51
|
The Colorful Sex Chromosomes of Teleost Fish. Genes (Basel) 2018; 9:genes9050233. [PMID: 29751562 PMCID: PMC5977173 DOI: 10.3390/genes9050233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes.
Collapse
|
52
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
53
|
Malimpensa GC, Traldi JB, Toyama D, Henrique-Silva F, Vicari MR, Moreira-Filho O. Chromosomal Mapping of Repeat DNA in Bergiaria westermanni (Pimelodidae, Siluriformes): Localization of 45S rDNA in B Chromosomes. Cytogenet Genome Res 2018; 154:99-106. [PMID: 29635248 DOI: 10.1159/000487652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
The occurrence of repetitive DNA in autosomes and B chromosomes of Bergiaria westermanni was examined using conventional and molecular cytogenetic techniques. This species exhibited 2n = 56 chromosomes, with intra- and interindividual variation in the number of heterochromatic B chromosomes (from 0 to 4). The 5S rDNA was localized in pairs 1 and 5, and histone probes (H1, H3, and H4) and U2 small nuclear RNA were syntenic with 5S rDNA in pair 5. Histone sequences were also located in chromosome pair 14. The (GATA)n sequence was dispersed throughout the autosomes and B chromosomes, with clusters (microsatellite accumulation) in some chromosome regions. The telomeric probe revealed no signs of chromosomal rearrangements in the genome of B. westermanni. The 45S rDNA sites were detected in the terminal region of pair 27; these sites corresponded to a GC-rich heterochromatin block. In addition, 3 of the 4 B chromosomes also contained 45S rDNA copies. Silver nitrate staining in interphase nuclei provided indirect evidence of the expression of these rRNA genes in B chromosomes, indicating the probable origin of these elements. This report shows plasticity in the chromosomal localization of repeat DNA in B. westermanni and features a discussion of genomic diversification.
Collapse
Affiliation(s)
- Geovana C Malimpensa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
54
|
Perazzo GX, Noleto RB, Vicari MR, Gava A, Cestari MM. B chromosome polymorphism in South American cichlid. NEOTROPICAL BIODIVERSITY 2018. [DOI: 10.1080/23766808.2018.1429164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Rafael Bueno Noleto
- Department of Biology, State University of Paraná, União da Vitória, Paraná, Brazil
| | - Marcelo Ricardo Vicari
- Department of Structural, Molecular and Genetical Biology, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Adriana Gava
- Biological Sciences Institute, Federal University of Rio Grande, Rio Grande, Brazil
| | | |
Collapse
|
55
|
Low-pass single-chromosome sequencing of human small supernumerary marker chromosomes (sSMCs) and Apodemus B chromosomes. Chromosoma 2018; 127:301-311. [PMID: 29380046 DOI: 10.1007/s00412-018-0662-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.
Collapse
|
56
|
Transcription of a B chromosome CAP-G pseudogene does not influence normal Condensin Complex genes in a grasshopper. Sci Rep 2017; 7:17650. [PMID: 29247237 PMCID: PMC5732253 DOI: 10.1038/s41598-017-15894-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Parasitic B chromosomes invade and persist in natural populations through several mechanisms for transmission advantage (drive). They may contain gene-derived sequences which, in some cases, are actively transcribed. A further interesting question is whether B-derived transcripts become functional products. In the grasshopper Eyprepocnemis plorans, one of the gene-derived sequences located on the B chromosome shows homology with the gene coding for the CAP-G subunit of condensin I. We show here, by means of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA), that this gene is located in the distal region of the B24 chromosome variant. The DNA sequence located in the B chromosome is a pseudogenic version of the CAP-G gene (B-CAP-G). In two Spanish populations, we found active transcription of B-CAP-G, but it did not influence the expression of CAP-D2 and CAP-D3 genes coding for corresponding condensin I and II subunits, respectively. Our results indicate that the transcriptional regulation of the B-CAP-G pseudogene is uncoupled from the standard regulation of the genes that constitute the condensin complex, and suggest that some of the B chromosome known effects may be related with its gene content and transcriptional activity, thus opening new exciting avenues for research.
Collapse
|
57
|
D'Ambrosio U, Alonso-Lifante MP, Barros K, Kovařík A, Mas de Xaxars G, Garcia S. B-chrom: a database on B-chromosomes of plants, animals and fungi. THE NEW PHYTOLOGIST 2017; 216:635-642. [PMID: 28742254 DOI: 10.1111/nph.14723] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Ugo D'Ambrosio
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - M Pilar Alonso-Lifante
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - Karina Barros
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno CZ-61265, Czech Republic
| | - Gemma Mas de Xaxars
- Laboratori de Botànica (UB), Unitat Associada al CSIC, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII s.n., Barcelona 08028, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Catalonia, Spain
| |
Collapse
|
58
|
|
59
|
Milani D, Ramos É, Loreto V, Martí DA, Cardoso AL, de Moraes KCM, Martins C, Cabral-de-Mello DC. The satellite DNA AflaSAT-1 in the A and B chromosomes of the grasshopper Abracris flavolineata. BMC Genet 2017; 18:81. [PMID: 28851268 PMCID: PMC5575873 DOI: 10.1186/s12863-017-0548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/22/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Satellite DNAs (satDNAs) are organized in repetitions directly contiguous to one another, forming long arrays and composing a large portion of eukaryote genomes. These sequences evolve according to the concerted evolution model, and homogenization of repeats is observed at the intragenomic level. Satellite DNAs are the primary component of heterochromatin, located primarily in centromeres and telomeres. Moreover, satDNA enrichment in specific chromosomes has been observed, such as in B chromosomes, that can provide clues about composition, origin and evolution of this chromosome. In this study, we isolated and characterized a satDNA in A and B chromosomes of Abracris flavolineata by integrating cytogenetic, molecular and genomics approaches at intra- and inter-population levels, with the aim to understand the evolution of satDNA and composition of B chromosomes. RESULTS AflaSAT-1 satDNA was shared with other species and in A. flavolineata, was associated with another satDNA, AflaSAT-2. Chromosomal mapping revealed centromeric blocks variable in size in almost all chromosomes (except pair 11) of A complement for both satDNAs, whereas for B chromosome, only a small centromeric signal occurred. In distinct populations, variable number of AflaSAT-1 chromosomal sites correlated with variability in copy number. Instead of such variability, low sequence diversity was observed in A complement, but monomers from B chromosome were more variable, presenting also exclusive mutations. AflaSAT-1 was transcribed in five tissues of adults in distinct life cycle phases. CONCLUSIONS The sharing of AflaSAT-1 with other species is consistent with the library hypothesis and indicates common origin in a common ancestor; however, AflaSAT-1 was highly amplified in the genome of A. flavolineata. At the population level, homogenization of repeats in distinct populations was documented, but dynamic expansion or elimination of repeats was also observed. Concerning the B chromosome, our data provided new information on the composition in A. flavolineata. Together with previous results, the sequences of heterochromatic nature were not likely highly amplified in the entire B chromosome. Finally, the constitutive transcriptional activity suggests a possible unknown functional role, which should be further investigated.
Collapse
Affiliation(s)
- Diogo Milani
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| | - Érica Ramos
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Vilma Loreto
- Departamento de Genética, UFPE - Univ Federal de Pernambuco, Centro de Biociências/CB, Recife, Pernambuco Brazil
| | | | - Adauto Lima Cardoso
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | | | - Cesar Martins
- Departamento de Morfologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Botucatu, São Paulo Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, São Paulo CEP 13506-900 Brazil
| |
Collapse
|
60
|
Carmello BO, Coan RLB, Cardoso AL, Ramos E, Fantinatti BEA, Marques DF, Oliveira RA, Valente GT, Martins C. The hnRNP Q-like gene is retroinserted into the B chromosomes of the cichlid fish Astatotilapia latifasciata. Chromosome Res 2017; 25:277-290. [PMID: 28776210 DOI: 10.1007/s10577-017-9561-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 11/27/2022]
Abstract
B chromosomes are dispensable elements observed in many eukaryotic species, including the African cichlid Astatotilapia latifasciata, which might have one or two B chromosomes. Although there have been many studies focused on the biology of these chromosomes, questions about the evolution, maintenance, and potential effects of these chromosomes remain. Here, we identified a variant form of the hnRNP Q-like gene inserted into the B chromosome of A. latifasciata that is characterized by a high copy number and intron-less structure. The absence of introns and presence of transposable elements with a reverse transcriptase domain flanking hnRNP Q-like sequences suggest that this gene was retroinserted into the B chromosome. RNA-Seq analysis did not show that the B variant retroinserted copies are transcriptionally active. However, RT-qPCR results showed variations in the canonical hnRNP Q-like copy expression levels among exons, tissues, sex, and B presence/absence. Although the patterns of transcription are not well understood, the exons of the B retrocopies were overexpressed, and a bias for female B+ expression was also observed. These results suggest that retroinsertion is an additional and important mechanism contributing to B chromosome formation. Furthermore, these findings indicate a bias towards female differential expression of B chromosome sequences, suggesting that B chromosomes and sex determination are somehow associated in cichlids.
Collapse
Affiliation(s)
- Bianca O Carmello
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Rafael L B Coan
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Bruno E A Fantinatti
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Diego F Marques
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Rogério A Oliveira
- Institute of Biosciences, Department of Biostatistics, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Guilherme T Valente
- Institute of Biosciences, Agronomic Science School, Department of Bioprocess and Biotechnology, Sao Paulo State University (UNESP), Botucatu, SP, 18610-307, Brazil
| | - Cesar Martins
- Institute of Biosciences, Department of Morphology, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
61
|
Li XY, Liu XL, Ding M, Li Z, Zhou L, Zhang XJ, Gui JF. A novel male-specific SET domain-containing gene setdm identified from extra microchromosomes of gibel carp males. Sci Bull (Beijing) 2017; 62:528-536. [PMID: 36659360 DOI: 10.1016/j.scib.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 01/21/2023]
Abstract
Various genes have been screened on extra chromosomes, but their molecular characterization, expression pattern and biological function are still unclear. Here, we utilized a male-specific sequence of polyploid gibel carp (Carassius gibelio) to identify a novel male-specific SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain-containing gene setdm on extra microchromosomes of gibel carp males. And setdm was characterized in molecule and expression aspects, in which its expression was specific to testis, and had relative high transcription during middle/late stages of testis development. Moreover, prominent expression of Setdm in spermatogenic cells was observed in testis through immunofluorescence co-localization analysis. These results suggest that biological function of setdm might be related to testis development and spermatogenesis of gibel carp. Additionally, the homeologous gene setdmf of setdm, was also characterized, and its expression was gonad-specific, in which its expressed product was detected to mainly distribute in gametogenic cells of testis and ovary, and to have dynamic expression pattern similar to that of setdm. Based on the current results, we propose that the novel male-specific setdm on extra microchromosomes might be functional divergence gene of the gonad-specific setdmf. Therefore, these findings will help us to further understand evolutionary fate and functional role of genes on extra microchromosomes.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
62
|
Navarro-Domínguez B, Ruiz-Ruano FJ, Cabrero J, Corral JM, López-León MD, Sharbel TF, Camacho JPM. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Sci Rep 2017; 7:45200. [PMID: 28367986 PMCID: PMC5377258 DOI: 10.1038/srep45200] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023] Open
Abstract
For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content.
Collapse
Affiliation(s)
| | - Francisco J. Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - José María Corral
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Department of Bioanalytics, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | | | - Timothy F. Sharbel
- Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 4J8, Canada
| | - Juan Pedro M. Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
63
|
Affiliation(s)
- Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Timothy Y. James
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
64
|
Takagui FH, Dias AL, Birindelli JLO, Swarça AC, da Rosa R, Lui RL, Fenocchio AS, Giuliano-Caetano L. First report of B chromosomes in three neotropical thorny catfishes (Siluriformes, Doradidae). COMPARATIVE CYTOGENETICS 2017; 11:55-64. [PMID: 28919949 PMCID: PMC5599706 DOI: 10.3897/compcytogen.v11i1.10496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/15/2016] [Indexed: 06/07/2023]
Abstract
The family Doradidae (Siluriformes) is an important group of fishes endemic to freshwater ecosystems in South America. Some cytogenetic studies have been conducted focused on the group; however, there are no reports on the occurrence of B chromosomes for the family. In this paper the chromosomal characteristics of Platydoras armatulus (Valenciennes, 1840), Pterodoras granulosus (Valenciennes, 1821) and Ossancora punctata (Kner, 1855) were investigated through classical cytogenetics approaches. The conventional staining reveals 2n=58 in Platydoras armatulus and Pterodoras granulosus, however with distinct karyotypic formulae, possibly originated by pericentric inversions. In Ossancora punctata a derivate karyotype was described with 2n=66 and predominance of acrocentric chromosomes. The C banding pattern was resolutive in discriminating the three species, being considered an important cytotaxonomic marker. All species showed B chromosomes totally heterochromatic with non-Mendelian segregation during meiosis and low frequencies in mitotic cells. The probably origin of these additional elements was through fragmentations of chromosomes of the standard complement, which occurred recently and independently in these three species. The diploid number observed in Ossancora punctata is an evidence of centric fusions and up to the moment it is the highest diploid number reported for Doradidae.
Collapse
Affiliation(s)
- Fábio Hiroshi Takagui
- Laboratory of Animal Cytogenetics; Department of General Biology, CCB, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid, PR 445, km 380, Londrina-Brasil
| | - Ana Lucia Dias
- Laboratory of Animal Cytogenetics; Department of General Biology, CCB, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid, PR 445, km 380, Londrina-Brasil
| | - José Luís Olivan Birindelli
- Museum of Zoology, Department of Animal and Plant Biology, CCB, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid, PR 445, km 380, Londrina-Brasil
| | - Ana Claudia Swarça
- Laboratory of Histology and Genetics; Department of Histology; Center of Biological Sciences (CCB); Universidade Estadual de Londrina (UEL). Londrina-Brasil
| | - Renata da Rosa
- Laboratory of Animal Cytogenetics; Department of General Biology, CCB, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid, PR 445, km 380, Londrina-Brasil
| | - Roberto Laridondo Lui
- Laboratory of Cytogenetics; Center of Biological Sciences and Health: Universidade do Oeste do Paraná, Campus Cascavel. Cascavel - Brasil
| | - Alberto Sergio Fenocchio
- Laboratory of General Cytogenetics; Department of Genetics; Facultad de Ciencias Naturales; Universidad Nacional de Misiones. Posadas- Argentina
| | - Lucia Giuliano-Caetano
- Laboratory of Animal Cytogenetics; Department of General Biology, CCB, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid, PR 445, km 380, Londrina-Brasil
| |
Collapse
|
65
|
Ma W, Gabriel TS, Martis MM, Gursinsky T, Schubert V, Vrána J, Doležel J, Grundlach H, Altschmied L, Scholz U, Himmelbach A, Behrens SE, Banaei-Moghaddam AM, Houben A. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog. THE NEW PHYTOLOGIST 2017; 213:916-928. [PMID: 27468091 DOI: 10.1111/nph.14110] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/18/2016] [Indexed: 05/21/2023]
Abstract
B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.
Collapse
Affiliation(s)
- Wei Ma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Tobias Sebastian Gabriel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Mihaela Maria Martis
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- National Bioinformatics Infrastructure Sweden, Department of Clinical and Experimental Medicine, Linköping University, SE-558185, Linköping, Sweden
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Jan Vrána
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Heidrun Grundlach
- Institute of Bioinformatics and Systems Biology/Munich Information Center for Protein Sequences, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Faculty of Life Sciences, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, PO Box 13145-1384, Tehran, Iran
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466, Stadt Seeland, Germany
| |
Collapse
|
66
|
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:883. [PMID: 27821061 PMCID: PMC5100337 DOI: 10.1186/s12864-016-3178-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022] Open
Abstract
Background Sex chromosomes change more frequently in fish than in mammals or birds. However, certain chromosomes or genes are repeatedly used as sex determinants in different members of the teleostean lineage. East African cichlids are an enigmatic model system in evolutionary biology representing some of the most diverse extant vertebrate adaptive radiations. How sex is determined and if different sex-determining mechanisms contribute to speciation is unknown for almost all of the over 1,500 cichlid species of the Great Lakes. Here, we investigated the genetic basis of sex determination in a cichlid from Lake Tanganyika, Astatotilapia burtoni, a member of the most species-rich cichlid lineage, the haplochromines. Results We used RAD-sequencing of crosses for two populations of A. burtoni, a lab strain and fish caught at the south of Lake Tanganyika. Using association mapping and comparative genomics, we confirmed male heterogamety in A. burtoni and identified different sex chromosomes (LG5 and LG18) in the two populations of the same species. LG5, the sex chromosome of the lab strain, is a fusion chromosome in A. burtoni. Wnt4 is located on this chromosome, representing the best candidate identified so far for the master sex-determining gene in our lab strain of A. burtoni. Conclusions Cichlids exemplify the high turnover rate of sex chromosomes in fish with two different chromosomes, LG5 and LG18, containing major sex-determining loci in the two populations of A. burtoni examined here. However, they also illustrate that particular chromosomes are more likely to be used as sex chromosomes. Chromosome 5 is such a chromosome, which has evolved several times as a sex chromosome, both in haplochromine cichlids from all Great Lakes and also in other teleost fishes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3178-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | | | | | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| |
Collapse
|
67
|
Roberts NB, Juntti SA, Coyle KP, Dumont BL, Stanley MK, Ryan AQ, Fernald RD, Roberts RB. Polygenic sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics 2016; 17:835. [PMID: 27784286 PMCID: PMC5080751 DOI: 10.1186/s12864-016-3177-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/18/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The East African riverine cichlid species Astatotilapia burtoni serves as an important laboratory model for sexually dimorphic physiology and behavior, and also serves as an outgroup species for the explosive adaptive radiations of cichlid species in Lake Malawi and Lake Victoria. An astounding diversity of genetic sex determination systems have been revealed within the adaptive radiation of East African cichlids thus far, including polygenic sex determination systems involving the epistatic interaction of multiple, independently segregating sex determination alleles. However, sex determination has remained unmapped in A. burtoni. Here we present mapping results supporting the presence of multiple, novel sex determination alleles, and thus the presence of polygenic sex determination in A. burtoni. RESULTS Using mapping in small families in conjunction with restriction-site associated DNA sequencing strategies, we identify associations with sex at loci on linkage group 13 and linkage group 5-14. Inheritance patterns support an XY sex determination system on linkage group 5-14 (a chromosome fusion relative to other cichlids studied), and an XYW system on linkage group 13, and these associations are replicated in multiple families. Additionally, combining our genetic data with comparative genomic analysis identifies another fusion that is unassociated with sex, with linkage group 8-24 and linkage group 16-21 fused in A. burtoni relative to other East African cichlid species. CONCLUSIONS We identify genetic signals supporting the presence of three previously unidentified sex determination alleles at two loci in the species A. burtoni, strongly supporting the presence of polygenic sex determination system in the species. These results provide a foundation for future mapping of multiple sex determination genes and their interactions. A better understanding of sex determination in A. burtoni provides important context for their use in behavioral studies, as well as studies of the evolution of genetic sex determination and sexual conflicts in East African cichlids.
Collapse
Affiliation(s)
- Natalie B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Scott A. Juntti
- Department of Biology, Stanford University, Stanford, CA USA
| | - Kaitlin P. Coyle
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Bethany L. Dumont
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - M. Kaitlyn Stanley
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Allyson Q. Ryan
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | | | - Reade B. Roberts
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
68
|
Clark FE, Conte MA, Ferreira-Bravo IA, Poletto AB, Martins C, Kocher TD. Dynamic Sequence Evolution of a Sex-Associated B Chromosome in Lake Malawi Cichlid Fish. J Hered 2016; 108:53-62. [PMID: 27630131 DOI: 10.1093/jhered/esw059] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
B chromosomes are extra chromosomes found in many species of plants, animals, and fungi. B chromosomes often manipulate common cellular processes to increase their frequency, sometimes to the detriment of organismal fitness. Here, we characterize B chromosomes in several species of Lake Malawi cichlid fish. Whole genome sequencing of Metriaclima zebra "Boadzulu" individuals revealed blocks of sequence with unusually high sequence coverage, indicative of increased copy number of those sequences. These regions of high sequence coverage were found only in females. SNPs unique to the high copy number sequences permitted the design of specific amplification primers. These primers amplified fragments only in Metriaclima lombardoi individuals that carried a cytologically identified B chromosome (B-carriers), indicating these extra copies are located on the B chromosome. These same primers were used to identify B-carrying individuals in additional species from Lake Malawi. Across 7 species, a total of 43 B-carriers were identified among 323 females. B-carriers were exclusively female; no B chromosomes were observed in the 317 males surveyed from these species. Quantitative analysis of the copy number variation of B-specific sequence blocks suggests that B-carriers possess a single B chromosome, consistent with previous karyotyping of M. lombardoi A single B chromosome in B-carriers is consistent with 2 potential drive mechanisms: one involving nondisjunction and preferential segregation in a mitotic division prior to the germ-line, and the other involving preferential segregation during meiosis I.
Collapse
Affiliation(s)
- Frances E Clark
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins)
| | - Matthew A Conte
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins)
| | - Irani A Ferreira-Bravo
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins)
| | - Andreia B Poletto
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins)
| | - Cesar Martins
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins)
| | - Thomas D Kocher
- From the Department of Biology, University of Maryland, College Park, Maryland 20742 (Clark, Conte, and Kocher); Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (Ferreira-Bravo); and Departamento de Morfologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Botucatu, SP, Brazil (Poletto and Martins).
| |
Collapse
|
69
|
Yoshida K, Makino T, Kitano J. Accumulation of Deleterious Mutations on the Neo-Y Chromosome of Japan Sea Stickleback (Gasterosteus nipponicus). J Hered 2016; 108:63-68. [DOI: 10.1093/jhered/esw054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 12/22/2022] Open
|
70
|
Valente GT, Nakajima RT, Fantinatti BEA, Marques DF, Almeida RO, Simões RP, Martins C. B chromosomes: from cytogenetics to systems biology. Chromosoma 2016; 126:73-81. [PMID: 27558128 DOI: 10.1007/s00412-016-0613-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.
Collapse
Affiliation(s)
- Guilherme T Valente
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael T Nakajima
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Rodrigo O Almeida
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael P Simões
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil.
| |
Collapse
|
71
|
Exploring Supernumeraries - A New Marker for Screening of B-Chromosomes Presence in the Yellow Necked Mouse Apodemus flavicollis. PLoS One 2016; 11:e0160946. [PMID: 27551940 PMCID: PMC4994964 DOI: 10.1371/journal.pone.0160946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Since the density of simple sequence repeats (SSRs) may vary between different chromosomes of the same species in eukaryotic genomes, we screened SSRs of the whole genome of the yellow necked mouse, Apodemus flavicollis, in order to reveal SSR profiles specific for animals carrying B chromosomes. We found that the 2200 bp band was amplified by primer (CAG)4AC to a highly increased level in samples with B chromosomes. This quantitative difference (B-marker) between animals with (+B) and without (0B) B chromosomes was used to screen 20 populations (387 animals). The presence/absence of Bs was confirmed in 96.5% of 342 non mosaic individuals, which recommends this method for noninvasive B-presence detection. A group of 45 animals with mosaic and micro B (μB) karyotypes was considered separately and showed 55.6% of overall congruence between karyotyping and molecular screening results. Relative quantification by qPCR of two different targeted sequences from B-marker indicated that these B-specific fragments are multiplied on B chromosomes. It also confirms our assumption that different types of Bs with variable molecular composition may exist in the same individual and between individuals of this species. Our results substantiate the origin of Bs from the standard chromosomal complement. The B-marker showed 98% sequence identity with the serine/threonine protein kinase VRK1 gene, similarly to findings reported for Bs from phylogenetically highly distant mammalian species. Evolutionarily conserved protein-coding genes found in Bs, including this one in A. flavicollis, could suggest a common evolutionary pathway.
Collapse
|
72
|
Ramos É, Cardoso AL, Brown J, Marques DF, Fantinatti BEA, Cabral-de-Mello DC, Oliveira RA, O'Neill RJ, Martins C. The repetitive DNA element BncDNA, enriched in the B chromosome of the cichlid fish Astatotilapia latifasciata, transcribes a potentially noncoding RNA. Chromosoma 2016; 126:313-323. [PMID: 27169573 DOI: 10.1007/s00412-016-0601-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/03/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.
Collapse
Affiliation(s)
- Érica Ramos
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Judith Brown
- Allied Health Sciences Department and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Diogo C Cabral-de-Mello
- Department of Biology, Institute of Biosciences, Sao Paulo State University, 13506-900, Rio Claro, SP, Brazil
| | - Rogério A Oliveira
- Department of Biostatistics, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, 06269, Storrs, CT, USA
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, Sao Paulo State University, 18618-689, Botucatu, SP, Brazil.
| |
Collapse
|
73
|
Silva FAD, Carvalho NDM, Schneider CH, Terencio ML, Feldberg E, Gross MC. Comparative Cytotaxonomy of Two Species of Fish from the Genus Satanoperca Reveals the Presence of a B Chromosome. Zebrafish 2016; 13:354-9. [PMID: 27158927 DOI: 10.1089/zeb.2016.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The taxonomy of Satanoperca spp. is still unresolved, especially because coloring, one of the main diagnostic characters, is variable among species of this genus. Thus, the aim of this study was to elucidate the relationship between the genome and the organization of the chromosome in two Satanoperca species. Our main goal was to develop a method to better differentiate taxa and understand the evolution of Satanoperca jurupari and Satanoperca lilith karyotypes, which we analyzed with classical and molecular cytogenetics. Both species have the same diploid number (2n) of 48 and location of 5S rDNA sites on pair 5. Nonetheless, the distribution of heterochromatin and 18S rDNA sites followed a species-specific pattern. The interstitial telomeric sites were not highlighted in either species. Regardless, a single B chromosome was identified in some metaphases of S. lilith. These data show that Satanoperca species harbor chromosomal features that can be used to identify the two species of Satanoperca studied here, allowing for the use of cytogenetic markers to make taxonomic inferences within the genus.
Collapse
Affiliation(s)
- Francijara Araújo da Silva
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Natália Dayane Moura Carvalho
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Carlos Henrique Schneider
- 1 Laboratório de Citogenômica Animal, Departamento de Genética, Instituto de Ciências Biológicas , Universidade Federal do Amazonas, Manaus, Brazil
| | - Maria Leandra Terencio
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| | - Eliana Feldberg
- 3 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia , Manaus, Brazil
| | - Maria Claudia Gross
- 2 Instituto de Ciências da Vida e da Natureza, Departamento de Medicina, Universidade Federal de Integração Latino Americana , Foz do Iguaçu, Brazil
| |
Collapse
|
74
|
Extra Microchromosomes Play Male Determination Role in Polyploid Gibel Carp. Genetics 2016; 203:1415-24. [PMID: 27017622 DOI: 10.1534/genetics.115.185843] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/19/2016] [Indexed: 11/18/2022] Open
Abstract
Sex is generally determined by sex chromosomes in vertebrates, and sex chromosomes exhibit the most rapidly-evolving traits. Sex chromosome evolution has been revealed previously in numerous cases, but the association between sex chromosome origin and the reproduction mode transition from unisexual to sexual reproduction remains unclear. Here, we have isolated a male-specific sequence via analysis of amplified fragment length polymorphism from polyploid gibel carp (Carassius gibelio), a species that not only has the ability to reproduce unisexually but also contains males in wild populations. Subsequently, we have found through FISH analysis that males have several extra microchromosomes with repetitive sequences and transposable elements when compared to females. Moreover, we produced sex-reversed physiological females with a male-specific marker by using estradiol hormone treatment, and two gynogenetic families were established from them. In addition, the male incidence rates of two gynogenetic families were revealed to be closely associated with the extra microchromosome number of the sex-reversed physiological females. These results suggest that the extra microchromosomes in males might resemble a common feature of sex chromosomes and might play a significant role in male determination during the evolutionary trajectory of the reproduction mode transition from unisexual to sexual reproduction in the polyploid fish.
Collapse
|
75
|
Utsunomia R, Silva DMZDA, Ruiz-Ruano FJ, Araya-Jaime C, Pansonato-Alves JC, Scacchetti PC, Hashimoto DT, Oliveira C, Trifonov VA, Porto-Foresti F, Camacho JPM, Foresti F. Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae). PLoS One 2016; 11:e0150573. [PMID: 26934481 PMCID: PMC4775049 DOI: 10.1371/journal.pone.0150573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
B chromosomes constitute a heterogeneous mixture of genomic parasites that are sometimes derived intraspecifically from the standard genome of the host species, but result from interspecific hybridization in other cases. The mode of origin determines the DNA content, with the B chromosomes showing high similarity with the A genome in the first case, but presenting higher similarity with a different species in the second. The characid fish Moenkhausia sanctaefilomenae harbours highly invasive B chromosomes, which are present in all populations analyzed to date in the Parana and Tietê rivers. To investigate the origin of these B chromosomes, we analyzed two natural populations: one carrying B chromosomes and the other lacking them, using a combination of molecular cytogenetic techniques, nucleotide sequence analysis and high-throughput sequencing (Illumina HiSeq2000). Our results showed that i) B chromosomes have not yet reached the Paranapanema River basin; ii) B chromosomes are mitotically unstable; iii) there are two types of B chromosomes, the most frequent of which is lightly C-banded (similar to euchromatin in A chromosomes) (B1), while the other is darkly C-banded (heterochromatin-like) (B2); iv) the two B types contain the same tandem repeat DNA sequences (18S ribosomal DNA, H3 histone genes, MS3 and MS7 satellite DNA), with a higher content of 18S rDNA in the heterochromatic variant; v) all of these repetitive DNAs are present together only in the paracentromeric region of autosome pair no. 6, suggesting that the B chromosomes are derived from this A chromosome; vi) the two B chromosome variants show MS3 sequences that are highly divergent from each other and from the 0B genome, although the B2-derived sequences exhibit higher similarity with the 0B genome (this suggests an independent origin of the two B variants, with the less frequent, B2 type presumably being younger); and vii) the dN/dS ratio for the H3.2 histone gene is almost 4–6 times higher for B chromosomes than for A chromosome sequences, suggesting that purifying selection is relaxed for the DNA sequences located on the B chromosomes, presumably because they are mostly inactive.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- * E-mail:
| | | | | | - Cristian Araya-Jaime
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Priscilla Cardim Scacchetti
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | | | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
76
|
Terencio ML, Schneider CH, Gross MC, do Carmo EJ, Nogaroto V, de Almeida MC, Artoni RF, Vicari MR, Feldberg E. Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish. COMPARATIVE CYTOGENETICS 2015; 9:465-481. [PMID: 26752156 PMCID: PMC4698564 DOI: 10.3897/compcytogen.v9i4.5299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Abstract
The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions - thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841) and Semaprochilodus taeniurus (Valenciennes, 1817) and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (Semaprochilodus insignis, Semaprochilodus taeniurus, and Prochilodus lineatus (Valenciennes, 1836) by cross-FISH using Cot-1 DNA (renaturation kinetics) probes. We found that the repetitive fractions of the genomes of Semaprochilodus insignis and Semaprochilodus taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of Prochilodus lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of Semaprochilodus insignis and Semaprochilodus taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the Semaprochilodus insignis and Semaprochilodus taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the Prochilodus lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish.
Collapse
Affiliation(s)
- Maria L Terencio
- Federal University of Integration American-Latin (Universidade Federal da Integração Latino-Americana), Laboratory of Genetics, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, Foz do Iguaçu, PR, Brazil 85857-190
| | - Carlos H Schneider
- Federal University of Amazonas (Universidade Federal do Amazonas), Institute of Biological Sciences, Department of Genetics, Laboratory of Animal Cytogenomics, Manaus, AM, Brazil
| | - Maria C Gross
- Federal University of Amazonas (Universidade Federal do Amazonas), Institute of Biological Sciences, Department of Genetics, Laboratory of Animal Cytogenomics, Manaus, AM, Brazil
| | - Edson Junior do Carmo
- Federal University of Amazonas, Institute of Biological Sciences, Laboratory of DNA Technologies, Manaus, AM, Brazil
| | - Viviane Nogaroto
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Mara Cristina de Almeida
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Roberto Ferreira Artoni
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Marcelo R Vicari
- State University of Ponta Grossa, Department of Structural and Molecular Biology and Genetics, Laboratory of Cytogenetics and Evolution, Ponta Grossa, PR, Brazil
| | - Eliana Feldberg
- National Institute of Amazonian Research, Laboratory of Animal Genetics, Av. André Araújo, 2936, Petrópolis, Manaus, AM, Brazil 69011-970
| |
Collapse
|
77
|
High similarity of U2 snDNA sequence between A and B chromosomes in the grasshopper Abracris flavolineata. Mol Genet Genomics 2015; 290:1787-92. [PMID: 25846962 DOI: 10.1007/s00438-015-1033-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/20/2015] [Indexed: 01/30/2023]
Abstract
B chromosomes are frequently enriched for a wide variety of repetitive DNAs. Among grasshoppers in the species Abracris flavolineata (Ommatolampidinae) the B chromosomes are submetacentric, C-negative and harbor repetitive DNAs such as, U2 snDNA, C 0 t-1 DNA, two Mariner-like elements and some microsatellites. Here, we provide evidence showing the intragenome similarity between the B chromosome and the A complement in A. flavolineata, combining analysis of microdissection and chromosome painting and B chromosome-specific amplification through polymerase chain reaction (PCR) of U2 snDNA. Chromosome painting revealed signals spread through the C-negative regions, including the A and B chromosomes. Moreover, significant clustered signals forming bands were observed in some A chromosomes, and for the B chromosome, significant signals were located on both arms, which could be caused by accumulation of repetitive DNA sequences. The C-positive regions did not reveal any signals. Sequence comparison of U2 snDNA between that obtained from a genome without the B chromosome and that from µB-DNA revealed high similarity with the occurrence of four shared haplotypes, one of them (i.e., Hap1) being highly prevalent and putatively ancestral. The highest divergence from Hap1 was observed for Hap3, which was caused by only six mutational steps. These data support an intraspecific origin of the B chromosome in A. flavolineata that is highly similar with the A complement, and the low U2 snDNA sequence diversity observed in the B chromosome could be related to its recent origin, besides intrachromosomal concerted evolution for U2 snDNA repeats in the B chromosome.
Collapse
|
78
|
Pires LB, Sampaio TR, Dias AL. Mitotic and Meiotic Behavior of B Chromosomes in Crenicichla lepidota: New Report in the Family Cichlidae. J Hered 2015; 106:289-95. [PMID: 25790829 DOI: 10.1093/jhered/esv007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/30/2015] [Indexed: 11/14/2022] Open
Abstract
B chromosomes are additional genetic elements to the standard complement. They display distinctive features and have been found in 15% of eukaryote species. In this study, we analyzed 4 populations of Crenicichla lepidota from hydrographic system of Laguna dos Patos/RS (Brazil). All specimens showed 2n = 48 with 6m + 42st - a, FN = 54, with a secondary constriction on the first pair of the complement. Among the 18 samples analyzed, 6 individuals belonging to the Gasômetro and Saco da Alemoa populations presented 1-3 small-sized heterochromatic B chromosomes, with intra- and interindividual variation. Simple AgNORs coincident with 18S rDNA and CMA3 positive/DAPI negative sites were present in all populations. The extra chromosomes did not exhibit any 18S rDNA sites. The meiotic analyses showed heteropycnotic regions in leptotene and zygotene stages, which may be related to the presence of B chromosomes. During pachytene were found 24 bivalents and 1 spatially separated, as well as during metaphases I and diplotene, indicating that there is no association between B chromosomes and those of the A complement. During diakinesis, an unusual meiotic configuration was observed, revealing a proximity between the bivalent and chromosome B (univalent), that might be the result of a heterochromatin affinity between these chromosomes. In anaphase I, late migration of B chromosomes was detected. The low frequency of B chromosomes in the Cichlidae family and in Crenicichla suggests its recent origin in this group and may be ascribable to animal exposure to deleterious effects under certain environmental conditions. Moreover, this is the first report in C. lepidota.
Collapse
Affiliation(s)
- Larissa B Pires
- From the Depto de Biologia Geral, Universidade Estadual de Londrina, CCB, CEP 86051-970, Caixa Postal 6001, Londrina, Paraná, Brazil (Pires, Sampaio, and Dias)
| | - Tatiane R Sampaio
- From the Depto de Biologia Geral, Universidade Estadual de Londrina, CCB, CEP 86051-970, Caixa Postal 6001, Londrina, Paraná, Brazil (Pires, Sampaio, and Dias)
| | - Ana Lucia Dias
- From the Depto de Biologia Geral, Universidade Estadual de Londrina, CCB, CEP 86051-970, Caixa Postal 6001, Londrina, Paraná, Brazil (Pires, Sampaio, and Dias).
| |
Collapse
|
79
|
A microsatellite-based genetic linkage map and putative sex-determining genomic regions in Lake Victoria cichlids. Gene 2015; 560:156-64. [PMID: 25639358 DOI: 10.1016/j.gene.2015.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 01/06/2023]
Abstract
Cichlid fishes in East Africa have undergone extensive adaptive radiation, which has led to spectacular diversity in their morphology and ecology. To date, genetic linkage maps have been constructed for several tilapias (riverine), Astatotilapia burtoni (Lake Tanganyika), and hybrid lines of Lake Malawi cichlids to facilitate genome-wide comparative analyses. In the present study, we constructed a genetic linkage map of the hybrid line of Lake Victoria cichlids, so that maps of cichlids from all the major areas of East Africa will be available. The genetic linkage map shown here is derived from the F2 progeny of an interspecific cross between Haplochromis chilotes and Haplochromis sauvagei and is based on 184 microsatellite and two single-nucleotide polymorphism (SNP) markers. Most of the microsatellite markers used in the present study were originally designed for other genetic linkage maps, allowing us to directly compare each linkage group (LG) among different cichlid groups. We found 25 LGs, the total length of which was 1133.2cM with an average marker spacing of about 6.09cM. Our subsequent linkage mapping analysis identified two putative sex-determining loci in cichlids. Interestingly, one of these two loci is located on cichlid LG5, on which the female heterogametic ZW locus and several quantitative trait loci (QTLs) related to adaptive evolution have been reported in Lake Malawi cichlids. We also found that V1R1 and V1R2, candidate genes for the fish pheromone receptor, are located very close to the recently detected sex-determining locus on cichlid LG5. The genetic linkage map study presented here may provide a valuable foundation for studying the chromosomal evolution of East African cichlids and the possible role of sex chromosomes in generating their genomic diversity.
Collapse
|
80
|
Banaei-Moghaddam AM, Martis MM, Macas J, Gundlach H, Himmelbach A, Altschmied L, Mayer KF, Houben A. Genes on B chromosomes: Old questions revisited with new tools. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:64-70. [DOI: 10.1016/j.bbagrm.2014.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
81
|
Makunin AI, Dementyeva PV, Graphodatsky AS, Volobouev VT, Kukekova AV, Trifonov VA. Genes on B chromosomes of vertebrates. Mol Cytogenet 2014; 7:99. [PMID: 25538793 PMCID: PMC4274688 DOI: 10.1186/s13039-014-0099-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/05/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND There is a growing body of evidence that B chromosomes, once regarded as totally heterochromatic and genetically inert, harbor multiple segmental duplications containing clusters of ribosomal RNA genes, processed pseudogenes and protein-coding genes. Application of novel molecular approaches further supports complex composition and possible phenotypic effects of B chromosomes. RESULTS Here we review recent findings of gene-carrying genomic segments on B chromosomes from different vertebrate groups. We demonstrate that the genetic content of B chromosomes is highly heterogeneous and some B chromosomes contain multiple large duplications derived from various chromosomes of the standard karyotype. Although B chromosomes seem to be mostly homologous to each other within a species, their genetic content differs between species. There are indications that some genomic regions are more likely to be located on B chromosomes. CONCLUSIONS The discovery of multiple autosomal genes on B chromosomes opens a new discussion about their possible effects ranging from sex determination to fitness and adaptation, their complex interactions with host genome and role in evolution.
Collapse
Affiliation(s)
- Alexey I Makunin
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Polina V Dementyeva
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
| | - Alexander S Graphodatsky
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Novosibirsk State University, Novosibirsk, Russia
| | - Vitaly T Volobouev
- />Museum National d’Histoire Naturelle, Origine, Structure et Evolution de la Biodiversite, Paris, France
| | - Anna V Kukekova
- />Department of Animal Sciences, The University of Illinois at Urbana-Champaign, Champaign, USA
| | - Vladimir A Trifonov
- />Institute of Molecular and Cellular Biology SВ RAS, Novosibirsk, 630090 Russia
- />Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
82
|
Sex chromosome composition revealed in Characidium fishes (Characiformes: Crenuchidae) by molecular cytogenetic methods. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Pansonato-Alves JC, Serrano ÉA, Utsunomia R, Camacho JPM, da Costa Silva GJ, Vicari MR, Artoni RF, Oliveira C, Foresti F. Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium. PLoS One 2014; 9:e107169. [PMID: 25226580 PMCID: PMC4165761 DOI: 10.1371/journal.pone.0107169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/08/2014] [Indexed: 12/17/2022] Open
Abstract
Chromosome painting with DNA probes obtained from supernumerary (B) and sex chromosomes in three species of fish genus Characidium (C. gomesi, C. pterostictum and C. oiticicai) showed a close resemblance in repetitive DNA content between B and sex chromosomes in C. gomesi and C. pterostictum. This suggests an intraspecific origin for B chromosomes in these two species, probably deriving from sex chromosomes. In C. oiticicai, however, a DNA probe obtained from its B chromosome hybridized with the B but not with the A chromosomes, suggesting that the B chromosome in this species could have arisen interspecifically, although this hypothesis needs further investigation. A molecular phylogenetic analysis performed on nine Characidium species, with two mtDNA genes, showed that the presence of heteromorphic sex chromosomes in these species is a derived condition, and that their origin could have been unique, a conclusion also supported by interspecific chromosome painting with a CgW probe derived from the W chromosome in C. gomesi. Summing up, our results indicate that whereas heteromorphic sex chromosomes in the genus Characidium appear to have had a common and unique origin, B chromosomes may have had independent origins in different species. Our results also show that molecular phylogenetic analysis is an excellent complement for cytogenetic studies by unveiling the direction of evolutionary chromosome changes.
Collapse
Affiliation(s)
- José Carlos Pansonato-Alves
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Érica Alves Serrano
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | | | - Guilherme José da Costa Silva
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil
| | - Roberto Ferreira Artoni
- Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, Paraná, Brazil
| | - Cláudio Oliveira
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista (UNESP), Instituto de Biociências/IB, Departamento de Morfologia, Botucatu, São Paulo, Brazil
| |
Collapse
|
84
|
Lin HZ, Lin WD, Lin CY, Peng SF, Cheng YM. Characterization of maize B-chromosome-related transcripts isolated via cDNA-AFLP. Chromosoma 2014; 123:597-607. [PMID: 25082399 DOI: 10.1007/s00412-014-0476-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/26/2022]
Abstract
The maize B-chromosome consists mainly of heterochromatin and is considered to be genetically inert. However, the B-chromosome contains euchromatin that carries control elements that direct its behaviors during cell division, such as nondisjunction during the second pollen mitosis. To determine the transcriptional activity of the B-chromosome, complementary DNA-amplified fragment length polymorphism analysis was applied to five inbred maize lines with and without B-chromosomes. Six putative B-chromosome-related transcripts were identified, four of which were cloned and characterized via Southern hybridization, fluorescence in situ hybridization, and sequence comparison to further confirm their B-chromosome origin. All the analyzed B-chromosome-related transcript sequences were repetitive and showed homology to A-chromosomes. Quantitative real-time reverse transcriptase-polymerase chain reaction revealed that the B-chromosome-specific transcribed sequences B3547-179 and B3849-212 were transcribed in a B-chromosome-dosage-dependent manner. Expression of B3849-189 and B3849-147 was not specific to the B-chromosome; however, the former showed a transcriptional pattern with B-chromosome dosage compensation, and the latter displayed down-regulation of transcription due to higher B-chromosome numbers. Using four B-10L translocations, B3849-212 was mapped to the B-chromosome region that contains the nondisjunction control elements of the B-chromosome. Taken together, our results suggested that the maize B-chromosome harbors few transcriptionally active sequences and might influence the transcription of A-chromosomes.
Collapse
Affiliation(s)
- Huan-Zhi Lin
- Department of Agronomy, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|
85
|
Francisco FO, Lemos B. How do y-chromosomes modulate genome-wide epigenetic States: genome folding, chromatin sinks, and gene expression. J Genomics 2014; 2:94-103. [PMID: 25057325 PMCID: PMC4105431 DOI: 10.7150/jgen.8043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Y chromosomes of Drosophila melanogaster and D. simulans contain only a handful of protein-coding genes, which are related to sperm mobility and reproductive fitness. Despite low or absent protein coding polymorphism, the Drosophila Y chromosome has been associated with natural phenotypic variation, including variation in the expression of hundreds to thousands of genes located on autosomes and on the X chromosome. Polymorphisms present in the large blocks of heterochromatin and consisting of differences in the amounts and kinds of sequences for satellite DNA and transposable elements may be the source of this modulation. Here we review the evidence and discuss mechanisms for global epigenetic regulation by repetitious elements in the Y chromosome. We also discuss how the discovery of this new function impacts the current knowledge about Y chromosome origin, its current dynamics, and future fate.
Collapse
Affiliation(s)
- Flávio O Francisco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
86
|
Valente GT, Conte MA, Fantinatti BE, Cabral-de-Mello DC, Carvalho RF, Vicari MR, Kocher TD, Martins C. Origin and Evolution of B Chromosomes in the Cichlid Fish Astatotilapia latifasciata Based on Integrated Genomic Analyses. Mol Biol Evol 2014; 31:2061-72. [DOI: 10.1093/molbev/msu148] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
87
|
Silva DMZDA, Pansonato-Alves JC, Utsunomia R, Araya-Jaime C, Ruiz-Ruano FJ, Daniel SN, Hashimoto DT, Oliveira C, Camacho JPM, Porto-Foresti F, Foresti F. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes). PLoS One 2014; 9:e94896. [PMID: 24736529 PMCID: PMC3988084 DOI: 10.1371/journal.pone.0094896] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.
Collapse
Affiliation(s)
- Duílio M. Z. de A. Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | - Cristian Araya-Jaime
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | | | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, Bauru, São Paulo, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista, Campus Jaboticabal, Jaboticabal, São Paulo, Brazil
| | - Cláudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru, Bauru, São Paulo, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, Botucatu, São Paulo, Brazil
| |
Collapse
|
88
|
Bauerly E, Hughes SE, Vietti DR, Miller DE, McDowell W, Hawley RS. Discovery of supernumerary B chromosomes in Drosophila melanogaster. Genetics 2014; 196:1007-16. [PMID: 24478336 PMCID: PMC4286233 DOI: 10.1534/genetics.113.160556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/25/2014] [Indexed: 01/29/2023] Open
Abstract
B chromosomes are small, heterochromatic chromosomes that are transmitted in a non-Mendelian manner. We have identified a stock of Drosophila melanogaster that recently (within the last decade) acquired an average of 10 B chromosomes per fly. These B chromosomes are transmitted by both males and females and can be maintained for multiple generations in a wild-type genetic background despite the fact that they cause high levels of 4(th) chromosome meiotic nondisjunction in females. Most curiously, these B chromosomes are mitotically unstable, suggesting either the absence of critical chromosomal sites or the inability of the meiotic or mitotic systems to cope with many additional chromosomes. These B chromosomes also contain centromeres and are primarily composed of the heterochromatic AATAT satellite sequence. Although the AATAT sequence comprises the majority of the 4(th) chromosome heterochromatin, the B chromosomes lack most, if not all, 4(th) chromosome euchromatin. Presumably as a consequence of their heterochromatic content, these B chromosomes significantly modify position-effect variegation in two separate reporter systems, acting as enhancers of variegation in one case and suppressors in the other. The identification of B chromosomes in a genetically tractable organism like D. melanogaster will facilitate studies of chromosome evolution and the analysis of the mechanisms by which meiotic and mitotic processes cope with additional chromosomes.
Collapse
Affiliation(s)
| | - Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Dana R. Vietti
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri 65201
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
89
|
Araujo D, de Oliveira EG, Giroti AM, Mattos VF, Paula-Neto E, Brescovit AD, Schneider MC, Cella DM. Comparative cytogenetics of seven Ctenidae species (Araneae). Zoolog Sci 2014; 31:83-8. [PMID: 24521317 DOI: 10.2108/zsj.31.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study elevates the number of cytogenetically analyzed ctenid species and genera from two to eight and six, respectively, presenting comparisons between chromosomal data obtained and the phylogenetic hypothesis proposed in the literature. Six ctenid species presented 13 autosomal pairs, exhibiting either X1X2O (Ctenus ornatus, Ctenus sp., Parabatinga brevipes and Phoneutria nigriventer) or X1X2X3O sex chromosome systems (Nothroctenus sp. and Viracucha andicola). Asthenoctenus borellii showed 2n ♂ = 20 + X1X2O. In all species, the chromosomes were telocentric. Some cells of one C. ornatus specimen exhibited one extra chromosome that, considering the behavioral similarities between the two chromosomes, can be considered to be supernumerary, derived from or giving rise to a sex chromosome. Silver impregnation revealed nucleolar organizer regions on one autosomal pair of C. ornatus and P. nigriventer (Cteninae) and two pairs of V. andicola (Acanthocteninae). Chromosomal data suggests that the X1X2X3O system arose several times in the evolution of entelegyne spiders, and that conversion of an X1X2O system into an X1X2X3O system and vice-versa has been a relatively common event in spiders. All the chromosomal data corroborate the close relationship between Ctenus and Phoneutria, the placement of P. brevipes within Cteninae, the placement of Anahita in a separated branch within Cteninae, and the inclusion of A. borellii in a distinct group within the ctenids (Viridasiinae), all of which are as proposed by phylogenetic hypotheses available in the literature.
Collapse
Affiliation(s)
- Douglas Araujo
- 1 Universidade Federal de Mato Grosso do Sul, U FM S, Setor de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Cidade Universitária, Bairro Universitário, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Houben A, Banaei-Moghaddam AM, Klemme S, Timmis JN. Evolution and biology of supernumerary B chromosomes. Cell Mol Life Sci 2014; 71:467-78. [PMID: 23912901 PMCID: PMC11113615 DOI: 10.1007/s00018-013-1437-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
B chromosomes (Bs) are dispensable components of the genome exhibiting non-Mendelian inheritance and have been widely reported on over several thousand eukaryotes, but still remain an evolutionary mystery ever since their first discovery over a century ago [1]. Recent advances in genome analysis have significantly improved our knowledge on the origin and composition of Bs in the last few years. In contrast to the prevalent view that Bs do not harbor genes, recent analysis revealed that Bs of sequenced species are rich in gene-derived sequences. We summarize the latest findings on supernumerary chromosomes with a special focus on the origin, DNA composition, and the non-Mendelian accumulation mechanism of Bs.
Collapse
Affiliation(s)
- Andreas Houben
- Chromosome Structure and Function Laboratory, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany,
| | | | | | | |
Collapse
|
91
|
Almeida JS, Affonso PRADM, Diniz D, Carneiro PLS, Dias AL. Chromosomal Variation in the Tropical Armored Catfish Callichthys Callichthys (Siluriformes, Callichthyidae): Implications for Conservation and Taxonomy in a Species Complex from a Brazilian Hotspot. Zebrafish 2013; 10:451-8. [DOI: 10.1089/zeb.2013.0885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Débora Diniz
- Department of Biological Sciences, State University of Southwestern Bahia, Jequié, Brazil
| | | | - Ana Lúcia Dias
- Department of General Biology, State University of Londrina, Londrina, Brazil
| |
Collapse
|
92
|
Kuroiwa A, Terai Y, Kobayashi N, Yoshida K, Suzuki M, Nakanishi A, Matsuda Y, Watanabe M, Okada N. Construction of chromosome markers from the Lake Victoria cichlid Paralabidochromis chilotes and their application to comparative mapping. Cytogenet Genome Res 2013; 142:112-20. [PMID: 24217467 DOI: 10.1159/000356128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Cichlid fishes in the African Great Lakes are known as a spectacular example of adaptive radiation in vertebrates. Four linkage maps have been constructed to identify the genes responsible for adaptation and speciation, and the genetic linkages of those genes are assumed to play an important role during adaptive evolution. However, it is difficult to analyze such linkages because the linkage groups of one species do not match well with those of the other species. Chromosome markers are a powerful tool for the direct identification of linkage homology between different species. We used information about the linkage map of the Lake Malawi cichlid (Labeotropheus fuelleborni/Metriaclima zebra) to isolate bacterial artificial chromosome (BAC) clones from the BAC library of Paralabidochromis chilotes, Lake Victoria. We identified 18 of 22 P. chilotes chromosomes by single- and multi-color BAC fluorescence in situ hybridization using 19 BAC clones. Comparative mapping with the chromosome markers of P. chilotes in Astatotilapia burtoni (2n = 40) from Lake Tanganyika revealed the chromosome rearrangements that have occurred in this lineage. These chromosome markers will be useful for delineating the process of genome and chromosome evolution in African species.
Collapse
Affiliation(s)
- A Kuroiwa
- Laboratory of Animal Cytogenetics, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Trifonov VA, Dementyeva PV, Larkin DM, O'Brien PCM, Perelman PL, Yang F, Ferguson-Smith MA, Graphodatsky AS. Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus). BMC Biol 2013; 11:90. [PMID: 23915065 PMCID: PMC3751663 DOI: 10.1186/1741-7007-11-90] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 11/25/2022] Open
Abstract
Background Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. Results Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. Conclusions Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution.
Collapse
|
94
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
95
|
Banaei-Moghaddam AM, Meier K, Karimi-Ashtiyani R, Houben A. Formation and expression of pseudogenes on the B chromosome of rye. THE PLANT CELL 2013; 25:2536-44. [PMID: 23839789 PMCID: PMC3753381 DOI: 10.1105/tpc.113.111856] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 05/03/2023]
Abstract
B chromosomes (Bs) are dispensable components of the genomes of numerous species. In contrast with the prevalent view that Bs do not harbor genes, our recent sequence analysis revealed that Bs of rye (Secale cereale) are rich in gene-derived sequences. We compared these gene-like fragments of the rye B with their ancestral A-located counterparts and confirmed an A chromosomal origin and the pseudogenization of B-located gene-like fragments. About 15% of the pseudogene-like fragments on Bs are transcribed in a tissue-type and genotype-specific manner. In addition, B-located sequences can cause in trans down- or upregulation of A chromosome-encoded genic fragments. Phenotypes and effects associated with the presence of Bs might be explained by the activity of B-located pseudogenes. We propose a model for the evolution of B-located pseudogenes.
Collapse
Affiliation(s)
| | - Karla Meier
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| |
Collapse
|
96
|
Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol 2013; 3:148. [PMID: 23760367 PMCID: PMC3675379 DOI: 10.3389/fonc.2013.00148] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are typically characterized by complex karyotypes including both structural and numerical changes, with aneuploidy being a ubiquitous feature. It is becoming increasingly evident that aneuploidy per se can cause chromosome mis-segregation, which explains the higher rates of chromosome gain/loss observed in aneuploid cancer cells compared to normal diploid cells, a phenotype termed chromosomal instability (CIN). CIN can be caused by various mechanisms and results in extensive karyotypic heterogeneity within a cancer cell population. However, despite such karyotypic heterogeneity, cancer cells also display predominant karyotypic patterns. In this review we discuss the mechanisms of CIN, with particular emphasis on the role of aneuploidy on CIN. Further, we discuss the potential functional role of karyotypic patterns in cancer.
Collapse
|
97
|
Repetitive sequences associated with differentiation of W chromosome in Semaprochilodus taeniurus. Genetica 2013; 140:505-12. [DOI: 10.1007/s10709-013-9699-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
98
|
Genetic interactions controlling sex and color establish the potential for sexual conflict in Lake Malawi cichlid fishes. Heredity (Edinb) 2012; 110:239-46. [PMID: 23092997 DOI: 10.1038/hdy.2012.73] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sex-determining systems may evolve rapidly and contribute to lineage diversification. In fact, recent work has suggested an integral role of sex chromosome evolution in models of speciation. We use quantitative trait loci analysis of restriction site-associated DNA -tag single nucleotide polymorphisms to identify multiple loci responsible for sex determination and reproductively adaptive color phenotypes in Lake Malawi cichlids. We detect a complex epistatic sex system consisting of a major female heterogametic ZW locus on chromosome 5, two separate male heterogametic XY loci on chromosome 7, and two additional interacting loci on chromosomes 3 and 20. Our data support the known chromosomal linkage between orange blotch color and ZW, as well as novel genetic associations between male blue nuptial color and two sex determining regions (an XY and ZW locus). These results provide further empirical evidence for a complex antagonistic sex-color system in this species flock and suggest a possible role for, and effect of, polygenic sex-determining systems in rapid evolutionary diversification.
Collapse
|
99
|
Fantinatti BEA, Mazzuchelli J, Valente GT, Cabral-de-Mello DC, Martins C. Genomic content and new insights on the origin of the B chromosome of the cichlid fish Astatotilapia latifasciata. Genetica 2012; 139:1273-82. [PMID: 22286964 DOI: 10.1007/s10709-012-9629-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
B chromosomes are additional chromosomes widely studied in a diversity of eukaryotic groups, including fungi, plants and animals, but their origin, evolution and possible functions are not clearly understood. To further understand the genomic content and the evolutionary history of B chromosomes, classical and molecular cytogenetic analyses were conducted in the cichlid fish Astatotilapia latifasciata, which harbor 1–2 B chromosomes. Through cytogenetic mapping of several probes, including transposable elements, rRNA genes, a repeated DNA genomic fraction (C0t - 1 DNA), whole genome probes (comparative genomic hybridization), and BAC clones from Oreochromis niloticus, we found similarities between the B chromosome and the 1st chromosome pair and chromosomes harboring rRNA genes. Based on the cytogenetic mapping data, we suggest the B chromosome may have evolved from a small chromosomal fragment followed by the invasion of the proto-B chromosome by several repeated DNA families.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Departamento de Morfologia, Instituto de Biociencias, UNESP—Universidade Estadual Paulista, Botucatu, SP CEP 18618-970, Brazil
| | | | | | | | | |
Collapse
|
100
|
Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP, Bonillo C, D'Cotta H, Pepey E, Soler L, Rodier-Goud M, D'Hont A, Conte MA, van Bers NEM, Penman DJ, Hitte C, Crooijmans RPMA, Kocher TD, Ozouf-Costaz C, Baroiller JF, Galibert F. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics 2012; 13:222. [PMID: 22672252 PMCID: PMC3441813 DOI: 10.1186/1471-2164-13-222] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.
Collapse
Affiliation(s)
- Richard Guyon
- Institut Génétique et Développement (UMR 6061) CNRS/Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|