51
|
Inhibitors of the Human Immunodeficiency Virus Protease. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
52
|
Abstract
UNLABELLED Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. IMPORTANCE Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations.
Collapse
|
53
|
Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med Chem 2014; 5:1215-29. [PMID: 23859204 DOI: 10.4155/fmc.13.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing.
Collapse
|
54
|
Torrecilla E, Llácer Delicado T, Holguín Á. New findings in cleavage sites variability across groups, subtypes and recombinants of human immunodeficiency virus type 1. PLoS One 2014; 9:e88099. [PMID: 24516589 PMCID: PMC3917854 DOI: 10.1371/journal.pone.0088099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Background Polymorphisms at cleavage sites (CS) can influence Gag and Pol proteins processing by the viral protease (PR), restore viral fitness and influence the virological outcome of specific antiretroviral drugs. However, data of HIV-1 variant-associated CS variability is scarce. Methods In this descriptive research, we examine the effect of HIV-1 variants on CS conservation using all 9,028 gag and 3,906 pol HIV-1 sequences deposited in GenBank, focusing on the 110 residues (10 per site) involved at 11 CS: P17/P24, P24/P2, P2/P7, P7/P1, P1/P6gag, NC/TFP, TFP/P6pol, P6pol/PR, PR/RTp51, RTp51/RTp66 and RTp66/IN. CS consensus amino acid sequences across HIV-1 groups (M, O, N, P), group M 9 subtypes and 51 circulating recombinant forms (CRF) were inferred from our alignments and compared to the HIV-1 consensus-of-consensuses sequence provided by GenBank. Results In all HIV-1 variants, the most conserved CS were PR/RTp51, RTp51/RTp66, P24/P2 and RTp66/IN and the least P2/P7 and P6pol/PR. Conservation was significantly lower in subtypes vs. recombinants in P2/P7 and TFP/P6pol and higher in P17/P24. We found a significantly higher conservation rate among Group M vs. non-M Groups HIV-1. The late processing sites at Gag (P7/P1) and GagPol precursors (PR/RTp51) presented a significantly higher conservation vs. the first CS (P2/P7) in the 4 HIV-1 groups. Here we show 52 highly conserved residues across HIV-1 variants in 11 CS and the amino acid consensus sequence in each HIV-1 group and HIV-1 group M variant for each 11 CS. Conclusions This is the first study to describe the CS conservation level across all HIV-1 variants and 11 sites in one of the largest available sequence HIV-1 dataset. These results could help other researchers for the future design of both novel antiretroviral agents acting as maturation inhibitors as well as for vaccine targeting CS.
Collapse
Affiliation(s)
- Esther Torrecilla
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - Teresa Llácer Delicado
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal- IRYCIS and CIBERESP, Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
Sutherland KA, Mbisa JL, Cane PA, Pillay D, Parry CM. Contribution of Gag and protease to variation in susceptibility to protease inhibitors between different strains of subtype B human immunodeficiency virus type 1. J Gen Virol 2013; 95:190-200. [PMID: 24172906 DOI: 10.1099/vir.0.055624-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Recent reports have shown that human immunodeficiency virus type 1 (HIV-1) Gag can directly affect susceptibility to protease inhibitors (PIs) in the absence of known resistance mutations in protease. Inclusion of co-evolved Gag alongside protease in phenotypic drug susceptibility assays can alter PI susceptibility in comparison with protease with a WT Gag. Using a single-replication-cycle assay encompassing full-length Gag together with protease we demonstrated significant variation in PI susceptibility between a number of PI-naïve subtype B viruses. Six publicly available subtype B molecular clones, namely HXB2, NL4-3, SF2, YU2, JRFL and 89.6, displayed up to nine-fold reduced PI susceptibility in comparison with the assay reference strain. For two molecular clones, YU2 and JRFL, Gag contributed solely to the observed reduction in susceptibility, with the N-terminal region of Gag contributing significantly. Gag and protease from treatment-naïve, patient-derived viruses also demonstrated significant variation in susceptibility, with up to a 17-fold reduction to atazanavir in comparison with the assay reference strain. In contrast to the molecular clones, protease was the main determinant of the reduced susceptibility. Common polymorphisms in protease, including I13V, L63P and A71T, were shown to contribute to this reduction in PI susceptibility, in the absence of major resistance mutations. This study demonstrated significant variation in PI susceptibility of treatment-naïve patient viruses, and provided further evidence of the independent role of Gag, the protease substrate and in particular the N-terminus of Gag in PI susceptibility. It also highlighted the importance of considering co-evolved Gag and protease when assessing PI susceptibility.
Collapse
Affiliation(s)
| | | | | | - Deenan Pillay
- MRC/UCL Centre for Medical Molecular Virology, UCL, London, UK
| | - Chris M Parry
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda.,MRC/UCL Centre for Medical Molecular Virology, UCL, London, UK.,Public Health England, London, UK
| |
Collapse
|
56
|
Moses T, Pollier J, Thevelein JM, Goossens A. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. THE NEW PHYTOLOGIST 2013; 200:27-43. [PMID: 23668256 DOI: 10.1111/nph.12325] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/12/2013] [Indexed: 05/19/2023]
Abstract
Terpenoids constitute a large and diverse class of natural products that serve many functions in nature. Most of the tens of thousands of the discovered terpenoids are synthesized by plants, where they function as primary metabolites involved in growth and development, or as secondary metabolites that optimize the interaction between the plant and its environment. Several plant terpenoids are economically important molecules that serve many applications as pharmaceuticals, pesticides, etc. Major challenges for the commercialization of plant-derived terpenoids include their low production levels in planta and the continuous demand of industry for novel molecules with new or superior biological activities. Here, we highlight several synthetic biology methods to enhance and diversify the production of plant terpenoids, with a foresight towards triterpenoid engineering, the least engineered class of bioactive terpenoids. Increased or cheaper production of valuable triterpenoids may be obtained by 'classic' metabolic engineering of plants or by heterologous production of the compounds in other plants or microbes. Novel triterpenoid structures can be generated through combinatorial biosynthesis or directed enzyme evolution approaches. In its ultimate form, synthetic biology may lead to the production of large amounts of plant triterpenoids in in vitro systems or custom-designed artificial biological systems.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Johan M Thevelein
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001, Leuven, Heverlee, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
57
|
Hosseinipour MC, Gupta RK, Van Zyl G, Eron JJ, Nachega JB. Emergence of HIV drug resistance during first- and second-line antiretroviral therapy in resource-limited settings. J Infect Dis 2013; 207 Suppl 2:S49-56. [PMID: 23687289 DOI: 10.1093/infdis/jit107] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Antiretroviral therapy (ART) in resource-limited settings has expanded in the last decade, reaching >8 million individuals and reducing AIDS mortality and morbidity. Continued success of ART programs will require understanding the emergence of HIV drug resistance patterns among individuals in whom treatment has failed and managing ART from both an individual and public health perspective. We review data on the emergence of HIV drug resistance among individuals in whom first-line therapy has failed and clinical and resistance outcomes of those receiving second-line therapy in resource-limited settings. RESULTS Resistance surveys among patients initiating first-line nonnucleoside reverse-transcriptase inhibitor (NNRTI)-based therapy suggest that 76%-90% of living patients achieve HIV RNA suppression by 12 months after ART initiation. Among patients with detectable HIV RNA at 12 months, HIV drug resistance, primarily due to M184V and NNRTI mutations, has been identified in 60%-72%, although the antiretroviral activity of proposed second-line regimens has been preserved. Complex mutation patterns, including thymidine-analog mutations, K65R, and multinucleoside mutations, are prevalent among cases of treatment failure identified by clinical or immunologic methods. Approximately 22% of patients receiving second-line therapy do not achieve HIV RNA suppression by 6 months, with poor adherence, rather than HIV drug resistance, driving most failures. Major protease inhibitor resistance at the time of second-line failure ranges from 0% to 50%, but studies are limited. CONCLUSIONS Resistance of HIV to first-line therapy is predictable at 12 months when evaluated by means of HIV RNA monitoring and, when detected, largely preserves second-line therapy options. Optimizing adherence, performing resistance surveillance, and improving treatment monitoring are critical for long-term prevention of drug resistance.
Collapse
|
58
|
Liégeois F, Reteno DGI, Mouinga-Ondémé A, Sica J, Rouet F. Short communication: high natural polymorphism in the gag gene cleavage sites of non-B HIV type 1 isolates from Gabon. AIDS Res Hum Retroviruses 2013; 29:1179-82. [PMID: 23551028 DOI: 10.1089/aid.2013.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main goal of the present study was to determine the frequency of substitutions in the cleavage sites (CS) of gag gene among non-B HIV-1 isolates from Gabon. Fifty plasma specimens, collected in 2010-2011, from HIV-1-infected patients failing first-line antiretroviral (ARV) regimens (constituted of two nucleoside reverse transcriptase inhibitors+one nonnucleoside reverse transcriptase inhibitor) (n=38) and from HIV-1-infected individuals untreated with ARV (n=12) were analyzed in the gag and gag-pol cleavage sites. Compared to HXB2 reference sequence, the total median number of substitutions in gag and gag-pol CS was 10 (range, 5-18). The cleavage site p2/NC was the most variable of the four gag CS with 100% (50/50) isolates carrying at least 1 substitution (range, 1-9). The two gag-pol TFP/p6pol and p6pol/PR CS sites were also highly variable (at least one substitution, 50/50, 100% in both cases). Substitutions at position G381 (p2/NC), L449 (p1/p6gag), and K444 (TFP/p6pol) were significantly more frequent in CRF02_AG strains, compared to other non-B strains (30.4% vs. 3.7%, p=0.03; 87.0% vs. 59.3%, p=0.03; and 91.3% vs. 59.3%, p=0.01, respectively). Other non-B subtypes were significantly more likely to harbor substitutions at position N487 (p6pol) (70.4%) than CRF02_AG (39.1%) (p=0.02). In Gabon, gag and gag-pol cleavage sites were highly polymorphic in protease inhibitor-naive patients harboring non-B HIV-1 strains. In sub-Saharan Africa, further studies are definitively required to better understand the impact of gag mutations among subjects receiving second-line LPV/r-containing regimens (monotherapy or triple combinations).
Collapse
Affiliation(s)
- Florian Liégeois
- Laboratoire de Rétrovirologie, CIRMF, BP769, Franceville, Gabon
- UMI 233 “Trans VIH MI” (Transitions Epidémiologiques, Recherches Translationnelles Appliquées au VIH et aux Maladies Infectieuses), Institut de Recherche pour le Développement (IRD) et Université de Montpellier 1 (UM1), Montpellier, France
| | | | | | - Jeanne Sica
- Centre de Traitement Ambulatoire (CTA), Franceville, Gabon
| | - François Rouet
- Laboratoire de Rétrovirologie, CIRMF, BP769, Franceville, Gabon
| |
Collapse
|
59
|
Selection of Drug-Resistant Feline Immunodeficiency Virus (FIV) Encoding FIV/HIV Chimeric Protease in the Presence of HIV-Specific Protease Inhibitors. J Virol 2013; 87:8524-34. [DOI: 10.1128/jvi.01240-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
An infectious chimeric feline immunodeficiency virus (FIV)/HIV strain carrying six HIV-like protease (PR) mutations (I37V/N55M/V59I/I98S/Q99V/P100N) was subjected to selection in culture against the PR inhibitor lopinavir (LPV), darunavir (DRV), or TL-3. LPV selection resulted in the sequential emergence of V99A (strain S-1X), I59V (strain S-2X), and I108V (strain S-3X) mutations, followed by V37I (strain S-4X). Mutant PRs were analyzed
in vitro
, and an isogenic virus producing each mutant PR was analyzed in culture for LPV sensitivity, yielding results consistent with the original selection. The 50% inhibitory concentrations (IC
50
s) for S-1X, S-2X, S-3X, and S-4X were 95, 643, 627, and 1,543 nM, respectively. The primary resistance mutations, V99
82
A, I59
50
V, and V37
32
I, are consistent with the resistance pattern developed by HIV-1 under similar selection conditions. While resistance to LPV emerged readily, similar PR mutations causing resistance to either DRV or TL-3 failed to emerge after passage for more than a year. However, a G37D mutation in the nucleocapsid (NC) was observed in both selections and an isogenic G37D mutant replicated in the presence of 100 nM DRV or TL-3, whereas parental chimeric FIV could not. An additional mutation, L92V, near the PR active site in the folded structure recently emerged during TL-3 selection. The L92V mutant PR exhibited an IC
50
of 50 nM, compared to 35 nM for 6s-98S PR, and processed the NC-p2 junction more efficiently, consistent with increased viral fitness. These findings emphasize the role of mutations outside the active site of PR in increasing viral resistance to active-site inhibitors and suggest additional targets for inhibitor development.
Collapse
|
60
|
Könnyű B, Sadiq SK, Turányi T, Hírmondó R, Müller B, Kräusslich HG, Coveney PV, Müller V. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput Biol 2013; 9:e1003103. [PMID: 23754941 PMCID: PMC3675044 DOI: 10.1371/journal.pcbi.1003103] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/01/2013] [Indexed: 12/19/2022] Open
Abstract
Proteolytic processing of Gag and Gag-Pol polyproteins by the viral protease (PR) is crucial for the production of infectious HIV-1, and inhibitors of the viral PR are an integral part of current antiretroviral therapy. The process has several layers of complexity (multiple cleavage sites and substrates; multiple enzyme forms; PR auto-processing), which calls for a systems level approach to identify key vulnerabilities and optimal treatment strategies. Here we present the first full reaction kinetics model of proteolytic processing by HIV-1 PR, taking into account all canonical cleavage sites within Gag and Gag-Pol, intermediate products and enzyme forms, enzyme dimerization, the initial auto-cleavage of full-length Gag-Pol as well as self-cleavage of PR. The model allows us to identify the rate limiting step of virion maturation and the parameters with the strongest effect on maturation kinetics. Using the modelling framework, we predict interactions and compensatory potential between individual cleavage rates and drugs, characterize the time course of the process, explain the steep dose response curves associated with PR inhibitors and gain new insights into drug action. While the results of the model are subject to limitations arising from the simplifying assumptions used and from the uncertainties in the parameter estimates, the developed framework provides an extendable open-access platform to incorporate new data and hypotheses in the future.
Collapse
Affiliation(s)
- Balázs Könnyű
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - S. Kashif Sadiq
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tamás Turányi
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Rita Hírmondó
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Peter V. Coveney
- Centre for Computational Science, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Research Group of Theoretical Biology and Evolutionary Ecology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
61
|
Charpentier C, Lambert-Niclot S, Alteri C, Storto A, Flandre P, Svicher V, Perno CF, Brun-Vézinet F, Calvez V, Marcelin AG, Ceccherini-Silberstein F, Descamps D. Description of the L76V resistance protease mutation in HIV-1 B and "non-B" subtypes. PLoS One 2013; 8:e54381. [PMID: 23349869 PMCID: PMC3548776 DOI: 10.1371/journal.pone.0054381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/11/2012] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To describe the prevalence of the L76V protease inhibitors resistance-associated mutation (PI-RAM) in relation with patients' characteristics and protease genotypic background in HIV-1 B- and "non-B"-infected patients. METHODS Frequency of the L76V mutation between 1998 and 2010 was surveyed in the laboratory database of 3 clinical centers. Major PI-RAMs were identified according to the IAS-USA list. Fisher's and Wilcoxon tests were used to compare variables. RESULTS Among the overall 29,643 sequences analyzed, the prevalence of L76V was 1.50%, while was 5.42% in PI-resistant viruses. Since 2008 the prevalence of L76V was higher in "non-B"-infected than in B-infected patients each year. Median time since diagnosis of HIV-1 infection and median time under antiretroviral-based regimen were both shorter in "non-B"- than in B-infected patients (8 vs 11 years, P<0.0001; and 7 vs 8 years, P = 0.004). In addition, "non-B"-infected patients had been pre-exposed to a lower number of PI (2 vs 3, P = 0.016). The L76V was also associated with a lower number of major PI-RAMs in "non-B" vs B samples (3 vs 4, P = 0.0001), and thus it was more frequent found as single major PI-RAM in "non-B" vs B subtype (10% vs 2%, P = 0.014). CONCLUSIONS We showed an impact of viral subtype on the selection of the L76V major PI-RAM with a higher prevalence in "non-B" subtypes observed since 2008. In addition, in "non-B"-infected patients this mutation appeared more rapidly and was associated with less PI-RAM.
Collapse
Affiliation(s)
- Charlotte Charpentier
- Laboratoire de Virologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Bichat-Claude Bernard, HUPNVS, Université Paris Diderot, Paris 7, PRES Sorbonne Paris Cité, EA4409, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Impact of gag genetic determinants on virological outcome to boosted lopinavir-containing regimen in HIV-2-infected patients. AIDS 2013; 27:69-80. [PMID: 23018441 DOI: 10.1097/qad.0b013e32835a10d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study investigated the impact on virological outcome of the gag cleavage sites and the protease-coding region mutations in protease inhibitor-naive and protease inhibitor-experienced patients infected with HIV-2 receiving lopinavir (LPV) containing regimen. METHODS Baseline gag and protease-coding region were sequenced in 46 HIV-2 group A-infected patients receiving lopinavir. Virological response was defined as plasma viral load less than 100 copies/ml at month 3. Associations between virological response and frequencies of mutations in gag [matrix/capsid (CA), CA/p2, p2/nucleocapsid (NC), NC/p1, p1/p6] and gag-pol (NC/p6) cleavage site and protease-coding region, with respect to the HIV-2ROD strain, were tested using Fisher's exact test. RESULTS Virological response occurred in 14 of 17 (82%) protease inhibitor-naive and 17 of 29 (59%) protease inhibitor-experienced patients. Virological failure was associated with higher baseline viral load (median: 6765 versus 1098 copies/ml, P = 0.02). More protease-coding region mutations were observed in protease inhibitor-experienced compared with protease inhibitor-naive patients (median: 8 versus 5, P = 0.003). In protease inhibitor-naive patients, T435A (NC/p6), V447M (p1/p6), and Y14H (protease-coding region) were associated with virological failure (P = 0.011, P = 0.033, P = 0.022, respectively). T435A and V447M were associated with Y14H (P = 0.018, P = 0.039, respectively). In protease inhibitor-experienced patients, D427E (NC/p1) was associated with virological response (P = 0.014). A430V (NC/p1) and I82F (protease-coding region) were associated with virological failure (P = 0.046, P = 0.050, respectively). Mutations at position 430 were associated with a higher number of mutations in protease-coding region (median: 10 versus 7, P = 0.008). CONCLUSION We have demonstrated, for the first time, an association between gag, gag-pol cleavage site and protease-coding region mutations, with distinct profiles between protease inhibitor-naive and protease inhibitor-experienced patients. These mutations might impact the virological outcome of HIV-2-infected patients receiving LPV-containing regimen.
Collapse
|
63
|
Mouzakis KD, Lang AL, Vander Meulen KA, Easterday PD, Butcher SE. HIV-1 frameshift efficiency is primarily determined by the stability of base pairs positioned at the mRNA entrance channel of the ribosome. Nucleic Acids Res 2012; 41:1901-13. [PMID: 23248007 PMCID: PMC3561942 DOI: 10.1093/nar/gks1254] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human immunodeficiency virus (HIV) requires a programmed −1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem–loop structure. Here we investigate the role of the RNA structure in promoting the −1 frameshift. The stem–loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3–4 bp in the stem–loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
64
|
Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF, Nowak MA. Antiretroviral dynamics determines HIV evolution and predicts therapy outcome. Nat Med 2012; 18:1378-85. [PMID: 22941277 PMCID: PMC3490032 DOI: 10.1038/nm.2892] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022]
Abstract
Despite the high inhibition of viral replication achieved by current anti-HIV drugs, many patients fail treatment, often with emergence of drug-resistant virus. Clinical observations show that the relationship between adherence and likelihood of resistance differs dramatically among drug classes. We developed a mathematical model that explains these observations and predicts treatment outcomes. Our model incorporates drug properties, fitness differences between susceptible and resistant strains, mutations and adherence. We show that antiviral activity falls quickly for drugs with sharp dose-response curves and short half-lives, such as boosted protease inhibitors, limiting the time during which resistance can be selected for. We find that poor adherence to such drugs causes treatment failure via growth of susceptible virus, explaining puzzling clinical observations. Furthermore, our model predicts that certain single-pill combination therapies can prevent resistance regardless of patient adherence. Our approach represents a first step for simulating clinical trials of untested anti-HIV regimens and may help in the selection of new drug regimens for investigation.
Collapse
|
65
|
Mutations in multiple domains of Gag drive the emergence of in vitro resistance to the phosphonate-containing HIV-1 protease inhibitor GS-8374. J Virol 2012; 87:454-63. [PMID: 23097440 DOI: 10.1128/jvi.01211-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GS-8374 is a potent HIV protease inhibitor (PI) with a unique diethyl-phosphonate moiety. Due to a balanced contribution of enthalpic and entropic components to its interaction with the protease (PR) active site, the compound retains activity against HIV mutants with high-level multi-PI resistance. We report here the in vitro selection and characterization of HIV variants resistant to GS-8374. While highly resistant viruses with multiple mutations in PR were isolated in the presence of control PIs, an HIV variant displaying moderate (14-fold) resistance to GS-8374 was generated only after prolonged passaging for >300 days. The isolate showed low-level cross-resistance to darunavir, atazanavir, lopinavir, and saquinavir, but not other PIs, and contained a single R41K mutation in PR combined with multiple genotypic changes in the Gag matrix, capsid, nucleocapsid, and SP2 domains. Mutations also occurred in the transframe peptide and p6* domain of the Gag-Pol polyprotein. Analysis of recombinant HIV variants indicated that mutations in Gag, but not the R41K in PR, conferred reduced susceptibility to GS-8374. The Gag mutations acted in concert, since they did not affect susceptibility when introduced individually. Analysis of viral particles revealed that the mutations rendered Gag more susceptible to PR-mediated cleavage in the presence of GS-8374. In summary, the emergence of resistance to GS-8374 involved a combination of substrate mutations without typical resistance mutations in PR. These substrate changes were distributed throughout Gag and acted in an additive manner. Thus, they are classified as primary resistance mutations indicating a unique mechanism and pathway of resistance development for GS-8374.
Collapse
|
66
|
Margeridon-Thermet S, Shafer RW. Comparison of the Mechanisms of Drug Resistance among HIV, Hepatitis B, and Hepatitis C. Viruses 2012; 2:2696-739. [PMID: 21243082 PMCID: PMC3020796 DOI: 10.3390/v2122696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are the most prevalent deadly chronic viral diseases. HIV is treated by small molecule inhibitors. HBV is treated by immunomodulation and small molecule inhibitors. HCV is currently treated primarily by immunomodulation but many small molecules are in clinical development. Although HIV is a retrovirus, HBV is a double-stranded DNA virus, and HCV is a single-stranded RNA virus, antiviral drug resistance complicates the development of drugs and the successful treatment of each of these viruses. Although their replication cycles, therapeutic targets, and evolutionary mechanisms are different, the fundamental approaches to identifying and characterizing HIV, HBV, and HCV drug resistance are similar. This review describes the evolution of HIV, HBV, and HCV within individuals and populations and the genetic mechanisms associated with drug resistance to each of the antiviral drug classes used for their treatment.
Collapse
|
67
|
Fun A, Wensing AMJ, Verheyen J, Nijhuis M. Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology 2012; 9:63. [PMID: 22867298 PMCID: PMC3422997 DOI: 10.1186/1742-4690-9-63] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) maturation plays an essential role in the viral life cycle by enabling the generation of mature infectious virus particles through proteolytic processing of the viral Gag and GagPol precursor proteins. An impaired polyprotein processing results in the production of non-infectious virus particles. Consequently, particle maturation is an excellent drug target as exemplified by inhibitors specifically targeting the viral protease (protease inhibitors; PIs) and the experimental class of maturation inhibitors that target the precursor Gag and GagPol polyproteins. Considering the different target sites of the two drug classes, direct cross-resistance may seem unlikely. However, coevolution of protease and its substrate Gag during PI exposure has been observed both in vivo and in vitro. This review addresses in detail all mutations in Gag that are selected under PI pressure. We evaluate how polymorphisms and mutations in Gag affect PI therapy, an aspect of PI resistance that is currently not included in standard genotypic PI resistance testing. In addition, we consider the consequences of Gag mutations for the development and positioning of future maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, HP G04,614, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | | | | | | |
Collapse
|
68
|
Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process. Mol Biol Int 2012; 2012:604261. [PMID: 22888428 PMCID: PMC3410323 DOI: 10.1155/2012/604261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.
Collapse
|
69
|
Gilks CF, Walker AS, Dunn DT, Gibb DM, Kikaire B, Reid A, Musana H, Mambule I, Kasirye R, Robertson V, Ssali F, Spyer M, Pillay D, Yirrell D, Kaleebu P. Lopinavir/ritonavir monotherapy after 24 weeks of second-line antiretroviral therapy in Africa: a randomized controlled trial (SARA). Antivir Ther 2012; 17:1363-73. [PMID: 22814125 DOI: 10.3851/imp2253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Boosted protease inhibitor (bPI) monotherapy (bPImono) potentially has substantial cost, safety and operational benefits. It has never been evaluated as second-line antiretroviral therapy (ART) in Africa. METHODS After 24 weeks of lopinavir/ritonavir-containing second-line therapy, DART participants were randomized to remain on combination therapy (CT), or change to bPImono maintenance (SARA trial; ISRCTN53817258). Joint primary end points were CD4(+) T-cell changes 24 weeks later and serious adverse events (SAEs); retrospectively assayed viral load (VL) was a secondary end point. Analyses were intention-to-treat. RESULTS A total of 192 participants were randomized to CT (n=95) or bPImono (n=97) and followed for median 60 weeks (IQR 45-84). Participants received median 4.0 years (IQR 3.5-4.4) first-line ART. Median CD4(+) T-cell count at first-line failure was 86 cells/mm(3) (47-136), increasing to 245 cells/mm(3) (173-325) after 24-week induction when 77% had VL<50 copies/ml. Overall, 44 (23%) were receiving second-line therapy with bPI and nucleoside reverse transcriptase inhibitors (NRTI) only, and 148 (77%) with bPI plus non-NRTI (NNRTI) with or without NRTI. At 24 weeks after randomization to CT versus bPImono, mean CD4(+) T-cell increase was 42 (CT, n=85) versus 49 cells/mm(3) (bPImono, n=88; adjusted difference 13 [95% CI -15, 43], P=0.37; non-inferior compared with predetermined non-inferiority margin [-33]). Virological suppression was greater for CT versus bPImono (trend P=0.009): 77% (70/91) versus 60% (56/94) were <50 copies/ml, and 5% (5) versus 14% (13) were ≥1,000 copies/ml, respectively. A total of 0 (0%) versus 5 (5%) participants had major protease inhibitor mutations and 3 (3%) versus 0 (0%) new NNRTI/NRTI mutations were detected during follow-up. Two participants (1 CT and 1 bPImono) died >24 weeks after randomization, and 5 (2 CT and 3 bPImono) experienced SAEs (P=0.51). CONCLUSIONS bPImono following a 24-week second-line induction was associated with similar CD4(+) T-cell response, but increased low-level viraemia, generally without protease inhibitor resistance. Longer-term trials are needed to provide definitive evidence about effectiveness in Africa.
Collapse
|
70
|
Hao GF, Yang GF, Zhan CG. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem. Drug Discov Today 2012; 17:1121-6. [PMID: 22789991 DOI: 10.1016/j.drudis.2012.06.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | | | | |
Collapse
|
71
|
Brakier-Gingras L, Charbonneau J, Butcher SE. Targeting frameshifting in the human immunodeficiency virus. Expert Opin Ther Targets 2012; 16:249-58. [PMID: 22404160 DOI: 10.1517/14728222.2012.665879] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION HIV-1 uses a programmed –1 ribosomal frameshift to generate Gag-Pol, the precursor of its enzymes, when its full-length mRNA is translated by the ribosomes of the infected cells. This change in the reading frame occurs at a so-called slippery sequence that is followed by a specific secondary structure, the frameshift stimulatory signal. This signal controls the frameshift efficiency. The synthesis of HIV-1 enzymes is critical for virus replication and therefore, the –1 ribosomal frameshift could be the target of novel antiviral drugs. AREAS COVERED Various approaches were used to select drugs interfering with the –1 frameshift of HIV-1. These include the selection and modification of chemical compounds that specifically bind to the frameshift stimulatory signal, the use of antisense oligonucleotides targeting this signal and the selection of compounds that modulate HIV-1 frameshift, by using bicistronic reporters where the expression of the second cistron depends upon HIV-1 frameshift. EXPERT OPINION The most promising approach is the selection and modification of compounds specifically targeting the HIV-1 frameshift stimulatory signal. The use of antisense oligonucleotides binding to the frameshift stimulatory signal is still questionable. The use of bicistronic reporters preferentially selects compounds that modulate the frameshift by targeting the ribosomes, which is less promising.
Collapse
|
72
|
Mutations in HIV-1 gag and pol compensate for the loss of viral fitness caused by a highly mutated protease. Antimicrob Agents Chemother 2012; 56:4320-30. [PMID: 22644035 DOI: 10.1128/aac.00465-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the last few decades, the treatment of HIV-infected patients by highly active antiretroviral therapy, including protease inhibitors (PIs), has become standard. Here, we present results of analysis of a patient-derived, multiresistant HIV-1 CRF02_AG recombinant strain with a highly mutated protease (PR) coding sequence, where up to 19 coding mutations have accumulated in the PR. The results of biochemical analysis in vitro showed that the patient-derived PR is highly resistant to most of the currently used PIs and that it also exhibits very poor catalytic activity. Determination of the crystal structure revealed prominent changes in the flap elbow region and S1/S1' active site subsites. While viral loads in the patient were found to be high, the insertion of the patient-derived PR into a HIV-1 subtype B backbone resulted in reduction of infectivity by 3 orders of magnitude. Fitness compensation was not achieved by elevated polymerase (Pol) expression, but the introduction of patient-derived gag and pol sequences in a CRF02_AG backbone rescued viral infectivity to near wild-type (wt) levels. The mutations that accumulated in the vicinity of the processing sites spanning the p2/NC, NC/p1, and p6pol/PR proteins lead to much more efficient hydrolysis of corresponding peptides by patient-derived PR in comparison to the wt enzyme. This indicates a very efficient coevolution of enzyme and substrate maintaining high viral loads in vivo under constant drug pressure.
Collapse
|
73
|
Barber TJ, Harrison L, Asboe D, Williams I, Kirk S, Gilson R, Bansi L, Pillay D, Dunn D. Frequency and patterns of protease gene resistance mutations in HIV-infected patients treated with lopinavir/ritonavir as their first protease inhibitor. J Antimicrob Chemother 2012; 67:995-1000. [PMID: 22258921 DOI: 10.1093/jac/dkr569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Selection of protease mutations on antiretroviral therapy (ART) including a ritonavir-boosted protease inhibitor (PI) has been reported infrequently. Scarce data exist from long-term cohorts on resistance incidence or mutational patterns emerging to different PIs. METHODS We studied UK patients receiving lopinavir/ritonavir as their first PI, either while naive to ART or having previously received non-PI-based ART. Virological failure was defined as viral load ≥ 400 copies/mL after previous suppression <400 copies/mL, or failure to achieve <400 copies/mL during the first 6 months. pol sequences whilst failing lopinavir or within 30 days after stopping were analysed. Major and minor mutations (IAS-USA 2008-after exclusion of polymorphisms) were considered. Predicted susceptibility was determined using the Stanford HIVdb algorithm. RESULTS Three thousand and fifty-six patients were followed for a median (IQR) of 14 (6-30) months, of whom 811 (27%) experienced virological failure. Of these, resistance test results were available on 291 (36%). One or more protease mutations were detected in 32 (11%) patients; the most frequent were I54V (n = 12), M46I (n = 11), V82A (n = 7) and L76V (n = 3). No association with viral subtype was evident. Many patients retained virus predicted to be susceptible to lopinavir (14, 44%), tipranavir (26, 81%) and darunavir (27, 84%). CONCLUSIONS This study reflects the experience of patients in routine care. Selection of protease gene mutations by lopinavir/ritonavir occurred at a much higher rate than in clinical trials. The mutations observed showed only partial overlap with those previously identified by structural chemistry models, serial cell culture passage and genotype-phenotype analyses. There remained a low degree of predicted cross-resistance to other widely used PIs.
Collapse
Affiliation(s)
- Tristan J Barber
- Medical Research Council Clinical Trials Unit, St Stephen's Centre, Chelsea and Westminster Hospital, 125 Kingsway, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
van Maarseveen NM, Andersson D, Lepšík M, Fun A, Schipper PJ, de Jong D, Boucher CAB, Nijhuis M. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity. Retrovirology 2012; 9:29. [PMID: 22462820 PMCID: PMC3349524 DOI: 10.1186/1742-4690-9-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 04/01/2012] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes are known to enhance processing of the Gag protein. To investigate the capacity of HIV-1 to modulate Gag cleavage and its consequences for PI resistance and RC, we performed a detailed enzymatic and virological analysis using a set of PI resistant NC/p1 variants (HXB2431V, HXB2436E+437T, HXB2437T and HXB2437V). Results Here, we demonstrate that single NC/p1 mutants, which displayed only a slight increase in PI resistance did not show an obvious change in RC. In contrast, the double NC/p1 mutant, which displayed a clear increase in processing efficiency and PI resistance, demonstrated a clear reduction in RC. Cleavage analysis showed that a tridecameric NC/p1 peptide representing the double NC/p1 mutant was cleaved in two specific ways instead of one. The observed decrease in RC for the double NC/p1 mutant (HXB2436E+437T) could (partially) be restored by either reversion of the 436E change or by acquisition of additional changes in the NC/p1 cleavage site at codon 435 or 438 as was revealed during in vitro evolution experiments. These changes not only restored RC but also reduced PI resistance levels. Furthermore these changes normalized Gag processing efficiency and obstructed the novel secondary cleavage site observed for the double NC/p1 mutant. Conclusions The results of this study clearly demonstrate that HIV-1 can modulate Gag processing and thereby PI resistance. Distinct increases in Gag cleavage and PI resistance result in a reduced RC that can only be restored by amino acid changes in NC/p1 which reduce Gag processing to an optimal rate.
Collapse
Affiliation(s)
- Noortje M van Maarseveen
- Dept. of Medical Microbiology, Virology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Lambert-Niclot S, Flandre P, Valantin MA, Peytavin G, Sayon S, Morand-Joubert L, Delaugerre C, Algarte-Genin M, Katlama C, Calvez V, Marcelin AG. Resistant minority species are rarely observed in patients on darunavir/ritonavir monotherapy. J Antimicrob Chemother 2012; 67:1470-4. [PMID: 22396434 DOI: 10.1093/jac/dks052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To analyse the emergence of resistant viruses in patients failing darunavir monotherapy, including minority species, and to investigate the impact of baseline reverse transcriptase (RT), protease (PR) and gag resistance mutations on virological failure (VF) occurrence. METHODS Nine of the 225 HIV-1-infected patients enrolled in the MONOI trial (darunavir/ritonavir monotherapy or darunavir/ritonavir + two nucleoside reverse transcriptase inhibitors in a switch strategy) experienced VF, defined as two plasma HIV-1 viral loads >400 copies/mL at least 2 weeks apart. Among these nine patients with VF, five were in the darunavir/ritonavir monotherapy arm and four were in the darunavir/ritonavir triple therapy arm. Bulk sequences of the PR, RT and gag genes at baseline (on DNA) and at the time of VF (on RNA) were determined for all patients with two viral loads >50 copies/mL at least 2 weeks apart (n = 47). PR and gag gene clonal analysis was performed on plasma samples of the nine patients with VF. RESULTS There was no association between mutations in RT, PR and gag genes in DNA and VF occurrence. None of the patients demonstrated selection of darunavir resistance mutations among the 47 patients with a viral load >50 copies/mL at least 2 weeks apart. The virus of one of the nine patients with VF presented minority variants with darunavir resistance mutations at positions 32, 47 and 50. Clonal analysis of the gag region for the nine patients with VF did not show any selection of minority variants. CONCLUSIONS In patients with failure on darunavir/ritonavir monotherapy we did not find any selection of darunavir resistance mutations using standard genotype testing. However, the virus of one patient among nine failures presented minority variants plus darunavir resistance mutations.
Collapse
Affiliation(s)
- Sidonie Lambert-Niclot
- AP-HP, Pitié-Salpêtrière Hospital, INSERM U 943 and Pierre et Marie Curie University, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Mutational patterns in the frameshift-regulating site of HIV-1 selected by protease inhibitors. Med Microbiol Immunol 2011; 201:213-8. [PMID: 22200908 DOI: 10.1007/s00430-011-0224-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 12/29/2022]
Abstract
Sustained suppression of viral replication in HIV-1 infected patients is especially hampered by the emergence of HIV-1 drug resistance. The mechanisms of drug resistance mainly involve mutations directly altering the interaction of viral enzymes and inhibitors. However, protease inhibitors do not only select for mutations in the protease but also for mutations in the precursor Gag and Pol proteins. In this study, we analysed the frameshift-regulating site of HIV-1 subtype B isolates, which also encodes for Gag and Pol proteins, classified as either treatment-naïve (TN) or protease inhibitor resistant (PI-R). HIV-1 Gag cleavage site mutations (G435E, K436N, I437V, L449F/V) especially correlated with protease inhibitor resistance mutations, but also Pol cleavage site mutations (D05G, D05S) could be assigned to specific protease resistance profiles. Additionally, two Gag non-cleavage site mutations (S440F, H441P) were observed more often in HIV-1 isolates carrying protease resistance mutations. However, in dual luciferase assays, the frameshift efficiencies of specific clones did not reveal any effect from these mutations. Nevertheless, two patterns of mutations modestly increased the frameshift rates in vitro, but were not specifically accumulating in PI-resistant HIV-1 isolates. In summary, HIV-1 Gag cleavage site mutations were dominantly selected in PI-resistant HIV-1 isolates but also Pol cleavage site mutations influenced resistance profiles in the protease. Additionally, Gag non-cleavage site mutations accumulated in PI-resistant HIV-1 isolates, but were not related to an increased frameshift efficiency.
Collapse
|
77
|
Lillemark MR, Gerstoft J, Obel N, Kronborg G, Pedersen C, Jørgensen LB, Madsen TV, Katzenstein TL. Characterization of HIV-1 from patients with virological failure to a boosted protease inhibitor regimen. J Med Virol 2011; 83:377-83. [PMID: 21264856 DOI: 10.1002/jmv.21997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of highly active antiretroviral treatment (HAART) regimens with unboosted protease inhibitors (PIs) has resulted in a high level of virological failure primarily due to the development of resistant virus. Current boosted PI regimens combine successfully low-dose ritonavir (r) with a second PI. The aim of the study was to estimate the proportion of patients, in a population based setting, who develop virological failure on a PI/r regimen. Through The Danish HIV Cohort Study 1,007 patients who received PI/r based treatment between 1995 and 2008 were identified. Twenty-three (2.3%) experienced virological failure, of whom 19 (83%) started PI/r treatment before 2001. Patients from Copenhagen (n=19) were selected to study the development of protease (PR) and gag cleavage site (CS) mutations during PI/r treatment and PI plasma levels at the time of virological failure. Three patients (16%) developed major PI resistance mutations. Mutations in the p7/p1 and p1/p6 gag CS only developed in patients with major or minor mutations in PR. Drug concentrations were low or undetectable in 10 out of the 19 patients. In total PR resistance mutations and low drug levels could account for 12 (63%) of the failure cases. In conclusion, virological failure to PI/r is a low and decreasing problem primarily caused by low plasma drug levels and to a lesser extent major PR mutations. Gag CS mutations did not contribute significantly to resistance development and virological failure.
Collapse
|
78
|
Dynamics of gag-pol minority viral populations in naive HIV-1-infected patients failing protease inhibitor regimen. AIDS 2011; 25:2143-8. [PMID: 21904187 DOI: 10.1097/qad.0b013e32834cabb9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Recently, we have reported the role of baseline gag cleavage site mutations on the virological outcome of a dual-boosted protease inhibitor regimen in antiretroviral-naive patients (2IP-ANRS 127 trial). The objective of this substudy was to characterize, in patients experiencing virological failure, from the 2IP-ANRS 127 trial, the viral quasispecies present at baseline and at virological failure in gag cleavage site, in gag-pol frameshift and in protease-coding region. METHODS In four patients, we analysed by clonal analysis the viral population in gag cleavage site (p17/p24, p24/p2, p2/p7, p7/p1, p1/p6(gag)), in p6(gag), in gag-pol frameshift [p1/transframe protein (TFP)/p6(pol)] and in protease-coding region. RESULTS Clonal analysis of protease-coding region failed to detect major as well as minor protease inhibitor resistance-associated mutations in all four patients. In one patient, a I15V-mutated variant increased from 13 to 100% between baseline and week 24. Clonal analysis of gag and gag-pol cleavage site showed an increase in specific viral populations in p2/p7 cleavage site between baseline and virological failure in three patients. Among them, we described in one patient, that the predominant population at virological failure harboured in p2/p7 and TFP/p6(pol)-specific genotypic profiles associated with duplication of the P(T)APP motif in p6(gag) and the I15V protease mutation on the same individual molecular clones. CONCLUSION We highlighted the emergence of minority viral populations in the p2/p7 cleavage site between baseline and virological failure. In addition, we showed the association of a specific protease mutation with gag and gag-pol cleavage site substitutions, suggesting their possible role in virological outcome.
Collapse
|
79
|
Ghosn J, Delaugerre C, Flandre P, Galimand J, Cohen-Codar I, Raffi F, Delfraissy JF, Rouzioux C, Chaix ML. Polymorphism in Gag gene cleavage sites of HIV-1 non-B subtype and virological outcome of a first-line lopinavir/ritonavir single drug regimen. PLoS One 2011; 6:e24798. [PMID: 21949754 PMCID: PMC3176769 DOI: 10.1371/journal.pone.0024798] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Virological failure on a boosted-protease inhibitor (PI/r) first-line triple combination is usually not associated with the detection of resistance mutations in the protease gene. Thus, other resistance pathways are being investigated. First-line PI/r monotherapy is the best model to investigate in vivo if the presence of mutations in the cleavage sites (CS) of gag gene prior to any antiretroviral treatment might influence PI/r efficacy. 83 patients were assigned to initiate antiretroviral treatment with first-line lopinavir/r monotherapy in the randomised Monark trial. We compared baseline sequence of gag CS between patients harbouring B or non-B HIV-1 subtype, and between those who achieved viral suppression and those who experienced virological failure while on LPV/r monotherapy up to Week 96. Baseline sequence of gag CS was available for 82/83 isolates; 81/82 carried at least one substitution in gag CS compared to HXB2 sequence. At baseline, non-B subtype isolates were significantly more likely to harbour mutations in gag CS than B subtype isolates (p<0.0001). Twenty-three patients experienced virological failure while on lopinavir/r monotherapy. The presence of more than two substitutions in p2/NC site at baseline significantly predicted virological failure (p = 0.0479), non-B subtype isolates being more likely to harbour more than two substitutions in this specific site. In conclusion, gag cleavage site was highly polymorphic in antiretroviral-naive patients harbouring a non-B HIV-1 strain. We show that pre-therapy mutations in gag cleavage site sequence were significantly associated with the virological outcome of a first-line LPV/r single drug regimen in the Monark trial.
Collapse
Affiliation(s)
- Jade Ghosn
- Paris Descartes University, EA 3620, Necker University Hospital, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Fun A, van Maarseveen NM, Pokorná J, Maas RE, Schipper PJ, Konvalinka J, Nijhuis M. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat. Retrovirology 2011; 8:70. [PMID: 21864346 PMCID: PMC3184055 DOI: 10.1186/1742-4690-8-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/24/2011] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. RESULTS Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. CONCLUSIONS These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Collapse
Affiliation(s)
- Axel Fun
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
81
|
Breuer S, Sepulveda H, Chen Y, Trotter J, Torbett BE. A cleavage enzyme-cytometric bead array provides biochemical profiling of resistance mutations in HIV-1 Gag and protease. Biochemistry 2011; 50:4371-81. [PMID: 21452835 DOI: 10.1021/bi200031m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most protease-substrate assays rely on short, synthetic peptide substrates consisting of native or modified cleavage sequences. These assays are inadequate for interrogating the contribution of native substrate structure distal to a cleavage site that influences enzymatic cleavage or for inhibitor screening of native substrates. Recent evidence from HIV-1 isolates obtained from individuals resistant to protease inhibitors has demonstrated that mutations distal to or surrounding the protease cleavage sites in the Gag substrate contribute to inhibitor resistance. We have developed a protease-substrate cleavage assay, termed the cleavage enzyme- cytometric bead array (CE-CBA), which relies on native domains of the Gag substrate containing embedded cleavage sites. The Gag substrate is expressed as a fluorescent reporter fusion protein, and substrate cleavage can be followed through the loss of fluorescence utilizing flow cytometry. The CE-CBA allows precise determination of alterations in protease catalytic efficiency (k(cat)/K(M)) imparted by protease inhibitor resistance mutations in protease and/or gag in cleavage or noncleavage site locations in the Gag substrate. We show that the CE-CBA platform can identify HIV-1 protease present in cellular extractions and facilitates the identification of small molecule inhibitors of protease or its substrate Gag. Moreover, the CE-CBA can be readily adapted to any enzyme-substrate pair and can be utilized to rapidly provide assessment of catalytic efficiency as well as systematically screen for inhibitors of enzymatic processing of substrate.
Collapse
Affiliation(s)
- Sebastian Breuer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, CA 92037, USA
| | | | | | | | | |
Collapse
|
82
|
Pingen M, Nijhuis M, de Bruijn JA, Boucher CAB, Wensing AMJ. Evolutionary pathways of transmitted drug-resistant HIV-1. J Antimicrob Chemother 2011; 66:1467-80. [PMID: 21502281 DOI: 10.1093/jac/dkr157] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several large studies in Europe and the USA revealed that approximately 10% of all newly diagnosed patients harbour HIV-1 variants with at least one major resistance-associated mutation. In this review we discuss the underlying mechanisms that drive the evolution of drug-resistant viruses after transmission to the new host. In a comprehensive literature search 12 papers describing the evolution of 58 cases of transmitted resistant HIV-1 variants were found. Based on observations in the literature we propose three pathways describing the evolution of resistant HIV-1 after transmission to a new host. Firstly, reversion of the resistance mutation towards wild-type may rapidly occur when drug resistance mutations severely impact replicative capacity. Alternatively, a second pathway involves replacement of transmitted drug resistance mutations by atypical amino acids that also improve viral replication capacity. In the third evolutionary pathway the resistance mutations persist either because they do not significantly affect viral replication capacity or evolution is constrained by fixation through compensatory mutations. In the near future ultra-sensitive resistance tests may provide more insight into the presence of archived and minority variants and their clinical relevance. Meanwhile, clinical guidelines advise population sequence analysis of the baseline plasma sample to identify transmission of resistance. Given the limited sensitivity of this technique for minority populations and the delay between the moment of infection and time of analysis, knowledge of the described evolutionary mechanisms of transmitted drug resistance patterns is essential for clinical management and public health strategies.
Collapse
Affiliation(s)
- Marieke Pingen
- Department of Virology, Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
83
|
Grigorov B, Bocquin A, Gabus C, Avilov S, Mély Y, Agopian A, Divita G, Gottikh M, Witvrouw M, Darlix JL. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex. Nucleic Acids Res 2011; 39:5586-96. [PMID: 21447560 PMCID: PMC3141241 DOI: 10.1093/nar/gkr117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.
Collapse
Affiliation(s)
- Boyan Grigorov
- Laboretro, INSERM #758, ENS Lyon, 46 allée d'Italie, 69364 Lyon, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasboug, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Positive impact of HIV-1 gag cleavage site mutations on the virological response to darunavir boosted with ritonavir. Antimicrob Agents Chemother 2011; 55:1754-7. [PMID: 21282435 DOI: 10.1128/aac.01049-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the roles of baseline gag and gag-pol cleavage site mutations (CSM) on the virological outcome of a darunavir-based regimen in highly antiretroviral-experienced patients. We showed the association, in multivariate analysis, between the A431V gag CSM and the virological response, defined as a reduction in plasma HIV-1 RNA to <50 copies/ml at month 3 (P = 0.028). Our results suggest that a specific gag CSM might have a role on protease inhibitor susceptibility in an inhibitor-specific manner.
Collapse
|
85
|
In vitro characterization of GS-8374, a novel phosphonate-containing inhibitor of HIV-1 protease with a favorable resistance profile. Antimicrob Agents Chemother 2011; 55:1366-76. [PMID: 21245449 DOI: 10.1128/aac.01183-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (K(i) = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4(+) T cells (50% effective concentration [EC(50)] = 3.4 to 11.5 nM), and macrophages (EC(50) = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC(50)s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients.
Collapse
|
86
|
Verheyen J, Schweitzer F, Harrer EG, Knops E, Mueller SM, Däumer M, Eismann K, Bergmann S, Spriewald BM, Kaiser R, Harrer T. Analysis of immune selection as a potential cause for the presence of cleavage site mutation 431V in treatment-naive HIV type-1 isolates. Antivir Ther 2010; 15:907-12. [PMID: 20834103 DOI: 10.3851/imp1640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION HIV type-1 (HIV-1) protease (PR) and cleavage site (CS) mutations accumulate in protease-inhibitor-resistant isolates. HIV-1 CS mutation 431V is the most frequent treatment-associated CS mutation; however, little is known about its origin in treatment-naive HIV-1 isolates. Recently, it has been shown that the CS mutation 431V is located within the human leukocyte antigen (HLA)-B*13-restricted cytotoxic T-lymphocyte (CTL) epitope RQANFLGKI (RI9). Therefore, we investigated whether the presence of CS mutation 431V might additionally be related to immune escape. METHODS CTL recognition of RI9 and of RI9 variants carrying the 431V or the 436R mutation was analysed by ELISPOT in nine HLA-B*13-positive HIV-1-infected patients. Treatment-naive HIV-1-infected patients with primary drug-resistant HIV-1 isolates (n=58) or carrying 431V (n=4) were genotyped for HLA class I alleles. RESULTS ELISPOT analysis showed different patterns of CTL recognition of RI9. CS mutation 431V could abrogate recognition by RI9-specific CTL in a subgroup of patients. Nevertheless, in our study, the occurrence of 431V in treatment-naive HIV-1 without primary drug resistance could not be explained by HLA-B*13-mediated immune selection. In patients with primary drug-resistant HIV-1 isolates, the frequency of HLA-B*13 was not increased and HLA-B*13 did not correlate with CS mutations 436R or 431V. CONCLUSIONS HIV-1 CS mutation 431V can abrogate CTL recognition, indicating interactions between development of drug resistance and the CTL response. However, we could not find evidence that the presence of 431V in treatment-naive HIV-1 isolates with and without primary drug resistance is related to immune selection by HLA-B*13 or other HLA class I alleles.
Collapse
Affiliation(s)
- Jens Verheyen
- Institute of Virology, University of Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Three residues in HIV-1 matrix contribute to protease inhibitor susceptibility and replication capacity. Antimicrob Agents Chemother 2010; 55:1106-13. [PMID: 21149628 DOI: 10.1128/aac.01228-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type (WT) matrix resulted in an increase in the replication capacity of the protease mutant virus to a level similar to that achieved by all the changes within the mutant matrix and part of the capsid protein. Pairs of changes to wild-type matrix led to an increased replication capacity of the protease mutant (although less than with all three changes). Having only these three changes to matrix in a wild-type virus (with wild-type protease) resulted in a 5- to 7-fold change in protease inhibitor 50% effective concentration (EC₅₀). Individual changes did not have as great an effect on replication capacity or drug susceptibility, demonstrating an interaction between these positions, also confirmed by sequence covariation analysis. Molecular modeling predicts that each of the three mutations would result in a loss of hydrogen bonds within α-helix-4 of matrix, leading to the hypothesis that more flexibility within this region or altered matrix structure would account for our findings.
Collapse
|
88
|
Ali A, Bandaranayake RM, Cai Y, King NM, Kolli M, Mittal S, Murzycki JF, Nalam MN, Nalivaika EA, Özen A, Prabu-Jeyabalan MM, Thayer K, Schiffer CA. Molecular Basis for Drug Resistance in HIV-1 Protease. Viruses 2010; 2:2509-2535. [PMID: 21994628 PMCID: PMC3185577 DOI: 10.3390/v2112509] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 02/01/2023] Open
Abstract
HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Rajintha M. Bandaranayake
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Yufeng Cai
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Nancy M. King
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Madhavi Kolli
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Seema Mittal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Jennifer F. Murzycki
- Department of Pediatrics, University of Rochester, Rochester, NY 14627, USA; E-Mail:
| | - Madhavi N.L. Nalam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Moses M. Prabu-Jeyabalan
- Division of Basic Sciences, The Commonwealth Medical College, 150 N. Washington Avenue, Scranton, PA 18503, USA; E-Mail:
| | - Kelly Thayer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; E-Mails: (A.A.); (R.M.B.); (Y.C.); (N.M.K.); (M.K.); (S.M.), (M.N.L.N.); (E.A.N.); (A.Ö.); (K.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-508-856-8008; Fax: +1-508-856-6464
| |
Collapse
|
89
|
Caby F, Valin N, Marcelin AG, Schneider L, Andrade R, Guiguet M, Tubiana R, Canestri A, Valantin MA, Peytavin G, Pacanowski J, Morand-Joubert L, Calvez V, Girard PM, Katlama C. Raltegravir as functional monotherapy leads to virological failure and drug resistance in highly treatment-experienced HIV-infected patients. ACTA ACUST UNITED AC 2010; 42:527-32. [PMID: 20222846 DOI: 10.3109/00365541003621502] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to evaluate the development of resistance to raltegravir (RAL) in patients with viraemia between 40 and 400 copies/ml. All HIV-1-infected patients with multidrug-resistant virus, plasma HIV-1 RNA >1000 copies/ml and starting RAL were enrolled in this observational study and followed up until week 48. Sixty-seven patients with median plasma HIV-1 RNA at 4.3 log(10) copies/ml and CD4 at 177 cells/mm(3) were included. At week 24, 43 achieved full viral suppression (FVS; plasma HIV-1 RNA <40 copies/ml), 18 had incomplete viral suppression (IVS; plasma HIV-1 RNA 40-<or=400 copies/ml) and 6 experienced virological failure (VF; plasma HIV-1 RNA >400 copies/ml). At week 48, all the FVS were sustained, 16 of the IVS patients retained a plasma HIV-1 RNA <400 copies/ml and only 2 of the IVS at week 24 experienced VF. No RAL resistance was detected in the persistent low viraemia. In contrast, integrase mutation was detected in 6 of the patients with VF. A genotypic sensitivity score equal to 0 was associated with plasma HIV-1 RNA >40 copies/ml at week 24 (OR 20.9, 95% CI 2.0-215.1) and with RAL resistance (OR 14.2, 95% CI 2.1-94.7). This study confirmed the high efficacy of a RAL-containing regimen under routine clinical conditions in infections caused by multidrug-resistant virus. If persistent low viraemia is observed over more than 48 weeks without the emergence of resistance, RAL should never be given as functional monotherapy, as it is associated with a maximal risk of VF and the emergence of RAL resistance.
Collapse
Affiliation(s)
- Fabienne Caby
- Service des Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Prevalence, mutation patterns, and effects on protease inhibitor susceptibility of the L76V mutation in HIV-1 protease. Antimicrob Agents Chemother 2010; 54:4903-6. [PMID: 20805393 DOI: 10.1128/aac.00906-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patterns of HIV-1 protease inhibitor (PI) resistance-associated mutations (RAMs) and effects on PI susceptibility associated with the L76V mutation were studied in a large database. Of 20,501 sequences with ≥1 PI RAM, 3.2% contained L76V; L76V was alone in 0.04%. Common partner mutations included M46I, I54V, V82A, I84V, and L90M. L76V was associated with a 2- to 6-fold decrease in susceptibility to lopinavir, darunavir, amprenavir, and indinavir and a 7- to 8-fold increase in susceptibility to atazanavir and saquinavir.
Collapse
|
91
|
Abstract
OBJECTIVE There is evidence that gag contributes to protease inhibitor susceptibility in treatment-experienced patients. Moreover, protease inhibitor resistance-associated mutations can arise in gag in the absence of protease mutations in vitro. We wished to assess the contribution of full-length Gag to protease inhibitor susceptibility in viruses unexposed to protease inhibitors, in particular from the most common HIV-1 subtypes, namely subtype A and C. DESIGN We compared the drug resistance profiles of subtype A and C cognate gag-protease (from viruses not previously exposed to protease inhibitor) to protease combined with a generic subtype B gag as in routine phenotypic testing. METHODS We amplified gag-protease sequences from plasma-derived virus or molecular clones, and used a single cycle transfection-based drug resistance assay to compare the fold changes in the concentration of drug required to inhibit 50% of viral replication of these viruses to a generic subtype B. We made a series of chimeras to explore phenotypes further. RESULTS In some cases, use of protease sequences without the cognate gag overestimated susceptibility to protease inhibitors, in particular to lopinavir. We provide evidence that gag sequences from wild-type viruses can contribute as much as 14-fold reduction in susceptibility to lopinavir, and that cognate protease can balance this by partially restoring susceptibility. CONCLUSION Our findings demonstrate the importance of considering protease inhibitor susceptibility in the context of full-length gag, particularly with respect to the range of HIV-1 subtypes circulating worldwide.
Collapse
|
92
|
Clavel F, Mammano F. Role of Gag in HIV Resistance to Protease Inhibitors. Viruses 2010; 2:1411-1426. [PMID: 21994687 PMCID: PMC3185719 DOI: 10.3390/v2071411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/21/2010] [Accepted: 06/25/2010] [Indexed: 11/16/2022] Open
Abstract
Cleavage of Gag and Gag-Pol precursors by the viral protease is an essential step in the replication cycle of HIV. Protease inhibitors, which compete with natural cleavage sites, strongly impair viral infectivity and have proven to be highly valuable in the treatment of HIV-infected subjects. However, as with all other antiretroviral drugs, the clinical benefit of protease inhibitors can be compromised by resistance. One key feature of HIV resistance to protease inhibitors is that the mutations that promote resistance are not only located in the protease itself, but also in some of its natural substrates. The best documented resistance-associated substrate mutations are located in, or near, the cleavage sites in the NC/SP2/p6 region of Gag. These mutations improve interactions between the substrate and the mutated enzyme and correspondingly increase cleavage. Initially described as compensatory mutations able to partially correct the loss of viral fitness that results from protease mutations, changes in Gag are now recognized as being directly involved in resistance. Besides NC/SP2/p6 mutations, polymorphisms in other regions of Gag have been found to exert various effects on viral fitness and or resistance, but their importance deserves further evaluation.
Collapse
Affiliation(s)
- François Clavel
- Inserm U941, Paris 75010, France
- Institut Universitaire d’Hématologie, Université Paris Diderot, Paris 75010, France
- Hôpital Saint Louis, AP-HP, Paris 75010, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +331-5727-6764; Fax: +331-5727-6804
| | - Fabrizio Mammano
- Institut Pasteur, Unité Virus et Immunité, Paris 75015, France
- CNRS URA 3015, Paris 75015, France
| |
Collapse
|
93
|
Larrouy L, Chazallon C, Landman R, Capitant C, Peytavin G, Collin G, Charpentier C, Storto A, Pialoux G, Katlama C, Girard PM, Yeni P, Aboulker JP, Brun-Vezinet F, Descamps D. Gag mutations can impact virological response to dual-boosted protease inhibitor combinations in antiretroviral-naïve HIV-infected patients. Antimicrob Agents Chemother 2010; 54:2910-9. [PMID: 20439606 PMCID: PMC2897283 DOI: 10.1128/aac.00194-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/23/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022] Open
Abstract
ANRS 127 was a randomized pilot trial involving naïve patients receiving two dual-boosted protease inhibitor (PI) combinations. Virological response, defined as a plasma HIV RNA level of <50 copies/ml at week 16, occurred in only 41% patients. Low baseline plasma HIV RNA level was the only significant predictor of virological response. The purpose of this study was to investigate the impact on virological response of pretherapy mutations in cleavage sites of gag, gag-pol, and the gag-pol frameshift region. The whole gag gene and protease-coding region were amplified and sequenced at baseline and at week 16 for 48 patients still on the allocated regimen at week 16. No major PI resistance-associated mutations were detected either at baseline or in the 26 patients who did not achieve virological response at week 16. Baseline cleavage site substitutions in the product of the gag open reading frame at positions 128 (p17/p24) (P = 0.04) and 449 (p1/p6(gag)) (P = 0.01) were significantly more frequent in those patients not achieving virological response. Conversely, baseline cleavage site mutation at position 437 (TFP/p6(pol)) was associated with virological response (P = 0.04). In multivariate analysis adjusted for baseline viral load, these 3 substitutions remained independently associated with virological response. We demonstrated here, in vivo, an impact of baseline polymorphic gag mutations on virological response in naïve patients receiving a combination of two protease inhibitors. However, it was not possible to link the substitutions selected under PI selective pressure with virological failure.
Collapse
Affiliation(s)
- Lucile Larrouy
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - C. Chazallon
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - R. Landman
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - C. Capitant
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - G. Peytavin
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - G. Collin
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - C. Charpentier
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - A. Storto
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - G. Pialoux
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - C. Katlama
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - P. M. Girard
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - P. Yeni
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - J. P. Aboulker
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - F. Brun-Vezinet
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | - D. Descamps
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Laboratoire de Virologie, Paris F-75018, France, EA 4409, Université Paris-Diderot, Paris 7, Paris, France, INSERM SC10, Villejuif F-94807, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Maladies Infectieuses et Tropicales, Paris F-75018, France, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Pharmacie, Paris F-75018, France, Université Pierre et Marie Curie-Paris 6, Paris, France, AP-HP, Hôpital Tenon, Service de Maladies Infectieuses et Tropicales, Paris F-75020, France, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Maladies Infectieuses et Tropicales, Paris F-75013, France, INSERM UMR 943, Paris, France, AP-HP, Hôpital Saint-Antoine, Service de Maladies Infectieuses et Tropicales, Paris F-75011, France
| | | |
Collapse
|
94
|
Transmission of human immunodeficiency virus I drug resistance - a case report. What are the clinical implications? Eur J Med Res 2010; 15:225-30. [PMID: 20562063 PMCID: PMC3352013 DOI: 10.1186/2047-783x-15-5-225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The success of first-line antiretroviral therapy can be challenged by the acquisition of primary drug resistance. Here we report a case where baseline genotypic resistance testing detected resistance conferring nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-associated mutations, but no primary mutations for protease inhibitor (PI). Subsequent PI-based HAART with boosted saquinavir led to virological treatment success with persistently undetectable viral load. After treatment simplification from saquinavir to an atazanavir based PI-therapy and no change in backbone therapy rapid virological breakthrough occurred. Retrospective analysis displayed preexisting gag cleavage site mutations which may have reduced the genetic barrier in a clinical relevant manner in combination with the already existing NRTI resistance mutations. Alternatively, this effect could be explained with a different antiviral potency for the respective PIs used.
Collapse
|
95
|
Assessment of the susceptibility of mutant HIV-1 to antiviral agents. J Virol Methods 2010; 165:230-7. [DOI: 10.1016/j.jviromet.2010.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/17/2022]
|
96
|
Knops E, Däumer M, Awerkiew S, Kartashev V, Schülter E, Kutsev S, Brakier-Gingras L, Kaiser R, Pfister H, Verheyen J. Evolution of protease inhibitor resistance in the gag and pol genes of HIV subtype G isolates. J Antimicrob Chemother 2010; 65:1472-6. [PMID: 20430786 DOI: 10.1093/jac/dkq129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To analyse HIV Gag cleavage site (CS) and non-CS mutations in HIV non-B isolates from patients failing antiretroviral therapy. PATIENTS AND METHODS Twenty-one HIV isolates were obtained from patients infected with HIV subtype G during an outbreak in Russia 20 years ago. Most patients were failing antiretroviral therapy when genotyping was performed. RESULTS HIV Gag CS mutations accumulated in protease inhibitor (PI)-resistant HIV isolates and were correlated with the presence of three or more PI resistance mutations. Only 1 of 11 HIV isolates carrying major protease mutations did not harbour treatment-associated CS mutations. Natural polymorphism 453T, often found in HIV non-B subtypes, seems to favour the selection of CS mutation 453I rather than treatment-associated CS mutation 453L. Resistance-associated non-CS mutations (123E and 200I) were also observed in PI-resistant clinical isolates. Non-CS mutations in the frameshift-regulating site, which controls the synthesis of Gag-Pol, did not affect frameshift efficiency in dual luciferase assays. Of note, one of four HIV isolates from patients failing PI therapies without protease mutations harboured Gag mutations associated with PI resistance (123E and 436R) and reverse transcriptase inhibitor mutations conferring resistance to the backbone drug. CONCLUSIONS HIV Gag CS mutations commonly occurred in HIV isolates from patients failing PI therapies and natural polymorphisms at the same position influence their emergence. Non-CS mutations previously associated with PI resistance were also observed in clinical isolates. Gag mutations might indicate the evolution of PI resistance even in the absence of protease mutations.
Collapse
Affiliation(s)
- Elena Knops
- Institute of Virology, University of Cologne, Fürst-Pückler Str. 56, 50935 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
The evolution of protease mutation 76V is associated with protease mutation 46I and gag mutation 431V. AIDS 2010; 24:779-81. [PMID: 20139751 DOI: 10.1097/qad.0b013e328336784d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, first-line lopinavir failure was observed due to protease mutation 76V. In the present study, we found 76V associated with protease mutation 46I and gag cleavage-site mutation 431V. Longitudinal analysis of patients failing protease inhibitor therapies demonstrated that 76V strictly occurs either together with 46I and/or 431V or in HIV isolates already harbouring one of both mutations. Therefore, all three mutations seem to cooperate in terms of protease inhibitor resistance.
Collapse
|
98
|
|
99
|
Abstract
OBJECTIVE Bevirimat is the first drug of a new class of antivirals that hamper the maturation of HIV. The objective of this study was to evaluate the sequence variability of the gag region targeted by bevirimat in HIV subtype-B isolates. METHODS Of 484 HIV subtype-B isolates, the gag region comprising amino acids 357-382 was sequenced. Of the patients included, 270 were treatment naive and 214 were treatment experienced. In the latter group, 48 HIV isolates harboured mutations associated with reverse transcriptase inhibitor resistance only, and 166 HIV isolates carried mutations associated with protease inhibitor resistance. RESULTS In the treatment-naive patient population, approximately 30% harboured an HIV isolate with at least one mutation associated with a reduced susceptibility to bevirimat (H358Y, L363M, Q369H, V370A/M/del and T371del). In HIV isolates with protease inhibitor resistance, the prevalence of bevirimat resistance mutations increased to 45%. Accumulation of mutations at four positions in the bevirimat target region, S368C, Q369H, V370A and S373P, was significantly observed. Mutations associated with bevirimat resistance were detected more frequently in HIV isolates with three or more protease inhibitor resistance mutations than in those with less than three protease inhibitor mutations. CONCLUSION Reduced bevirimat activity can be expected in one-third of treatment-naive HIV subtype-B isolates and significantly more in protease inhibitor-resistant HIV. These data indicate that screening for bevirimat resistance mutations before administration of the drug is essential.
Collapse
|
100
|
High prevalence of natural polymorphisms in Gag (CA-SP1) associated with reduced response to Bevirimat, an HIV-1 maturation inhibitor. AIDS 2010; 24:467-9. [PMID: 19996935 DOI: 10.1097/qad.0b013e328335ce07] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations H358Y, L363F/M, A364V and A366T/V confer in-vitro resistance to bevirimat. Moreover, polymorphisms at the Glutamine-Valine-Threonine (QVT) motif (369-371) have been associated with reduced bevirimat activity in vivo. The rate of these changes was assessed in 389 HIV+ patients naïve for bevirimat. QVT polymorphisms were frequent (47%), especially in non-B subtypes (93%). Conversely, only four patients (1%) harbored major bevirimat resistance mutations. Finally, specific gag changes were associated with protease inhibitor resistance mutations in subtype B viruses.
Collapse
|