail the infection of the planarian Schmidtea mediterranea with the human fungal pathogen Candida albicans. This simple and reproducible model system allows for rapid visualization of tissue damage throughout different infection timepoints. We note that this model system has been optimized for use with C. albicans, but should also be applicable for use with other pathogens of interest.
Collapse
Affiliation(s)
- Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Ashley Valle Arevalo
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, CA, USA.
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
60
|
Sun Q, Dong B, Yang D, Yu J, Ren T, Wang T, Yang L, Lu Y, Su C. Zcf24, a zinc-finger transcription factor, is required for lactate catabolism and inhibits commensalism in Candida albicans. Mol Microbiol 2023; 119:112-125. [PMID: 36545847 DOI: 10.1111/mmi.15015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Candida albicans is a normal resident of humans and also a prevalent fungal pathogen. Lactate, a nonfermentative carbon source available in numerous anatomical niches, can be used by C. albicans as a carbon source. However, the key regulator(s) involved in this process remain unknown. Here, through a genetic screen, we report the identification of a transcription factor Zcf24 that is specifically required for lactate utilization in C. albicans. Zcf24 is responsible for the induction of CYB2, a gene encoding lactate dehydrogenase that is essential for lactate catabolism, in response to lactate. Chromatin immunoprecipitation showed a significantly higher signal of Zcf24 on the CYB2 promoter in lactate-grown cells than that in glucose-grown cells. Genome-wide transcription profiling indicates that, in addition to CYB2, Zcf24 regulates genes involved in the β-oxidation of fatty acids, iron transport, and drug transport. Surprisingly, deleting ZCF24 confers enhanced commensal fitness. This could be attributed to Crz1-activated β-glucan masking in the zcf24 mutant. The orthologs of Zcf24 are distributed in species most closely to C. albicans and some filamentous fungal species. Altogether, Zcf24 is the first transcription factor identified to date that regulates lactate catabolism in C. albicans and it is also involved in the regulation of commensalism.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tianhao Ren
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianxu Wang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
61
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
62
|
Taylor MB, Skophammer R, Warwick AR, Geck RC, Boyer JM, Walson M, Large CRL, Hickey ASM, Rowley PA, Dunham MJ. yEvo: experimental evolution in high school classrooms selects for novel mutations that impact clotrimazole resistance in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:jkac246. [PMID: 36173330 PMCID: PMC9635649 DOI: 10.1093/g3journal/jkac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
Antifungal resistance in pathogenic fungi is a growing global health concern. Nonpathogenic laboratory strains of Saccharomyces cerevisiae are an important model for studying mechanisms of antifungal resistance that are relevant to understanding the same processes in pathogenic fungi. We have developed a series of laboratory modules in which high school students used experimental evolution to study antifungal resistance by isolating azole-resistant S. cerevisiae mutants and examining the genetic basis of resistance. We have sequenced 99 clones from these experiments and found that all possessed mutations previously shown to impact azole resistance, validating our approach. We additionally found recurrent mutations in an mRNA degradation pathway and an uncharacterized mitochondrial protein (Csf1) that have possible mechanistic connections to azole resistance. The scale of replication in this initiative allowed us to identify candidate epistatic interactions, as evidenced by pairs of mutations that occur in the same clone more frequently than expected by chance (positive epistasis) or less frequently (negative epistasis). We validated one of these pairs, a negative epistatic interaction between gain-of-function mutations in the multidrug resistance transcription factors Pdr1 and Pdr3. This high school-university collaboration can serve as a model for involving members of the broader public in the scientific process to make meaningful discoveries in biomedical research.
Collapse
Affiliation(s)
- Matthew Bryce Taylor
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | | | - Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Josephine M Boyer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - yEvo Students
- Westridge School, Pasadena, CA 91105, USA
- Moscow High School, Moscow, ID 83843, USA
| | - Margaux Walson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher R L Large
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- UW Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Angela Shang-Mei Hickey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Present address: Department of Genetics, Stanford University, Biomedical Innovations Building, Palo Alto, CA 94304, USA
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
63
|
Application of the Mutant Libraries for Candida albicans Functional Genomics. Int J Mol Sci 2022; 23:ijms232012307. [PMID: 36293157 PMCID: PMC9603287 DOI: 10.3390/ijms232012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.
Collapse
|
64
|
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 2022; 8:78. [PMID: 36224215 PMCID: PMC9556537 DOI: 10.1038/s41522-022-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.
Collapse
|
65
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
66
|
Andrawes N, Weissman Z, Pinsky M, Moshe S, Berman J, Kornitzer D. Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 2022; 18:e1010390. [PMID: 36084128 PMCID: PMC9491583 DOI: 10.1371/journal.pgen.1010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.
Collapse
Affiliation(s)
- Natalie Andrawes
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Shilat Moshe
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Judith Berman
- School of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| |
Collapse
|
67
|
Chatfield-Reed K, Marno Jones K, Shah F, Chua G. Genetic-interaction screens uncover novel biological roles and regulators of transcription factors in fission yeast. G3 GENES|GENOMES|GENETICS 2022; 12:6655692. [PMID: 35924983 PMCID: PMC9434175 DOI: 10.1093/g3journal/jkac194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
In Schizosaccharomyces pombe, systematic analyses of single transcription factor deletion or overexpression strains have made substantial advances in determining the biological roles and target genes of transcription factors, yet these characteristics are still relatively unknown for over a quarter of them. Moreover, the comprehensive list of proteins that regulate transcription factors remains incomplete. To further characterize Schizosaccharomyces pombe transcription factors, we performed synthetic sick/lethality and synthetic dosage lethality screens by synthetic genetic array. Examination of 2,672 transcription factor double deletion strains revealed a sick/lethality interaction frequency of 1.72%. Phenotypic analysis of these sick/lethality strains revealed potential cell cycle roles for several poorly characterized transcription factors, including SPBC56F2.05, SPCC320.03, and SPAC3C7.04. In addition, we examined synthetic dosage lethality interactions between 14 transcription factors and a miniarray of 279 deletion strains, observing a synthetic dosage lethality frequency of 4.99%, which consisted of known and novel transcription factor regulators. The miniarray contained deletions of genes that encode primarily posttranslational-modifying enzymes to identify putative upstream regulators of the transcription factor query strains. We discovered that ubiquitin ligase Ubr1 and its E2/E3-interacting protein, Mub1, degrade the glucose-responsive transcriptional repressor Scr1. Loss of ubr1+ or mub1+ increased Scr1 protein expression, which resulted in enhanced repression of flocculation through Scr1. The synthetic dosage lethality screen also captured interactions between Scr1 and 2 of its known repressors, Sds23 and Amk2, each affecting flocculation through Scr1 by influencing its nuclear localization. Our study demonstrates that sick/lethality and synthetic dosage lethality screens can be effective in uncovering novel functions and regulators of Schizosaccharomyces pombe transcription factors.
Collapse
Affiliation(s)
- Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Kurtis Marno Jones
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | - Farah Shah
- Department of Biological Sciences, University of Calgary , Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
68
|
van Wijlick L, Znaidi S, Hernández-Cervantes A, Basso V, Bachellier-Bassi S, d’Enfert C. Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans. Front Cell Infect Microbiol 2022; 12:960884. [PMID: 36004328 PMCID: PMC9393397 DOI: 10.3389/fcimb.2022.960884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The alternate growth of Candida albicans between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified ORF19.217 (C2_08890W_A), encoding a zinc-finger transcription factor of the C2H2 family, in a systematic screen of genes whose overexpression contributes to C. albicans' morphological changes. Conditional overexpression of ORF19.217 with the strong tetracycline-inducible promoter (P TET ) resulted in a hyperfilamentous phenotype. We examined growth of the orf19.217 knockout-mutant in different hypha-inducing conditions and found that the mutant still formed hyphae under standard hypha-inducing conditions. To further investigate the function of Orf19.217 in C. albicans, we combined genome-wide expression (RNA-Seq) and location (ChIP-Seq) analyses. We found that Orf19.217 is involved in regulatory processes comprising hyphal morphogenesis and iron acquisition. Comparative analysis with existing C. albicans hyphal transcriptomes indicates that Orf19.217-mediated filamentation is distinct from a true hyphal program. Further, the orf19.217 knockout-mutant did not show increased sensitivity to iron deprivation, but ORF19.217 overexpression was able to rescue the growth of a hap5-mutant, defective in a subunit of the CCAAT-complex, which is essential for iron acquisition. This suggested that Orf19.217 is involved in regulation of iron acquisition genes during iron deprivation and acts in a parallel pathway to the established CCAAT-complex. Interestingly, the orf19.217-mutant turned out to be defective in its ability to form filaments under iron-deficiency. Taken together our findings propose that the transcription factor Orf19.217 stimulates expression of the hyphal regulators EFG1 and BRG1 to promote filamentous growth under iron deprivation conditions, allowing the fungus to escape these iron-depleted conditions. The transcription factor therefore appears to be particularly important for adaptation of C. albicans to diverse environmental conditions in the human host. In regard to the newly identified functions, we have given the regulator the name Irf1, Iron-dependent Regulator of Filamentation.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis-Belvédère, Tunisia
| | - Arturo Hernández-Cervantes
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Virginia Basso
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
69
|
Bosch-Guiteras N, van Leeuwen J. Exploring conditional gene essentiality through systems genetics approaches in yeast. Curr Opin Genet Dev 2022; 76:101963. [PMID: 35939967 DOI: 10.1016/j.gde.2022.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
An essential gene encodes for a cellular function that is required for viability. Although viability is a straightforward phenotype to analyze in yeast, defining a gene as essential is not always trivial. Gene essentiality has generally been studied in specific laboratory strains and under standard growth conditions, however, essentiality can vary across species, strains, and environments. Recent systematic studies of gene essentiality revealed that two sets of essential genes exist: core essential genes that are always required for viability and conditional essential genes that vary in essentiality in different genetic and environmental contexts. Here, we review recent advances made in the systematic analysis of gene essentiality in yeast and discuss the properties that distinguish core from context-dependent essential genes.
Collapse
Affiliation(s)
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
70
|
Stress- and metabolic responses of Candida albicans require Tor1 kinase N-terminal HEAT repeats. PLoS Pathog 2022; 18:e1010089. [PMID: 35687592 PMCID: PMC9223334 DOI: 10.1371/journal.ppat.1010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system. Whether growing harmlessly on our mucous membranes in competition with bacterial multitudes, or invading our tissues and bloodstream, the fungus Candida albicans must be capable of rapid growth when it finds abundant nutrients and favorable conditions. It must also be able to switch to stress- and survival mode when encountering host immune cells and when starving for nutrients. Tor1 kinase is the central regulator at the heart of these cellular decisions. As an essential protein, it is an attractive drug target. But the Tor1 kinase domain is very similar to its human counterpart, rendering its inhibitors like rapamycin toxic for humans. We identified a region of helical protein-protein interaction domains, the N-terminal HEAT repeats, as the least conserved part of C. albicans Tor1. Using genetic- and genome-wide expression analysis, we found that 8 N-terminal HEAT repeats are required for growth acceleration in nutrient-rich environments and for decreased translation in starvation- and stress conditions. This Tor1 region contributes to oxidative-, cell wall- and heat stress reponses, to hyphal growth and to respiration, but apparently not to plasma membrane stress endurance or fermentation. Small molecules that disrupt the protein-protein interactions mediated by this region could become fungal-selective inhibitors of Tor kinase.
Collapse
|
71
|
Abstract
Candida albicans is one of the most prevalent human fungal pathogens. Its ability to transition between budding yeast and filamentous morphological forms (pseudohyphae and hyphae) is tightly associated with its pathogenesis. Based on in vitro studies, the cAMP-protein kinase A (PKA) pathway is a key regulator of C. albicans morphogenesis. Using an intravital imaging approach, we investigated the role of the cAMP-PKA pathway during infection. Consistent with their roles in vitro, the downstream effectors of the cAMP-PKA pathway Efg1 and Nrg1 function, respectively, as an activator and a repressor of in vivo filamentation. Surprisingly, strains lacking the adenylyl cyclase, CYR1, showed only slightly reduced filamentation in vivo despite being completely unable to filament in RPMI + 10% serum at 37°C. Consistent with these findings, deletion of the catalytic subunits of PKA (Tpk1 and Tpk2), either singly or in combination, generated strains that also filamented in vivo but not in vitro. In vivo transcription profiling of C. albicans isolated from both ear and kidney tissue showed that the expression of a set of 184 environmentally responsive genes correlated well with in vitro filamentation (R2, 0.62 to 0.68) genes. This concordance suggests that the in vivo and in vitro transcriptional responses are similar but that the upstream regulatory mechanisms are distinct. As such, these data emphatically emphasize that C. albicans filamentation is a complex phenotype that occurs in different environments through an intricate network of distinct regulatory mechanisms. IMPORTANCE The fungus Candida albicans causes a wide range of disease in humans from common diaper rash to life-threatening infections in patients with compromised immune systems. As such, the mechanisms for its ability to cause disease are of wide interest. An intensely studied virulence property of C. albicans is its ability to switch from a round yeast form to filament-like forms (hyphae and pseudohyphae). Surprisingly, we have found that a key signaling pathway that regulates this transition in vitro, the protein kinase A pathway, is not required for filamentation during infection of the host. Our work not only demonstrates that the regulation of filamentation depends upon the specific environment C. albicans inhabits but also underscores the importance of studying these mechanisms during infection.
Collapse
|
72
|
Tao L, Wang M, Guan G, Zhang Y, Hao T, Li C, Li S, Chen Y, Huang G. Streptococcus mutans suppresses filamentous growth of Candida albicans through secreting mutanocyclin, an unacylated tetramic acid. Virulence 2022; 13:542-557. [PMID: 35311622 PMCID: PMC8942415 DOI: 10.1080/21505594.2022.2046952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Li Tao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobo Guan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms
| |
Collapse
|
73
|
Systematic Genetic Interaction Analysis Identifies a Transcription Factor Circuit Required for Oropharyngeal Candidiasis. mBio 2022; 13:e0344721. [PMID: 35012341 PMCID: PMC8749425 DOI: 10.1128/mbio.03447-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oropharyngeal candidiasis (OPC) is a common infection that complicates a wide range of medical conditions and can cause either mild or severe disease depending on the patient. The pathobiology of OPC shares many features with candidal biofilms of abiotic surfaces. The transcriptional regulation of C. albicans biofilm formation on abiotic surfaces has been extensively characterized and involves six key transcription factors (Efg1, Ndt80, Rob1, Bcr1, Brg1, and Tec1). To determine if the in vitro biofilm transcriptional regulatory network also plays a role in OPC, we carried out a systematic genetic interaction analysis in a mouse model of C. albicans OPC. Whereas each of the six transcription factors are required for in vitro biofilm formation, only three homozygous deletion mutants (tec1ΔΔ, bcr1ΔΔ, and rob1ΔΔ) and one heterozygous mutant (tec1Δ/TEC1) have reduced infectivity in the mouse model of OPC. Although single mutants (heterozygous or homozygous) of BRG1 and EFG1 have no effect on fungal burden, double heterozygous and homozygous mutants have dramatically reduced infectivity, indicating a critical genetic interaction between these two transcription factors during OPC. Using epistasis analysis, we have formulated a genetic circuit, [EFG1+BRG1]→TEC1→BCR1, that is required for OPC infectivity and oral epithelial cell endocytosis. Surprisingly, we also found transcription factor mutants with in vitro defects in filamentation, such as efg1ΔΔ, rob1ΔΔ, and brg1ΔΔ filament, during oral infection and that reduced filamentation does not correlate with infectivity. Taken together, these data indicate that key in vitro biofilm transcription factors are involved in OPC but that the network characteristics and functional connections during infection are distinct from those observed in vivo. IMPORTANCE The pathology of oral candidiasis has features of biofilm formation, a well-studied process in vitro. Based on that analogy, we hypothesized that the network of transcription factors that regulates in vitro biofilm formation has similarities and differences during oral infection. To test this, we employed the first systematic genetic interaction analysis of C. albicans in a mouse model of oropharyngeal infection. This revealed that the six regulators involved in in vitro biofilm formation played roles in vivo but that the functional connections between factors were quite distinct. Surprisingly, we also found that while many of the factors are required for filamentation in vitro, none of the transcription factor deletion mutants was deficient for this key virulence trait in vivo. These observations clearly demonstrate that C. albicans regulates key aspects of its biology differently in vitro and in vivo.
Collapse
|
74
|
Abstract
Candida albicans filamentation, the ability to convert from oval yeast cells to elongated hyphal cells, is a key factor in its pathogenesis. Previous work has shown that the integral membrane protein Dfi1 is required for filamentation in cells grown in contact with a semisolid surface. Investigations into the downstream targets of the Dfi1 pathway revealed potential links to two transcription factors, Sef1 and Czf1. Sef1 regulates iron uptake and iron utilization genes under low-iron conditions, leading us to hypothesize that there exists a link between iron availability and contact-dependent invasive filamentation. In this study, we showed that Sef1 was not required for contact-dependent filamentation, but it was required for wild-type (WT) expression levels of a number of genes during growth under contact conditions. Czf1 is required for contact-dependent filamentation and for WT levels of expression of several genes. Constitutive expression and activation of either Sef1 or Czf1 individually in a dfi1 null strain resulted in a complete rescue of the dfi1 null filamentation defect. Because Sef1 is normally activated in low-iron environments, we embedded WT and dfi1 null cells in iron-free agar medium supplemented with various concentrations of ferrous ammonium sulfate (FAS). dfi1 null cells embedded in media with a low concentration of iron (20 μM FAS) showed increased filamentation in comparison to mutant cells embedded in higher concentrations of iron (50 to 500 μM). WT cells produced filamentous colonies in all concentrations. Together, the data indicate that Dfi1, Czf1, Sef1, and environmental iron regulate C. albicans contact-dependent filamentation. IMPORTANCECandida albicans is an opportunistic pathogen responsible for a larger proportion of candidiasis and candidemia cases than any other Candida species. The ability of C. albicans cells to invade and cause disease is linked to their ability to filament. Despite this, there are gaps in our knowledge of the environmental cues and intracellular signaling that triggers the switch from commensal organism to filamentous pathogen. In this study, we identified a link between contact-dependent filamentation and iron availability. Over the course of tissue invasion, C. albicans cells encounter a number of different iron microenvironments, from the iron-rich gut to iron-poor tissues. Increased expression of Sef1-dependent iron uptake genes as a result of contact-dependent signaling will promote the adaptation of C. albicans cells to a low-iron-availability environment.
Collapse
|
75
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
76
|
Parvizi Omran R, Ramírez-Zavala B, Aji Tebung W, Yao S, Feng J, Law C, Dumeaux V, Morschhäuser J, Whiteway M. The zinc cluster transcription factor Rha1 is a positive filamentation regulator in Candida albicans. Genetics 2022; 220:iyab155. [PMID: 34849863 PMCID: PMC8733637 DOI: 10.1093/genetics/iyab155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 01/31/2023] Open
Abstract
Zinc cluster transcription factors (TFs) are essential fungal regulators of gene expression. In the pathogen Candida albicans, the gene orf19.1604 encodes a zinc cluster TF regulating filament development. Hyperactivation of orf19.1604, which we have named RHA1 for Regulator of Hyphal Activity, generates wrinkled colony morphology under nonhyphal growth conditions, triggers filament formation, invasiveness, and enhanced biofilm formation and causes reduced virulence in the mouse model of systemic infection. The strain expressing activated Rha1 shows up-regulation of genes required for filamentation and cell-wall-adhesion-related proteins. Increased expression is also seen for the hyphal-inducing TFs Brg1 and Ume6, while the hyphal repressor Nrg1 is downregulated. Inactivation of RHA1 reduces filamentation under a variety of filament-inducing conditions. In contrast to the partial effect of either single mutant, the double rha1 ume6 mutant strain is highly defective in both serum- and Spider-medium-stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization even in brg1 ume6 double mutants. Thus, in response to external signals, Rha1 functions with other morphogenesis regulators including Brg1 and Ume6, to mediate filamentation.
Collapse
Affiliation(s)
- Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | - Walters Aji Tebung
- The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Shuangyan Yao
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jinrong Feng
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, China
| | - Chris Law
- Centre for Microscopy and Cellular Imaging, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vanessa Dumeaux
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
- PERFORM Centre, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
77
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
78
|
Glazer V, Krysan D. Construction of Double Heterozygous Deletion Strains for Complex Haploinsufficiency-Based Genetic Analysis in Candida albicans. Methods Mol Biol 2022; 2542:91-99. [PMID: 36008658 DOI: 10.1007/978-1-0716-2549-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Complex haploinsufficiency refers to the genetic interaction that occurs in strains with heterozygous mutations at two different loci (a double heterozygous deletion mutant). Double heterozygous deletion mutants can be used to identify gene partners that act within the same pathway or to determine expression-dependent genetic interactions that result in phenotypic changes outside of what would be expected based on the phenotypes of the single heterozygous deletion mutants. The approach outlined here uses a lithium acetate transformation method on a parental "query" strain to introduce a transcription factor deletion DNA construct that is derived from the Homann et al. Candida albicans transcription factor deletion library (Homann et al. PLoS Genet 5(12):e1000783, 2009). We also outline the steps to confirming the genotype of the resulting transformants as well as an example of the use of double heterozygous deletion mutants for complex haploinsufficiency analysis of biofilm formation.
Collapse
Affiliation(s)
| | - Damian Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
79
|
Loss-of-Function ROX1 Mutations Suppress the Fluconazole Susceptibility of upc2AΔ Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis. mSphere 2021; 6:e0083021. [PMID: 34935446 PMCID: PMC8694151 DOI: 10.1128/msphere.00830-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two of the major classes of antifungal drugs in clinical use target ergosterol biosynthesis. Despite its importance, our understanding of the transcriptional regulation of ergosterol biosynthesis genes in pathogenic fungi is essentially limited to the role of hypoxia and sterol-stress-induced transcription factors such as Upc2 and Upc2A as well as homologs of sterol response element binding (SREB) factors. To identify additional regulators of ergosterol biosynthesis in Candida glabrata, an important human fungal pathogen with reduced susceptibility to ergosterol biosynthesis inhibitors relative to other Candida spp., we used a serial passaging strategy to isolate suppressors of the fluconazole hypersusceptibility of a upc2AΔ deletion mutant. This led to the identification of loss-of-function mutations in two genes: ROX1, the homolog of a hypoxia gene transcriptional suppressor in Saccharomyces cerevisiae, and CST6, a transcription factor that is involved in the regulation of carbon dioxide response in C. glabrata. Here, we describe a detailed analysis of the genetic interaction of ROX1 and UPC2A. In the presence of fluconazole, loss of Rox1 function restores ERG11 expression to the upc2AΔ mutant and inhibits the expression of ERG3 and ERG6, leading to increased levels of ergosterol and decreased levels of the toxic sterol 14α methyl-ergosta-8,24(28)-dien-3β, 6α-diol, relative to the upc2AΔ mutant. Our observations establish that Rox1 is a negative regulator of ERG gene biosynthesis and indicate that a least one additional positive transcriptional regulator of ERG gene biosynthesis must be present in C. glabrata. IMPORTANCECandida glabrata is one of the most important human fungal pathogens and has reduced susceptibility to azole-class inhibitors of ergosterol biosynthesis. Although ergosterol is the target of two of the three classes of antifungal drugs, relatively little is known about the regulation of this critical cellular pathway. Sterols are both essential components of the eukaryotic plasma membrane and potential toxins; therefore, sterol homeostasis is critical for cell function. Here, we identified two new negative regulators in C. glabrata of ergosterol (ERG) biosynthesis gene expression. Our results also indicate that in addition to Upc2A, the only known activator of ERG genes, additional positive regulators of this pathway must exist.
Collapse
|
80
|
Three topological features of regulatory networks control life-essential and specialized subsystems. Sci Rep 2021; 11:24209. [PMID: 34930908 PMCID: PMC8688434 DOI: 10.1038/s41598-021-03625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
Gene regulatory networks (GRNs) play key roles in development, phenotype plasticity, and evolution. Although graph theory has been used to explore GRNs, associations amongst topological features, transcription factors (TFs), and systems essentiality are poorly understood. Here we sought the relationship amongst the main GRN topological features that influence the control of essential and specific subsystems. We found that the Knn, page rank, and degree are the most relevant GRN features: the ones are conserved along the evolution and are also relevant in pluripotent cells. Interestingly, life-essential subsystems are governed mainly by TFs with intermediary Knn and high page rank or degree, whereas specialized subsystems are mainly regulated by TFs with low Knn. Hence, we suggest that the high probability of TFs be toured by a random signal, and the high probability of the signal propagation to target genes ensures the life-essential subsystems' robustness. Gene/genome duplication is the main evolutionary process to rise Knn as the most relevant feature. Herein, we shed light on unexplored topological GRN features to assess how they are related to subsystems and how the duplications shaped the regulatory systems along the evolution. The classification model generated can be found here: https://github.com/ivanrwolf/NoC/ .
Collapse
|
81
|
Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nat Commun 2021; 12:7197. [PMID: 34893621 PMCID: PMC8664941 DOI: 10.1038/s41467-021-27545-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging healthcare-associated pathogen of global concern. Recent reports have identified C. auris isolates that grow in cellular aggregates or filaments, often without a clear genetic explanation. To investigate the regulation of C. auris morphogenesis, we applied an Agrobacterium-mediated transformation system to all four C. auris clades. We identified aggregating mutants associated with disruption of chitin regulation, while disruption of ELM1 produced a polarized, filamentous growth morphology. We developed a transiently expressed Cas9 and sgRNA system for C. auris that significantly increased targeted transformation efficiency across the four C. auris clades. Using this system, we confirmed the roles of C. auris morphogenesis regulators. Morphogenic mutants showed dysregulated chitinase expression, attenuated virulence, and altered antifungal susceptibility. Our findings provide insights into the genetic regulation of aggregating and filamentous morphogenesis in C. auris. Furthermore, the genetic tools described here will allow for efficient manipulation of the C. auris genome. Some isolates of the emerging fungal pathogen Candida auris can form cellular aggregates or filaments. Here, Santana and O’Meara use Agrobacterium-mediated transformation and a CRISPR-Cas9 system to identify several genes that regulate C. auris morphogenesis.
Collapse
|
82
|
Gervais NC, Halder V, Shapiro RS. A data library of Candida albicans functional genomic screens. FEMS Yeast Res 2021; 21:6433625. [PMID: 34864983 DOI: 10.1093/femsyr/foab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Functional genomic screening of genetic mutant libraries enables the characterization of gene function in diverse organisms. For the fungal pathogen Candida albicans, several genetic mutant libraries have been generated and screened for diverse phenotypes, including tolerance to environmental stressors and antifungal drugs, and pathogenic traits such as cellular morphogenesis, biofilm formation and host-pathogen interactions. Here, we compile and organize C. albicans functional genomic screening data from ∼400 screens, to generate a data library of genetic mutant strains analyzed under diverse conditions. For quantitative screening data, we normalized these results to enable quantitative and comparative analysis of different genes across different phenotypes. Together, this provides a unique C. albicans genetic database, summarizing abundant phenotypic data from functional genomic screens in this critical fungal pathogen.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
83
|
Liao B, Ye X, Chen X, Zhou Y, Cheng L, Zhou X, Ren B. The two-component signal transduction system and its regulation in Candida albicans. Virulence 2021; 12:1884-1899. [PMID: 34233595 PMCID: PMC8274445 DOI: 10.1080/21505594.2021.1949883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Candida albicans, which can cause superficial and life-threatening systemic infections, is the most common opportunistic fungal pathogen in the human microbiome. The two-component system is one of the most important C. albicans signal transduction pathways, regulating the response to oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug resistance, and the host-pathogen interactions. Notably, some components of this signaling pathway have not been found in the human genome, indicating that the two-component system of C. albicans can be a potential target for new antifungal agents. Here, we summarize the composition, signal transduction, and regulation of the two-component system of C. albicans to emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for antifungal drugs.
Collapse
Affiliation(s)
- Biaoyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
84
|
A Fungal Transcription Regulator of Vacuolar Function Modulates Candida albicans Interactions with Host Epithelial Cells. mBio 2021; 12:e0302021. [PMID: 34781731 PMCID: PMC8593675 DOI: 10.1128/mbio.03020-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microorganisms typically maintain cellular homeostasis despite facing large fluctuations in their surroundings. Microbes that reside on human mucosal surfaces may experience significant variations in nutrient and ion availability as well as pH. Whether the mechanisms employed by these microbial cells to sustain homeostasis directly impact on the interplay with the host’s mucosae remains unclear. Here, we report that the previously uncharacterized transcription regulator ZCF8 in the human-associated yeast Candida albicans maintains vacuole homeostasis when the fungus faces fluctuations in nitrogen. Genome-wide identification of genes directly regulated by Zcf8p followed by fluorescence microscopy to define their subcellular localization uncovered the fungal vacuole as a top target of Zcf8p regulation. Deletion and overexpression of ZCF8 resulted in alterations in vacuolar morphology and luminal pH and rendered the fungus resistant or susceptible to nigericin and brefeldin A, two drugs that impair vacuole and associated functions. Furthermore, we establish that the regulator modulates C. albicans attachment to epithelial cells in a manner that depends on the status of the fungal vacuole. Our findings, therefore, suggest that fungal vacuole physiology regulation is intrinsically linked to, and shapes to a significant extent, the physical interactions that Candida cells establish with mammalian mucosal surfaces.
Collapse
|
85
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
86
|
Rai LS, van Wijlick L, Chauvel M, d'Enfert C, Legrand M, Bachellier-Bassi S. Overexpression approaches to advance understanding of Candida albicans. Mol Microbiol 2021; 117:589-599. [PMID: 34569668 PMCID: PMC9298300 DOI: 10.1111/mmi.14818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is responsible for infections linked to high mortality. Loss‐of‐function approaches, taking advantage of gene knockouts or inducible down‐regulation, have been successfully used in this species in order to understand gene function. However, overexpression of a gene provides an alternative, powerful tool to elucidate gene function and identify novel phenotypes. Notably, overexpression can identify pathway components that might remain undetected using loss‐of‐function approaches. Several repressible or inducible promoters have been developed which allow to shut off or turn on the expression of a gene in C. albicans upon growth in the presence of a repressor or inducer. In this review, we summarize recent overexpression approaches used to study different aspects of C. albicans biology, including morphogenesis, biofilm formation, drug tolerance, and commensalism.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Lasse van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| |
Collapse
|
87
|
Lim SJ, Ali MSM, Sabri S, Noor NDM, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol 2021; 59:1127-1144. [PMID: 34506621 DOI: 10.1093/mmy/myab053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate due to candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade the enterocyte membrane components except for candidalysin, the VF acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only secreted aspartyl proteinases and agglutinin-like sequences have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans. LAY ABSTRACT Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
88
|
CO 2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms. NPJ Biofilms Microbiomes 2021; 7:67. [PMID: 34385462 PMCID: PMC8361082 DOI: 10.1038/s41522-021-00238-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
C. albicans is the predominant human fungal pathogen and frequently colonises medical devices, such as voice prostheses, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is the elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance, the effect of CO2 on C. albicans biofilm growth has not been investigated to date. Here we show that physiologically relevant CO2 elevation enhances each stage of the C. albicans biofilm-forming process: from attachment through maturation to dispersion. The effects of CO2 are mediated via the Ras/cAMP/PKA signalling pathway and the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown under elevated CO2 conditions also exhibit increased azole resistance, increased Sef1-dependent iron scavenging and enhanced glucose uptake to support their rapid growth. These findings suggest that C. albicans has evolved to utilise the CO2 signal to promote biofilm formation within the host. We investigate the possibility of targeting CO2-activated processes and propose 2-deoxyglucose as a drug that may be repurposed to prevent C. albicans biofilm formation on medical airway management implants. We thus characterise the mechanisms by which CO2 promotes C. albicans biofilm formation and suggest new approaches for future preventative strategies.
Collapse
|
89
|
Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, Bell R, Catanzaro JR, Song D, Singh S, Call DH, Hwang-Wong E, Hanson KE, Valentine JF, Christensen KA, O’Connell RM, Cormack B, Ibrahim AS, Palm NW, Noble SM, Round JL. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 2021; 596:114-118. [PMID: 34262174 PMCID: PMC8904204 DOI: 10.1038/s41586-021-03722-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.
Collapse
Affiliation(s)
- Kyla S. Ost
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - W. Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tyson Chiaro
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Haoyang Zhou
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jourdan Penman
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason R. Catanzaro
- Section of Pulmonology, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shakti Singh
- The Lundquist Institute of Biomedical Innovation, Harbor–UCLA Medical Center, Torrance, CA, USA
| | - Daniel H. Call
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Elizabeth Hwang-Wong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly E. Hanson
- Department of Pathology, Division of Clinical Microbiology, University of Utah, Salt Lake City, UT, USA
| | - John F. Valentine
- Department of Internal Medicine, Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Ryan M. O’Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brendan Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashraf S. Ibrahim
- The Lundquist Institute of Biomedical Innovation, Harbor–UCLA Medical Center, Torrance, CA, USA.,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Suzanne M. Noble
- Department of Microbiology and Immunology, UCSF School of Medicine, San Francisco, CA, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Correspondence and requests for materials should be addressed to J.L.R.,
| |
Collapse
|
90
|
Ichikawa Y, Bruno VM, Woolford CA, Kim H, Do E, Brewer GC, Mitchell AP. Environmentally contingent control of Candida albicans cell wall integrity by transcriptional regulator Cup9. Genetics 2021; 218:iyab075. [PMID: 33989396 PMCID: PMC8864738 DOI: 10.1093/genetics/iyab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
The fungal pathogen Candida albicans is surrounded by a cell wall that is the target of caspofungin and other echinocandin antifungals. Candida albicans can grow in several morphological forms, notably budding yeast and hyphae. Yeast and hyphal forms differ in cell wall composition, leading us to hypothesize that there may be distinct genes required for yeast and hyphal responses to caspofungin. Mutants in 27 genes reported previously to be caspofungin hypersensitive under yeast growth conditions were all caspofungin hypersensitive under hyphal growth conditions as well. However, a screen of mutants defective in transcription factor genes revealed that Cup9 is required for normal caspofungin tolerance under hyphal and not yeast growth conditions. In a hyphal-defective efg1Δ/Δ background, Cup9 is still required for normal caspofungin tolerance. This result argues that Cup9 function is related to growth conditions rather than cell morphology. RNA-seq conducted under hyphal growth conditions indicated that 361 genes were up-regulated and 145 genes were down-regulated in response to caspofungin treatment. Both classes of caspofungin-responsive genes were enriched for cell wall-related proteins, as expected for a response to disruption of cell wall integrity and biosynthesis. The cup9Δ/Δ mutant, treated with caspofungin, had reduced RNA levels of 40 caspofungin up-regulated genes, and had increased RNA levels of 8 caspofungin down-regulated genes, an indication that Cup9 has a narrow rather than global role in the cell wall integrity response. Five Cup9-activated surface-protein genes have roles in cell wall integrity, based on mutant analysis published previously (PGA31 and IFF11) or shown here (ORF19.3499, ORF19.851, or PGA28), and therefore may explain the hypersensitivity of the cup9Δ/Δmutant to caspofungin. Our findings define Cup9 as a new determinant of caspofungin susceptibility.
Collapse
Affiliation(s)
- Yuichi Ichikawa
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Division of Cancer Biology, The Cancer Institute of JFCR, Koto-ku, Tokyo 135-8550, Japan
| | - Vincent M Bruno
- Department of Microbiology and Immunology and Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carol A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Grace C Brewer
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
91
|
Wakade RS, Huang M, Mitchell AP, Wellington M, Krysan DJ. Intravital Imaging of Candida albicans Identifies Differential In Vitro and In Vivo Filamentation Phenotypes for Transcription Factor Deletion Mutants. mSphere 2021; 6:e0043621. [PMID: 34160243 PMCID: PMC8265662 DOI: 10.1128/msphere.00436-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an important cause of human fungal infections. A widely studied virulence trait of C. albicans is its ability to undergo filamentation to hyphae and pseudohyphae. Although yeast, pseudohyphae, and hyphae are present in pathological samples of infected mammalian tissue, it has been challenging to characterize the role of regulatory networks and specific genes during in vivo filamentation. In addition, the phenotypic heterogeneity of C. albicans clinical isolates is becoming increasingly recognized, while correlating this heterogeneity with pathogenesis remains an important goal. Here, we describe the use of an intravital imaging approach to characterize C. albicans filamentation in a mammalian model of infection by taking advantage of the translucence of mouse pinna (ears). Using this model, we have found that the in vitro and in vivo filamentation phenotypes of different C. albicans isolates can vary significantly, particularly when in vivo filamentation is compared to solid agar-based assays. We also show that the well-characterized transcriptional regulators Efg1 and Brg1 appear to play important roles both in vivo and in vitro. In contrast, Ume6 is much more important in vitro than in vivo. Finally, strains that are dependent on Bcr1 for in vitro filamentation are able to form filaments in vivo in its absence. This intravital imaging approach provides a new approach to the systematic characterization of this important virulence trait during mammalian infection. Our initial studies provide support for the notion that the regulation and initiation of C. albicans filamentation in vivo is distinct from in vitro induction. IMPORTANCE Candida albicans is one of the most common causes of fungal infections in humans. C. albicans undergoes a transition from a round yeast form to a filamentous form during infection, which is critical for its ability to cause disease. Although this transition has been studied in the laboratory for years, methods to do so in an animal model of infection have been limited. We have developed a microscopy method to visualize fluorescently labeled C. albicans undergoing this transition in the subcutaneous tissue of mice. Our studies indicate that the regulation of C. albicans filamentation during infection is distinct from that observed in laboratory conditions.
Collapse
Affiliation(s)
- Rohan S. Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manning Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Melanie Wellington
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
92
|
Wakade RS, Krysan DJ. The Cbk1-Ace2 axis guides Candida albicans from yeast to hyphae and back again. Curr Genet 2021; 67:461-469. [PMID: 33433733 PMCID: PMC8139900 DOI: 10.1007/s00294-020-01152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 11/29/2022]
Abstract
Since its description in S. cerevisiae, the Regulation of Ace2 and Morphogenesis (RAM) pathway has been studied for nearly 20 years in multiple model and pathogenic fungi. In pathogenic fungi, the RAM pathway carries out many functions through mechanisms that remain to be defined in detail. Recently, we reported that Cbk1-mediated phosphorylation of the transcription factor Ace2 functions to repress the hyphae-to-yeast transition in Candida albicans. This transition is understudied relative to the yeast-to-hyphae transition. Subapical hyphal cell compartments are arrested in G1 until the point at which lateral yeast emerge. Here, we discuss this model and report new data indicating that a second G1 associated protein, the mitotic exit regulator Amn1. In S. cerevisiae diploid cells, Amn1 negatively regulates Ace2 at both the gene expression level through a negative feedback loop and at the protein level by targeting Ace2 for degradation. In C. albicans, Amn1 and Ace2 also form a feedback loop at the level of gene expression. Deletion of AMN1 decreases lateral yeast formation relative to wild type in maturing hyphae and is associated with decreased expression of PES1, a positive regulator of lateral yeast formation. These data indicate that the regulation of mitotic exit plays a role in determining the timing of lateral yeast emergence from hyphae in C. albicans. We also propose an integrated model for the interplay between the Cbk1-Ace2 axis and other hyphal stage regulators during the process of filamentation and transition back to yeast.
Collapse
Affiliation(s)
- Rohan S Wakade
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Damian J Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Departments of Pediatrics and Microbiology/Immunology, University of Iowa, ML 2040E, 25 South Grand Ave, Iowa City, IA, 52242, USA.
| |
Collapse
|
93
|
Interplay between transcriptional regulators and the SAGA chromatin modifying complex fine-tune iron homeostasis. J Biol Chem 2021; 297:100727. [PMID: 33933457 PMCID: PMC8217685 DOI: 10.1016/j.jbc.2021.100727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.
Collapse
|
94
|
Witchley JN, Basso P, Brimacombe CA, Abon NV, Noble SM. Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism. Cell Host Microbe 2021; 29:1002-1013.e9. [PMID: 33915113 DOI: 10.1016/j.chom.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Candida albicans is a fungal component of the human gut microbiota and an opportunistic pathogen. C. albicans transcription factors (TFs), Wor1 and Efg1, are master regulators of an epigenetic switch required for fungal mating that also control colonization of the mammalian gut. We show that additional mating regulators, WOR2, WOR3, WOR4, AHR1, CZF1, and SSN6, also influence gut commensalism. Using Calling Card-seq to record Candida TF DNA-binding events in the host, we examine the role and relationships of these regulators during murine gut colonization. By comparing in-host transcriptomes of regulatory mutants with enhanced versus diminished commensal fitness, we also identify a set of candidate commensalism effectors. These include Cht2, a GPI-linked chitinase whose gene is bound by Wor1, Czf1, and Efg1 in vivo, that we show promotes commensalism. Thus, the network required for a C. albicans sexual switch is biochemically active in the host intestine and repurposed to direct commensalism.
Collapse
Affiliation(s)
- Jessica N Witchley
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pauline Basso
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cedric A Brimacombe
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nina V Abon
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
95
|
Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res 2021; 20:5715912. [PMID: 31981355 PMCID: PMC7000152 DOI: 10.1093/femsyr/foaa005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a multimorphic commensal organism and opportunistic fungal pathogen in humans. A morphological switch between unicellular budding yeast and multicellular filamentous hyphal growth forms plays a vital role in the virulence of C. albicans, and this transition is regulated in response to a range of environmental cues that are encountered in distinct host niches. Many unique transcription factors contribute to the transcriptional regulatory network that integrates these distinct environmental cues and determines which phenotypic state will be expressed. These hyphal morphogenesis regulators have been extensively investigated, and represent an increasingly important focus of study, due to their central role in controlling a key C. albicans virulence attribute. This review provides a succinct summary of the transcriptional regulatory factors and environmental signals that control hyphal morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Sonia Villa
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad Hamideh
- Masters in Biomedical Science Program, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Mohammad N Qasim
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Adnane Sellam
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaron D Hernday
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA.,Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
96
|
Mancera E, Nocedal I, Hammel S, Gulati M, Mitchell KF, Andes DR, Nobile CJ, Butler G, Johnson AD. Evolution of the complex transcription network controlling biofilm formation in Candida species. eLife 2021; 10:e64682. [PMID: 33825680 PMCID: PMC8075579 DOI: 10.7554/elife.64682] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
We examine how a complex transcription network composed of seven 'master' regulators and hundreds of target genes evolved over a span of approximately 70 million years. The network controls biofilm formation in several Candida species, a group of fungi that are present in humans both as constituents of the microbiota and as opportunistic pathogens. Using a variety of approaches, we observed two major types of changes that have occurred in the biofilm network since the four extant species we examined last shared a common ancestor. Master regulator 'substitutions' occurred over relatively long evolutionary times, resulting in different species having overlapping but different sets of master regulators of biofilm formation. Second, massive changes in the connections between the master regulators and their target genes occurred over much shorter timescales. We believe this analysis is the first detailed, empirical description of how a complex transcription network has evolved.
Collapse
Affiliation(s)
- Eugenio Mancera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad IrapuatoIrapuatoMexico
| | - Isabel Nocedal
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
| | - Stephen Hammel
- School of Biomolecular and Biomedical Science, Conway Institute, University College DublinDublinIreland
| | - Megha Gulati
- Department of Molecular and Cell Biology, University of California, MercedMercedUnited States
| | - Kaitlin F Mitchell
- Department of Medical Microbiology and Immunology, University of WisconsinMadisonUnited States
| | - David R Andes
- Department of Medical Microbiology and Immunology, University of WisconsinMadisonUnited States
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, MercedMercedUnited States
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College DublinDublinIreland
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San FranciscoSan FranciscoUnited States
- Microbiome Initiative, Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
97
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
98
|
Maciel EI, Valle Arevalo A, Ziman B, Nobile CJ, Oviedo NJ. Epithelial Infection With Candida albicans Elicits a Multi-System Response in Planarians. Front Microbiol 2021; 11:629526. [PMID: 33519792 PMCID: PMC7840899 DOI: 10.3389/fmicb.2020.629526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is one of the most common fungal pathogens of humans. Prior work introduced the planarian Schmidtea mediterranea as a new model system to study the host response to fungal infection at the organismal level. In the current study, we analyzed host-pathogen changes that occurred in situ during early infection with C. albicans. We found that the transcription factor Bcr1 and its downstream adhesin Als3 are required for C. albicans to adhere to and colonize the planarian epithelial surface, and that adherence of C. albicans triggers a multi-system host response that is mediated by the Dectin signaling pathway. This infection response is characterized by two peaks of stem cell divisions and transcriptional changes in differentiated tissues including the nervous and the excretory systems. This response bears some resemblance to a wound-like response to physical injury; however, it takes place without visible tissue damage and it engages a distinct set of progenitor cells. Overall, we identified two C. albicans proteins that mediate epithelial infection of planarians and a comprehensive host response facilitated by diverse tissues to effectively clear the infection.
Collapse
Affiliation(s)
- Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ashley Valle Arevalo
- Department of Molecular & Cell Biology, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Benjamin Ziman
- Department of Molecular & Cell Biology, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Clarissa J Nobile
- Department of Molecular & Cell Biology, University of California, Merced, Merced, CA, United States.,Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, Merced, CA, United States.,Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
99
|
Efg1 and Cas5 Orchestrate Cell Wall Damage Response to Caspofungin in Candida albicans. Antimicrob Agents Chemother 2021; 65:AAC.01584-20. [PMID: 33168610 DOI: 10.1128/aac.01584-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023] Open
Abstract
Echinocandins are recommended as the first-line drugs for the treatment of systemic candidiasis. Cas5 is a key transcription factor involved in the response to cell wall damage induced by echinocandins. In this study, through a genetic screen, we identified a second transcription factor, Efg1, that is also crucial for proper transcriptional responses to echinocandins. Like CAS5, deletion of EFG1 confers hypersensitivity to caspofungin. Efg1 is required for the induction of CAS5 in response to caspofungin. However, ectopically expressed CAS5 cannot rescue the growth defect of efg1 mutant in caspofungin-containing medium. Deleting EFG1 in the cas5 mutant exacerbates the cell wall stress upon caspofungin addition and renders caspofungin-resistant Candida albicans responsive to treatment. Genome-wide transcription profiling of efg1/efg1 and cas5/cas5 using transcriptome sequencing (RNA-Seq) indicates that Efg1 and Cas5 coregulate caspofungin-responsive gene expression, but they also independently control induction of some genes. We further show that Efg1 interacts with Cas5 by yeast two-hybrid and in vivo immunoprecipitation in the presence or absence of caspofungin. Importantly, Efg1 and Cas5 bind to some caspofungin-responsive gene promoters to coordinately activate their expression. Thus, we demonstrate that Efg1, together with Cas5, controls the transcriptional response to cell wall stress induced by caspofungin.
Collapse
|
100
|
Hanumantha Rao K, Paul S, Ghosh S. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Candida albicans. J Fungi (Basel) 2021; 7:65. [PMID: 33477740 PMCID: PMC7832408 DOI: 10.3390/jof7010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
The amino sugar, N-acetylglucosamine (GlcNAc), has emerged as an attractive messenger of signaling in the pathogenic yeast Candida albicans, given its multifaceted role in cellular processes, including GlcNAc scavenging, import and metabolism, morphogenesis (yeast to hyphae and white to opaque switch), virulence, GlcNAc induced cell death (GICD), etc. During signaling, the exogenous GlcNAc appears to adopt a simple mechanism of gene regulation by directly activating Ngs1, a novel GlcNAc sensor and transducer, at the chromatin level, to activate transcriptional response through the promoter acetylation. Ngs1 acts as a master regulator in GlcNAc signaling by regulating GlcNAc catabolic gene expression and filamentation. Ndt80-family transcriptional factor Rep1 appears to be involved in the recruitment of Ngs1 to GlcNAc catabolic gene promoters. For promoting filamentation, GlcNAc adopts a little modified strategy by utilizing a recently evolved transcriptional loop. Here, Biofilm regulator Brg1 takes up the key role, getting up-regulated by Ngs1, and simultaneously induces Hyphal Specific Genes (HSGs) expression by down-regulating NRG1 expression. GlcNAc kinase Hxk1 appears to play a prominent role in signaling. Recent developments in GlcNAc signaling have made C. albicans a model system to understand its role in other eukaryotes as well. The knowledge thus gained would assist in designing therapeutic interventions for the control of candidiasis and other fungal diseases.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi 110067, India
- Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| |
Collapse
|