51
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
52
|
Hu VW, Sarachana T, Sherrard RM, Kocher KM. Investigation of sex differences in the expression of RORA and its transcriptional targets in the brain as a potential contributor to the sex bias in autism. Mol Autism 2015; 6:7. [PMID: 26056561 PMCID: PMC4459681 DOI: 10.1186/2040-2392-6-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma. We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including CYP19A1 (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk factor for autism. Methods In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from our laboratory. We further investigated the expression of RORA and its correlation with several of its validated transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female C57BL/6 mice. Results Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen in the cortex of control human males and females as well as ASD males, but not ASD females. Conclusions Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater impact on males, since sex differences in the correlation of RORA and target gene expression indicate that RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions during development. Electronic supplementary material The online version of this article (doi:10.1186/2040-2392-6-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St. NW, Washington, DC 20037 USA
| | - Tewarit Sarachana
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St. NW, Washington, DC 20037 USA ; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Rachel M Sherrard
- Institut de Biologie Paris Seine, Sorbonne Universités, UPMC Univ Paris 06 & CNRS, UMR 8256 Biological Adaptation and Ageing, F-75005 Paris, France
| | - Kristen M Kocher
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St. NW, Washington, DC 20037 USA
| |
Collapse
|
53
|
Ch'ng C, Kwok W, Rogic S, Pavlidis P. Meta-Analysis of Gene Expression in Autism Spectrum Disorder. Autism Res 2015; 8:593-608. [PMID: 25720351 DOI: 10.1002/aur.1475] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
Abstract
Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. In general it remains unclear, what biological factors lead to changes in the brains of autistic individuals. A considerable number of transcriptome analyses have been performed in attempts to address this question, but their findings lack a clear consensus. As a result, each of these individual studies has not led to any significant advance in understanding the autistic phenotype as a whole. Here, we report a meta-analysis of more than 1000 microarrays across twelve independent studies on expression changes in ASD compared to unaffected individuals, in both blood and brain tissues. We identified a number of known and novel genes that are consistently differentially expressed across three studies of the brain (71 samples in total). A subset of the highly ranked genes is suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult to identify, despite individual studies tending to exhibit larger effects than the brain studies. Our results are the strongest evidence to date of a common transcriptome signature in the brains of individuals with ASD.
Collapse
Affiliation(s)
- Carolyn Ch'ng
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada, V6T 1Z4 (C.C.).,Center for High Throughput Biology, University of British Columbia, Vancouver, Canada, V6T 1Z4 (C.C., W.K., S.R., P.P.)
| | - Willie Kwok
- Center for High Throughput Biology, University of British Columbia, Vancouver, Canada, V6T 1Z4 (C.C., W.K., S.R., P.P.).,Department of Psychiatry, University of British Columbia, Vancouver, Canada, V6T 1Z4 (W.K., S.R., P.P.)
| | - Sanja Rogic
- Center for High Throughput Biology, University of British Columbia, Vancouver, Canada, V6T 1Z4 (C.C., W.K., S.R., P.P.).,Department of Psychiatry, University of British Columbia, Vancouver, Canada, V6T 1Z4 (W.K., S.R., P.P.)
| | - Paul Pavlidis
- Center for High Throughput Biology, University of British Columbia, Vancouver, Canada, V6T 1Z4 (C.C., W.K., S.R., P.P.).,Department of Psychiatry, University of British Columbia, Vancouver, Canada, V6T 1Z4 (W.K., S.R., P.P.)
| |
Collapse
|
54
|
Ngounou Wetie AG, Wormwood KL, Russell S, Ryan JP, Darie CC, Woods AG. A Pilot Proteomic Analysis of Salivary Biomarkers in Autism Spectrum Disorder. Autism Res 2015; 8:338-50. [DOI: 10.1002/aur.1450] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Kelly L. Wormwood
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Stefanie Russell
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services; 101 Broad Street Plattsburgh New York 12901
| | - Jeanne P. Ryan
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services; 101 Broad Street Plattsburgh New York 12901
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; 8 Clarkson Avenue Potsdam New York 13699-5810
| |
Collapse
|
55
|
Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 2014; 5:5748. [PMID: 25494366 PMCID: PMC4270294 DOI: 10.1038/ncomms6748] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022] Open
Abstract
Recent studies of genomic variation associated with autism have suggested the existence of extreme heterogeneity. Large-scale transcriptomics should complement these results to identify core molecular pathways underlying autism. Here we report results from a large-scale RNA sequencing effort, utilizing region-matched autism and control brains to identify neuronal and microglial genes robustly dysregulated in autism cortical brain. Remarkably, we note that a gene expression module corresponding to M2-activation states in microglia is negatively correlated with a differentially expressed neuronal module, implicating dysregulated microglial responses in concert with altered neuronal activity-dependent genes in autism brains. These observations provide pathways and candidate genes that highlight the interplay between innate immunity and neuronal activity in the aetiology of autism. Autism spectrum disorder (ASD) is a common, highly heritable neurodevelopmental condition characterized by marked genetic heterogeneity. In this study, the authors use RNA sequencing analyses to characterize differences in the transcriptome between autistic and typically developing brains.
Collapse
Affiliation(s)
- Simone Gupta
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Shannon E Ellis
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Foram N Ashar
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Anna Moes
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Joel S Bader
- 1] Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jianan Zhan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Andrew B West
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Dan E Arking
- Department of Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
56
|
Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N. Serum microRNA profiles in children with autism. Mol Autism 2014; 5:40. [PMID: 25126405 PMCID: PMC4132421 DOI: 10.1186/2040-2392-5-40] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Background As regulators of gene expression, microRNAs (miRNAs) play a key role in the transcriptional networks of the developing human brain. Circulating miRNAs in the serum and plasma are remarkably stable and are suggested to have promise as noninvasive biomarkers for neurological and neurodevelopmental disorders. We examined the serum expression profiles of neurologically relevant miRNAs in autism spectrum disorder (ASD), a complex neurodevelopmental disorder characterized by multiple deficits in communication, social interaction and behavior. Methods Total RNA, including miRNA, was extracted from the serum samples of 55 individuals with ASD and 55 age- and sex-matched control subjects, and the mature miRNAs were selectively converted into cDNA. Initially, the expression of 125 mature miRNAs was compared between pooled control and ASD samples. The differential expression of 14 miRNAs was further validated by SYBR Green quantitative PCR of individual samples. Receiver-operating characteristic (ROC) analysis was used to evaluate the sensitivity and specificity of miRNAs. The target genes and pathways of miRNAs were predicted using DIANA mirPath software. Results Thirteen miRNAs were differentially expressed in ASD individuals compared to the controls. MiR-151a-3p, miR-181b-5p, miR-320a, miR-328, miR-433, miR-489, miR-572, and miR-663a were downregulated, while miR-101-3p, miR-106b-5p, miR-130a-3p, miR-195-5p, and miR-19b-3p were upregulated. Five miRNAs showed good predictive power for distinguishing individuals with ASD. The target genes of these miRNAs were enriched in several crucial neurological pathways. Conclusions This is the first study of serum miRNAs in ASD individuals. The results suggest that a set of serum miRNAs might serve as a possible noninvasive biomarker for ASD.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Ayyappan Anitha
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Ismail Thanseem
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Kohei Yamada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Taro Takahashi
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Keiko Iwata
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan ; Faculty of Sociology, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota 470-0393, Japan
| | - Toshirou Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan ; Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
57
|
Prandini P, Zusi C, Malerba G, Itan, Pignatti PF, Trabetti E. Analysis of RBFOX1 gene expression in lymphoblastoid cell lines of Italian discordant autism spectrum disorders sib-pairs. Mol Cell Probes 2014; 28:242-5. [PMID: 24938762 DOI: 10.1016/j.mcp.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/27/2022]
Abstract
Several lines of evidence suggest that RBFOX1 is a key regulator of transcriptional and splicing programs in neural cells during development, and that it is expressed in a neuronal module enriched for known autism susceptibility genes. We have investigated its expression by semiquantitative RT-PCR in accessible nonbrain resources in eighteen autism spectrum disorder sib-pairs belonging to the Italian Autism Network cohort. RBFOX1 gene expression was detected in lymphoblastoid cell lines but not in lymphocytes. No significant differences between autism spectrum disorders and non-affected brothers were found. We were not able to replicate in lymphoblastoid cell lines the previously reported RBFOX1 gene downregulation in autism, even if a trend was observed. This might be due to less pronounced transcription level differences in RBFOX1 gene expression in lymphoblastoid cell lines than in brain samples.
Collapse
Affiliation(s)
- Paola Prandini
- Department of Life and Reproduction Sciences, University of Verona, Italy
| | - Chiara Zusi
- Department of Life and Reproduction Sciences, University of Verona, Italy
| | - Giovanni Malerba
- Department of Life and Reproduction Sciences, University of Verona, Italy
| | - Itan
- ITAN: Italian Autism Network, Italy
| | | | | |
Collapse
|
58
|
Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M, Woods AG, Darie CC. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 2014; 35:2046-54. [DOI: 10.1002/elps.201300370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/20/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Kelly Wormwood
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Johannes Thome
- Department of Psychiatry; University of Rostock; Rostock Germany
- College of Medicine; Swansea University; Swansea UK
| | | | - Regina Taurines
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| |
Collapse
|
59
|
Pohl A, Cassidy S, Auyeung B, Baron-Cohen S. Uncovering steroidopathy in women with autism: a latent class analysis. Mol Autism 2014; 5:27. [PMID: 24717046 PMCID: PMC4022124 DOI: 10.1186/2040-2392-5-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Prenatal exposure to increased androgens has been implicated in both polycystic ovary syndrome (PCOS) and autism spectrum conditions (ASC), suggesting that PCOS may be increased among women with ASC. One study suggested elevated steroidopathic symptoms (‘steroidopathy’) in women with ASC. As the symptoms are not independent, we conducted a latent class analysis (LCA). The objectives of the current study are: (1) to test if these findings replicate in a larger sample; and (2) to use LCA to uncover affected clusters of women with ASC. Methods We tested two groups of women, screened using the Autism Spectrum Quotient - Group 1: n = 415 women with ASC (mean age 36.39 ± 11.98 years); and Group 2: n = 415 controls (mean age 39.96 ± 11.92 years). All participants completed the Testosterone-related Medical Questionnaire online. A multiple-group LCA was used to identify differences in latent class structure between women with ASC and controls. Results There were significant differences in frequency of steroid-related conditions and symptoms between women with ASC and controls. A two-class semi-constrained model best fit the data. Based on response patterns, we identified the classes as ‘Typical’ and ‘Steroidopathic’. The prevalence of the ‘Steroidopathic’ class was significantly increased within the ASC group (ΔG2 = 15, df =1, P = 0.0001). In particular, we confirmed higher frequencies of epilepsy, amenorrhea, dysmenorrhea, severe acne, gender dysphoria, and transsexualism, and differences in sexual preference in women with ASC. Conclusions Women with ASC are at increased risk for symptoms and conditions linked to steroids. LCA revealed this steroidopathy despite the apparent underdiagnosis of PCOS.
Collapse
Affiliation(s)
- Alexa Pohl
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK
| | - Sarah Cassidy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology and Behavioural Sciences, Coventry University, James Starley Building, Cox Street, Coventry CV1 5LW, UK
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9 AD, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Douglas House, 18B Trumpington Road, Cambridge CB2 8AH, UK ; CLASS Clinic, Cambridgeshire and Peterborough Mental Health Foundation NHS Trust, The Chitra Sethia Autism Centre, The Gatehouse, Fulborn Hospital, Fulborn, Cambridge CB21 5EF, UK
| |
Collapse
|
60
|
Marrale M, Albanese NN, Calì F, Romano V. Assessing the impact of copy number variants on miRNA genes in autism by Monte Carlo simulation. PLoS One 2014; 9:e90947. [PMID: 24667286 PMCID: PMC3965395 DOI: 10.1371/journal.pone.0090947] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/06/2014] [Indexed: 12/31/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies have investigated the role of de novo Copy Number Variants (CNVs) and microRNAs as important but distinct etiological factors in ASD. We developed a novel computational procedure to assess the potential pathogenic role of microRNA genes overlapping de novo CNVs in ASD patients. Here we show that for chromosomes # 1, 2 and 22 the actual number of miRNA loci affected by de novo CNVs in patients was found significantly higher than that estimated by Monte Carlo simulation of random CNV events. Out of 24 miRNA genes over-represented in CNVs from these three chromosomes only hsa-mir-4436b-1 and hsa-mir-4436b-2 have not been detected in CNVs from non-autistic subjects as reported in the Database of Genomic Variants. Altogether the results reported in this study represent a first step towards a full understanding of how a dysregulated expression of the 24 miRNAs genes affect neurodevelopment in autism. We also propose that the procedure used in this study can be effectively applied to CNVs/miRNA genes association data in other genomic disorders beyond autism.
Collapse
Affiliation(s)
- Maurizio Marrale
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
| | | | - Francesco Calì
- U.O.C. di Genetica Medica Laboratorio di Genetica Molecolare, Associazione Oasi Maria SS. (I.R.C.C.S.), Troina, Italy
| | - Valentino Romano
- Dipartimento di Fisica e Chimica, Università di Palermo, Palermo, Italy
- U.O.C. di Genetica Medica Laboratorio di Genetica Molecolare, Associazione Oasi Maria SS. (I.R.C.C.S.), Troina, Italy
- * E-mail:
| |
Collapse
|
61
|
Smith RG, Fernandes C, Kember R, Schalkwyk LC, Buxbaum J, Reichenberg A, Mill J. Transcriptomic changes in the frontal cortex associated with paternal age. Mol Autism 2014; 5:24. [PMID: 24655730 PMCID: PMC3998024 DOI: 10.1186/2040-2392-5-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/10/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Advanced paternal age is robustly associated with several human neuropsychiatric disorders, particularly autism. The precise mechanism(s) mediating the paternal age effect are not known, but they are thought to involve the accumulation of de novo (epi)genomic alterations. In this study we investigate differences in the frontal cortex transcriptome in a mouse model of advanced paternal age. FINDINGS Transcriptomic profiling was undertaken for medial prefrontal cortex tissue dissected from the male offspring of young fathers (2 month old, 4 sires, n = 16 offspring) and old fathers (10 month old, 6 sires, n = 16 offspring) in a mouse model of advancing paternal age. We found a number of differentially expressed genes in the offspring of older fathers, many previously implicated in the aetiology of autism. Pathway analysis highlighted significant enrichment for changes in functional networks involved in inflammation and inflammatory disease, which are also implicated in autism. CONCLUSIONS We observed widespread alterations to the transcriptome associated with advanced paternal age with an enrichment of genes associated with inflammation, an interesting observation given previous evidence linking the immune system to several neuropsychiatric disorders including autism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jonathan Mill
- Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
62
|
Abstract
New approaches are needed to examine the diverse symptoms and comorbidities of the growing family of neurodevelopmental disorders known as autism spectrum disorder (ASD). ASD originally was thought to be a static, inheritable neurodevelopmental disorder, and our understanding of it is undergoing a major shift. It is emerging as a dynamic system of metabolic and immune anomalies involving many organ systems, including the brain, and environmental exposure. The initial detailed observation and inquiry of patients with ASD and related conditions and the histories of their caregivers and families have been invaluable. How gastrointestinal (GI) factors are related to ASD is not yet clear. Nevertheless, many patients with ASD have a history of previous antibiotic exposure or hospitalization, GI symptoms, abnormal food cravings, and unique intestinal bacterial populations, which have been proposed to relate to variable symptom severity. In addition to traditional scientific inquiry, detailed clinical observation and recording of exacerbations, remissions, and comorbidities are needed. This article reviews the role that enteric short-chain fatty acids, particularly propionic (also called propanoic) acid, produced from ASD-associated GI bacteria, may play in the etiology of some forms of ASD. Human populations that are partial metabolizers of propionic acid are more common than previously thought. The results from pre-clinical laboratory studies show that propionic acid-treated rats display ASD-like repetitive, perseverative, and antisocial behaviors and seizure. Neurochemical changes, consistent and predictive with findings in ASD patients, including neuroinflammation, increased oxidative stress, mitochondrial dysfunction, glutathione depletion, and altered phospholipid/acylcarnitine profiles, have been observed. Propionic acid has bioactive effects on (1) neurotransmitter systems, (2) intracellular acidification and calcium release, (3) fatty acid metabolism, (4) gap junction gating, (5) immune function, and (6) alteration of gene expression that warrant further exploration. Traditional scientific experimentation is needed to verify the hypothesis that enteric short-chain fatty acids may be a potential environmental trigger in some forms of ASD. Novel collaborative developments in systems biology, particularly examining the role of the microbiome and its effects on host metabolism, immune and mitochondrial function, and gene expression, hold great promise in ASD.
Collapse
Affiliation(s)
- Derrick Macfabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, Lawson Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
63
|
Marked elevation of adrenal steroids, especially androgens, in saliva of prepubertal autistic children. Eur Child Adolesc Psychiatry 2014; 23:485-98. [PMID: 24043498 PMCID: PMC4042015 DOI: 10.1007/s00787-013-0472-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022]
Abstract
Autism is diagnosed on the basis of behavioral manifestations, but its biomarkers are not well defined. A strong gender bias typifying autism (it is 4-5 times more prevalent in males) suggests involvement of steroid hormones in autism pathobiology. In order to evaluate the potential roles of such hormones in autism, we compared the salivary levels of 22 steroids in prepubertal autistic male and female children from two age groups (3-4 and 7-9 years old) with those in healthy controls. The steroids were analyzed using gas chromatography-mass spectrometry and radioimmunoassay. Statistical analysis (ANOVA) revealed that autistic children had significantly higher salivary concentrations of many steroid hormones (both C21 and C19) than control children. These anomalies were more prominent in older autistic children and in boys. The levels of androgens (androstenediol, dehydroepiandrosterone, androsterone and their polar conjugates) were especially increased, indicative of precocious adrenarche and predictive of early puberty. The concentrations of the steroid precursor, pregnenolone, and of several pregnanolones were also higher in autistic than in healthy children, but cortisol levels were not different. Some steroids, whose levels are raised in autism (allopregnanolone, androsterone, pregnenolone, dehydroepiandrosterone and their sulfate conjugates) are neuroactive and modulate GABA, glutamate, and opioid neurotransmission, affecting brain development and functioning. These steroids may contribute to autism pathobiology and symptoms such as elevated anxiety, sleep disturbances, sensory deficits, and stereotypies among others. We suggest that salivary levels of selected steroids may serve as biomarkers of autism pathology useful for monitoring the progress of therapy.
Collapse
|
64
|
Alterations in sensitivity to estrogen, dihydrotestosterone, and xenogens in B-lymphocytes from children with autism spectrum disorder and their unaffected twins/siblings. J Toxicol 2013; 2013:159810. [PMID: 24363669 PMCID: PMC3836453 DOI: 10.1155/2013/159810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022] Open
Abstract
It has been postulated that androgen overexposure in a susceptible person leads to excessive brain masculinization and the autism spectrum disorder (ASD) phenotype. In this study, the responses to estradiol (E2), dihydrotestosterone (DHT), and dichlorodiphenyldichloroethylene (DDE) on B-lymphocytes from ASD subjects and controls are compared. B cells were obtained from 11 ASD subjects, their unaffected fraternal twins, and nontwin siblings. Controls were obtained from a different cell bank. Lactate dehydrogenase (LDH) and sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction levels were measured after incubation with different concentrations of E2, DHT, and DDE. XTT/LDH ratio, representative of mitochondria number per cell, was calculated. E2, DHT, and DDE all cause “U”-shaped growth curves, as measured by LDH levels. ASD B cells show less growth depression compared to siblings and controls (P < 0.01). They also have reduced XTT/LDH ratios (P < 0.01) when compared to external controls, whereas siblings had values of XTT/LDH between ASD and external controls. B-lymphocytes from people with ASD exhibit a differential response to E2, DHT, and hormone disruptors in regard to cell growth and mitochondrial upregulation when compared to non-ASD siblings and external controls. Specifically, ASD B-lymphocytes show significantly less growth depression and less mitochondrial upregulation when exposed to these effectors. A mitochondrial deficit in ASD individuals is implied.
Collapse
|
65
|
Voineagu I, Eapen V. Converging Pathways in Autism Spectrum Disorders: Interplay between Synaptic Dysfunction and Immune Responses. Front Hum Neurosci 2013; 7:738. [PMID: 24223544 PMCID: PMC3819618 DOI: 10.3389/fnhum.2013.00738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, yet genetically heterogeneous neurodevelopmental conditions. Recent genome-wide association and gene expression studies have provided evidence supporting the notion that the large number of genetic variants associated with ASD converge toward a core set of dysregulated biological processes. Here we review recent data demonstrating the involvement of synaptic dysfunction and abnormal immune responses in ASD, and discuss the functional interplay between the two phenomena.
Collapse
Affiliation(s)
- Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, NSW , Australia
| | | |
Collapse
|
66
|
Zettergren A, Jonsson L, Johansson D, Melke J, Lundström S, Anckarsäter H, Lichtenstein P, Westberg L. Associations between polymorphisms in sex steroid related genes and autistic-like traits. Psychoneuroendocrinology 2013; 38:2575-84. [PMID: 23867117 DOI: 10.1016/j.psyneuen.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 01/27/2023]
Abstract
Sex differences in psychiatric disorders are common, which is particularly striking in autism spectrum disorders (ASDs) that are four times more prevalent in boys. High levels of testosterone during early development have been hypothesized to be a risk factor for ASDs, supported by several studies showing fetal testosterone levels, as well as indirect measures of prenatal androgenization, to be associated with ASDs and autistic-like traits (ALTs). Further, the importance of sex steroid related genes in ASDs is supported by studies reporting associations between polymorphisms in genes involved in sex steroid synthesis/metabolism and ASDs and ALTs. The aim of the present study was to investigate possible associations between 29 single nucleotide polymorphisms (SNPs) in eight genes related to sex steroids and autistic features. Individuals included in the study belong to a subset (n=1771) from The Child and Adolescent Twin Study in Sweden (CATSS), which are all assessed for ALTs. For two SNPs, rs2747648 located in the 3'-UTR of ESR1 encoding the estrogen receptor alpha and rs523349 (Leu89Val) located in SRD5A2 encoding 5-alpha-reductase, type 2, highly significant associations with ALTs were found in boys and girls, respectively. The results of the present study suggest that SNPs in sex steroid related genes, known to affect gene expression (rs2747648 in ESR1) and enzymatic activity (Leu89Val in SRD5A2), seem to be associated with ALTs in a general population. In conclusion, the current findings provide further support for a role of sex steroids in the pathophysiology of ASDs.
Collapse
Affiliation(s)
- Anna Zettergren
- Institute of Neuroscience and Physiology, Department of Pharmacology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
McFadden K, Minshew NJ. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci 2013; 7:671. [PMID: 24155705 PMCID: PMC3804918 DOI: 10.3389/fnhum.2013.00671] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
Current theories concerning the cause of autism spectrum disorders (ASDs) have converged on the concept of abnormal development of brain connectivity. This concept is supported by accumulating evidence from functional imaging, diffusion tensor imaging, and high definition fiber tracking studies which suggest altered microstructure in the axonal tracts connecting cortical areas may underly many of the cognitive manifestations of ASD. Additionally, large-scale genomic studies implicate numerous gene candidates known or suspected to mediate neuritic outgrowth and axonal guidance in fetal and perinatal life. Neuropathological observations in postmortem ASD brain samples further support this model and include subtle disturbances of cortical lamination and subcortical axonal morphology. Of note is the relatively common finding of poor differentiation of the gray–white junction associated with an excess superficial white matter or “interstitial” neurons (INs). INs are thought to be remnants of the fetal subplate, a transient structure which plays a key role in the guidance and morphogenesis of thalamocortical and cortico-cortical connections and the organization of cortical columnar architecture. While not discounting the importance of synaptic dysfunction in the etiology of ASD, this paper will briefly review the cortical abnormalities and genetic evidence supporting a model of dysregulated axonal growth and guidance as key developmental processes underlying the clinical manifestations of ASD.
Collapse
Affiliation(s)
- Kathryn McFadden
- Department of Neurobiology, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
68
|
Sarachana T, Hu VW. Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism. Mol Autism 2013; 4:39. [PMID: 24119295 PMCID: PMC4016566 DOI: 10.1186/2040-2392-4-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/19/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that RORA regulates the gene for aromatase, which converts androgen to estrogen, and that male and female hormones regulate RORA in opposite directions, with androgen suppressing RORA, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias in ASD. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. METHODS Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipitation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. RESULTS Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between -10055 bp and -2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ERα interacts with the coactivator NCOA5 on the RORA promoter. siRNA-mediated knockdown of SUMO1 and NCOA5 attenuate the sex hormone effects on RORA expression. CONCLUSIONS AR and SUMO1 are involved in the suppression RORA expression by androgen, while ERα and NCOA5 collaborate in the up-regulation of RORA by estrogen. While this study offers a better understanding of molecular mechanisms involved in sex hormone regulation of RORA, it also reveals another layer of complexity with regard to gene regulation in ASD. Inasmuch as coregulators are capable of interacting with a multitude of transcription factors, aberrant expression of coregulator proteins, as we have seen previously in lymphoblasts from individuals with ASD, may contribute to the polygenic nature of gene dysregulation in ASD.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC 20037, USA.
| | | |
Collapse
|
69
|
Current progress and challenges in the search for autism biomarkers. DISEASE MARKERS 2013; 35:55-65. [PMID: 24167349 PMCID: PMC3774962 DOI: 10.1155/2013/476276] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/06/2013] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) encompass a range of neurodevelopmental conditions that are clinically and etiologically very heterogeneous. ASD is currently diagnosed entirely on behavioral criteria, but intensive research efforts are focused on identifying biological markers for disease risk and early diagnosis. Here, we discuss recent progress toward identifying biological markers for ASD and highlight specific challenges as well as ethical aspects of translating ASD biomarker research into the clinic.
Collapse
|
70
|
Cheng Y, Quinn JF, Weiss LA. An eQTL mapping approach reveals that rare variants in the SEMA5A regulatory network impact autism risk. Hum Mol Genet 2013; 22:2960-72. [PMID: 23575222 PMCID: PMC3690972 DOI: 10.1093/hmg/ddt150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/29/2013] [Indexed: 01/05/2023] Open
Abstract
To date, genome-wide single nucleotide polymorphism (SNP) and copy number variant (CNV) association studies of autism spectrum disorders (ASDs) have led to promising signals but not to easily interpretable or translatable results. Our own genome-wide association study (GWAS) showed significant association to an intergenic SNP near Semaphorin 5A (SEMA5A) and provided evidence for reduced expression of the same gene. In a novel GWAS follow-up approach, we map an expression regulatory pathway for a GWAS candidate gene, SEMA5A, in silico by using population expression and genotype data sets. We find that the SEMA5A regulatory network significantly overlaps rare autism-specific CNVs. The SEMA5A regulatory network includes previous autism candidate genes and regions, including MACROD2, A2BP1, MCPH1, MAST4, CDH8, CADM1, FOXP1, AUTS2, MBD5, 7q21, 20p, USH2A, KIRREL3, DBF4B and RELN, among others. Our results provide: (i) a novel data-derived network implicated in autism, (ii) evidence that the same pathway seeded by an initial SNP association shows association with rare genetic variation in ASDs, (iii) a potential mechanism of action and interpretation for the previous autism candidate genes and genetic variants that fall in this network, and (iv) a novel approach that can be applied to other candidate genes for complex genetic disorders. We take a step towards better understanding of the significance of SEMA5A pathways in autism that can guide interpretation of many other genetic results in ASDs.
Collapse
Affiliation(s)
| | | | - Lauren Anne Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
71
|
Chien WH, Gau SSF, Chen CH, Tsai WC, Wu YY, Chen PH, Shang CY, Chen CH. Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism 2013; 4:23. [PMID: 23815876 PMCID: PMC3723673 DOI: 10.1186/2040-2392-4-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Comparative gene expression profiling analysis is useful in discovering differentially expressed genes associated with various diseases, including mental disorders. Autism spectrum disorders (ASD) are a group of complex childhood-onset neurodevelopmental and genetic disorders characterized by deficits in language development and verbal communication, impaired reciprocal social interaction, and the presence of repetitive behaviors or restricted interests. The study aimed to identify novel genes associated with the pathogenesis of ASD. Methods We conducted comparative total gene expression profiling analysis of lymphoblastoid cell lines (LCL) between 16 male patients with ASD and 16 male control subjects to screen differentially expressed genes associated with ASD. We verified one of the differentially expressed genes, FOXP1, using real-time quantitative PCR (RT-qPCR) in a sample of 83 male patients and 83 male controls that included the initial 16 male patients and male controls, respectively. Results A total of 252 differentially expressed probe sets representing 202 genes were detected between the two groups, including 89 up- and 113 downregulated genes in the ASD group. RT-qPCR verified significant elevation of the FOXP1 gene transcript of LCL in a sample of 83 male patients (10.46 ± 11.34) compared with 83 male controls (5.17 ± 8.20, P = 0.001). Conclusions Comparative gene expression profiling analysis of LCL is useful in discovering novel genetic markers associated with ASD. Elevated gene expression of FOXP1 might contribute to the pathogenesis of ASD. Clinical trial registration Identifier: NCT00494754
Collapse
Affiliation(s)
- Wei-Hsien Chien
- Department of Psychiatry, National Taiwan University College of Medicine, No,1 Jen-Ai Rd, Section 1, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Griesi-Oliveira K, Sunaga DY, Alvizi L, Vadasz E, Passos-Bueno MR. Stem cells as a good tool to investigate dysregulated biological systems in autism spectrum disorders. Autism Res 2013; 6:354-61. [PMID: 23801657 DOI: 10.1002/aur.1296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/10/2013] [Indexed: 12/23/2022]
Abstract
Identification of the causes of autism spectrum disorders (ASDs) is hampered by their genetic heterogeneity; however, the different genetic alterations leading to ASD seem to be implicated in the disturbance of common molecular pathways or biological processes. In this scenario, the search for differentially expressed genes (DEGs) between ASD patients and controls is a good alternative to identify the molecular etiology of such disorders. Here, we employed genome-wide expression analysis to compare the transcriptome of stem cells of human exfoliated deciduous teeth (SHEDs) of idiopathic autistic patients (n = 7) and control samples (n = 6). Nearly half of the 683 identified DEGs are expressed in the brain (P = 0.003), and a significant number of them are involved in mechanisms previously associated with ASD such as protein synthesis, cytoskeleton regulation, cellular adhesion and alternative splicing, which validate the use of SHEDs to disentangle the causes of autism. Autistic patients also presented overexpression of genes regulated by androgen receptor (AR), and AR itself, which in turn interacts with CHD8 (chromodomain helicase DNA binding protein 8), a gene recently shown to be associated with the cause of autism and found to be upregulated in some patients tested here. These data provide a rationale for the mechanisms through which CHD8 leads to these diseases. In summary, our results suggest that ASD share deregulated pathways and revealed that SHEDs represent an alternative cell source to be used in the understanding of the biological mechanisms involved in the etiology of ASD.
Collapse
Affiliation(s)
- Karina Griesi-Oliveira
- Centro de Estudos do Genoma Humano, Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | | | | | | | | |
Collapse
|
73
|
Abstract
Autism spectrum disorders (ASDs) are highly heritable, and six genome-wide association studies (GWASs) of ASDs have been published to date. In this study, we have integrated the findings from these GWASs with other genetic data to identify enriched genetic networks that are associated with ASDs. We conducted bioinformatics and systematic literature analyses of 200 top-ranked ASD candidate genes from five published GWASs. The sixth GWAS was used for replication and validation of our findings. Further corroborating evidence was obtained through rare genetic variant studies, that is, exome sequencing and copy number variation (CNV) studies, and/or other genetic evidence, including candidate gene association, microRNA and gene expression, gene function and genetic animal studies. We found three signaling networks regulating steroidogenesis, neurite outgrowth and (glutamatergic) synaptic function to be enriched in the data. Most genes from the five GWASs were also implicated--independent of gene size--in ASDs by at least one other line of genomic evidence. Importantly, A-kinase anchor proteins (AKAPs) functionally integrate signaling cascades within and between these networks. The three identified protein networks provide an important contribution to increasing our understanding of the molecular basis of ASDs. In addition, our results point towards the AKAPs as promising targets for developing novel ASD treatments.
Collapse
|
74
|
Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Mol Autism 2013; 4:14. [PMID: 23697635 PMCID: PMC3665583 DOI: 10.1186/2040-2392-4-14] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. METHODS Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. RESULTS The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as development of the cortex and cerebellum, cognition, memory, and spatial learning. Independent ChIP-quantitative PCR analyses confirm binding of RORA1 to promoter regions of selected ASD-associated genes, including A2BP1, CYP19A1, ITPR1, NLGN1, and NTRK2, whose expression levels (in addition to HSD17B10) are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. CONCLUSIONS Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD.
Collapse
Affiliation(s)
- Tewarit Sarachana
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20037, USA.
| | | |
Collapse
|
75
|
Woods AG, Ngounou Wetie AG, Sokolowska I, Russell S, Ryan JP, Michel TM, Thome J, Darie CC. Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry 2013; 1:6. [PMID: 25408899 PMCID: PMC4223881 DOI: 10.1186/2049-9256-1-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/13/2012] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorders (ASDs) are increasing in incidence but have an incompletely understood etiology. Tools for uncovering clues to the cause of ASDs and means for diagnoses are valuable to the field. Mass Spectrometry (MS) has been a useful method for evaluating differences between individuals with ASDs versus matched controls. Different biological substances can be evaluated using MS, including urine, blood, saliva, and hair. This technique has been used to evaluate relatively unsupported hypotheses based on introduction of exogenous factors, such as opiate and heavy metal excretion theories of ASDs. MS has also been used to support disturbances in serotonin-related molecules, which have been more consistently observed in ASDs. Serotonergic system markers, markers for oxidative stress, cholesterol system disturbances, peptide hypo-phosphorylation and methylation have been measured using MS in ASDs, although further analyses with larger numbers of subjects are needed (as well as consideration of behavioral data). Refinements in MS and data analysis are ongoing, allowing for the possibility that future studies examining body fluids and specimens from ASD subjects could continue to yield novel insights. This review summarizes MS investigations that have been conducted to study ASD to date and provides insight into future promising applications for this technique, with focus on proteomic studies.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Armand G Ngounou Wetie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Stefanie Russell
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Jeanne P Ryan
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| |
Collapse
|
76
|
Peripheral blood gene expression signature differentiates children with autism from unaffected siblings. Neurogenetics 2013; 14:143-52. [PMID: 23625158 DOI: 10.1007/s10048-013-0363-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders with high heritability, yet a majority of genetic contribution to pathophysiology is not known. Siblings of individuals with ASD are at increased risk for ASD and autistic traits, but the genetic contribution for simplex families is estimated to be less when compared to multiplex families. To explore the genomic (dis-) similarity between proband and unaffected sibling in simplex families, we used genome-wide gene expression profiles of blood from 20 proband-unaffected sibling pairs and 18 unrelated control individuals. The global gene expression profiles of unaffected siblings were more similar to those from probands as they shared genetic and environmental background. A total of 189 genes were significantly differentially expressed between proband-sib pairs (nominal p < 0.01) after controlling for age, sex, and family effects. Probands and siblings were distinguished into two groups by cluster analysis with these genes. Overall, unaffected siblings were equally distant from the centroid of probands and from that of unrelated controls with the differentially expressed genes. Interestingly, five of 20 siblings had gene expression profiles that were more similar to unrelated controls than to their matched probands. In summary, we found a set of genes that distinguished probands from the unaffected siblings, and a subgroup of unaffected siblings who were more similar to probands. The pathways that characterized probands compared to siblings using peripheral blood gene expression profiles were the up-regulation of ribosomal, spliceosomal, and mitochondrial pathways, and the down-regulation of neuroreceptor-ligand, immune response and calcium signaling pathways. Further integrative study with structural genetic variations such as de novo mutations, rare variants, and copy number variations would clarify whether these transcriptomic changes are structural or environmental in origin.
Collapse
|
77
|
Miyauchi S, Voineagu I. Autism susceptibility genes and the transcriptional landscape of the human brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:303-18. [PMID: 24290390 DOI: 10.1016/b978-0-12-418700-9.00010-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism is the most severe end of a spectrum of neurodevelopmental conditions, autism spectrum disorders (ASD). ASD are genetically heterogeneous, and hundreds of genes have been implicated in the etiology of the disease. Here, we discuss the contribution of brain transcriptome studies in advancing our understanding of the genetic mechanisms of ASD and review recent work characterizing the spatial and temporal variation of the human brain transcriptome, with a focus on the relevance of these data to autism susceptibility genes.
Collapse
Affiliation(s)
- Shingo Miyauchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
78
|
Hu VW. The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'. FUTURE NEUROLOGY 2013; 8:29-42. [PMID: 23637569 DOI: 10.2217/fnl.12.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication and restricted, repetitive behaviors. As autism spectrum disorders are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the 'trees'). However, no single gene can account for more than 1% of the cases of autism spectrum disorders. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence that suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms that include a variety of epigenetic modifications, as well as noncoding RNA (i.e., the 'forest'). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the 'tip of the iceberg' or the 'edge of the forest' in the genomic landscape of autism.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry & Molecular Medicine, The George Washington University, School of Medicine & Health Sciences, 2300 Eye St., N.W., Washington, DC 20037, USA Tel.: +1 202 994 8431
| |
Collapse
|
79
|
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder diagnosed based on the presence and severity of core abnormalities in social communication and repetitive behavior, yet several studies converge on immune dysregulation as a feature of ASD. Widespread alterations in immune molecules and responses are seen in the brains and periphery of ASD individuals, and early life immune disruptions are associated with ASD. This chapter discusses immune-related environmental and genetic risk factors for ASD, emphasizing population-wide studies and animal research that reveal potential mechanistic pathways involved in the development of ASD-related symptoms. It further reviews immunologic pathologies seen in ASD individuals and how such abnormalities can impact neurodevelopment and behavior. Finally, it evaluates emerging evidence for an immune contribution to the pathogenesis of ASD and a potential role for immunomodulatory effects in current treatments for ASD.
Collapse
Affiliation(s)
- Elaine Y Hsiao
- Division of Biology and Biological Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
80
|
Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One 2012; 7:e49475. [PMID: 23227143 PMCID: PMC3515554 DOI: 10.1371/journal.pone.0049475] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/09/2012] [Indexed: 01/22/2023] Open
Abstract
Autism Spectrum Disorders (ASD) is a spectrum of highly heritable neurodevelopmental disorders in which known mutations contribute to disease risk in 20% of cases. Here, we report the results of the largest blood transcriptome study to date that aims to identify differences in 170 ASD cases and 115 age/sex-matched controls and to evaluate the utility of gene expression profiling as a tool to aid in the diagnosis of ASD. The differentially expressed genes were enriched for the neurotrophin signaling, long-term potentiation/depression, and notch signaling pathways. We developed a 55-gene prediction model, using a cross-validation strategy, on a sample cohort of 66 male ASD cases and 33 age-matched male controls (P1). Subsequently, 104 ASD cases and 82 controls were recruited and used as a validation set (P2). This 55-gene expression signature achieved 68% classification accuracy with the validation cohort (area under the receiver operating characteristic curve (AUC): 0.70 [95% confidence interval [CI]: 0.62–0.77]). Not surprisingly, our prediction model that was built and trained with male samples performed well for males (AUC 0.73, 95% CI 0.65–0.82), but not for female samples (AUC 0.51, 95% CI 0.36–0.67). The 55-gene signature also performed robustly when the prediction model was trained with P2 male samples to classify P1 samples (AUC 0.69, 95% CI 0.58–0.80). Our result suggests that the use of blood expression profiling for ASD detection may be feasible. Further study is required to determine the age at which such a test should be deployed, and what genetic characteristics of ASD can be identified.
Collapse
|
81
|
Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC. Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 2012; 16:1184-95. [PMID: 22304330 PMCID: PMC3823072 DOI: 10.1111/j.1582-4934.2012.01543.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Measuring biomarkers to identify and assess illness is a strategy growing in popularity and relevance. Although already in clinical use for treating and predicting cancer, no biological measurement is used clinically for any psychiatric disorder. Biomarkers could predict the course of a medical problem, and aid in determining how and when to treat. Several studies have indicated that of candidate psychiatric biomarkers detected using proteomic techniques, cholesterol and associated proteins, specifically apolipoproteins (Apos), may be of interest. Cholesterol is necessary for brain development and its synthesis continues at a lower rate in the adult brain. Apos are the protein component of lipoproteins responsible for lipid transport. There is extensive evidence that the levels of cholesterol and Apos may be disturbed in psychiatric disorders, including autistic spectrum disorders (ASD). Here, we describe putative serum biomarkers for psychiatric disorders, and the role of cholesterol and Apos in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Alisa G Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Michel M, Schmidt MJ, Mirnics K. Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol 2012; 72:1277-87. [PMID: 22753382 PMCID: PMC3435446 DOI: 10.1002/dneu.22044] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022]
Abstract
Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies.
Collapse
Affiliation(s)
- Maximilian Michel
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
| | - Martin J Schmidt
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
- Vanderbilt University, Neuroscience Graduate Program, Nashville, Tennessee, United States
| | - Karoly Mirnics
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
- Vanderbilt University, Vanderbilt Kennedy Center for Research on Human Development, Nashville, Tennessee, United States
| |
Collapse
|
83
|
Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L, Weinfeld M, Carter C, Schork N, Pierce K, Courchesne E. Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry 2012; 51:934-44.e2. [PMID: 22917206 PMCID: PMC3756503 DOI: 10.1016/j.jaac.2012.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/31/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with autism have yet emerged. METHOD Using a community-based, prospective, longitudinal method, we identified 60 infants and toddlers at risk for ASDs (autistic disorder and pervasive developmental disorder), 34 at-risk for language delay, 17 at-risk for global developmental delay, and 68 typically developing comparison children. Diagnoses were confirmed via longitudinal follow-up. Each child's mRNA expression profile in peripheral blood mononuclear cells was determined by microarray. RESULTS Potential ASD biomarkers were discovered in one-half of the sample and used to build a classifier, with high diagnostic accuracy in the remaining half of the sample. CONCLUSIONS The mRNA expression abnormalities reliably observed in peripheral blood mononuclear cells, which are safely and easily assayed in infants, offer the first potential peripheral blood-based, early biomarker panel of risk for autism in infants and toddlers. Future work should verify these biomarkers and evaluate whether they may also serve as indirect indices of deviant molecular neural mechanisms in autism.
Collapse
|
84
|
Brief report: life history and neuropathology of a gifted man with Asperger syndrome. J Autism Dev Disord 2012; 42:460-7. [PMID: 21516432 DOI: 10.1007/s10803-011-1259-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite recent interest in the pathogenesis of the autism spectrum disorders (pervasive developmental disorders), neuropathological descriptions of brains of individuals with well documented clinical information and without potentially confounding symptomatology are exceptionally rare. Asperger syndrome differs from classic autism by lack of cognitive impairment or delay in expressive language acquisition. We examined the 1,570 g brain of a 63 year old otherwise healthy mathematician with an Autistic Spectrum Disorder of Asperger subtype. Except for an atypical gyral pattern and megalencephaly, we detected no specific neuropathologic abnormality. Taken together, the behavioral data and pathological findings in this case are compatible with an early neurodevelopmental process affecting multiple neuroanatomic networks, but without a convincing morphologic signature detectable with routine neuropathologic technology.
Collapse
|
85
|
Thomas MA, Klaper RD. Psychoactive pharmaceuticals induce fish gene expression profiles associated with human idiopathic autism. PLoS One 2012; 7:e32917. [PMID: 22701549 PMCID: PMC3368908 DOI: 10.1371/journal.pone.0032917] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/06/2012] [Indexed: 01/23/2023] Open
Abstract
Idiopathic autism, caused by genetic susceptibility interacting with unknown environmental triggers, has increased dramatically in the past 25 years. Identifying environmental triggers has been difficult due to poorly understood pathophysiology and subjective definitions of autism. The use of antidepressants by pregnant women has been associated with autism. These and other unmetabolized psychoactive pharmaceuticals (UPPs) have also been found in drinking water from surface sources, providing another possible exposure route and raising questions about human health consequences. Here, we examined gene expression patterns of fathead minnows treated with a mixture of three psychoactive pharmaceuticals (fluoxetine, venlafaxine & carbamazepine) in dosages intended to be similar to the highest observed conservative estimates of environmental concentrations. We conducted microarray experiments examining brain tissue of fish exposed to individual pharmaceuticals and a mixture of all three. We used gene-class analysis to test for enrichment of gene sets involved with ten human neurological disorders. Only sets associated with idiopathic autism were unambiguously enriched. We found that UPPs induce autism-like gene expression patterns in fish. Our findings suggest a new potential trigger for idiopathic autism in genetically susceptible individuals involving an overlooked source of environmental contamination.
Collapse
Affiliation(s)
- Michael A Thomas
- Department of Biological Sciences, Idaho State University School, Pocatello, Idaho, United States of America.
| | | |
Collapse
|
86
|
Abu-Amero KK, Azad TA, Spaeth GL, Myers J, Katz LJ, Moster M, Bosley TM. Absence of altered expression of optineurin in primary open angle glaucoma patients. Mol Vis 2012; 18:1421-7. [PMID: 22690120 PMCID: PMC3370688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the expression level of the optineurin gene (OPTN) in the blood of primary open angle glaucoma (POAG) patients to determine if altered expression is playing a role in primary open angle glaucoma systemically. METHODS Patients (n=47) were eligible for inclusion if they met standard clinical criteria for POAG, including age greater than 40 years, intraocular pressure ≥21 mmHg in at least one eye before treatment, normal-appearing anterior chamber angles bilaterally on gonioscopy, and optic nerve injury characteristic of POAG. Control subjects (n=27) were recruited who were free from glaucoma by examination. DNA from patient was sequenced to look for possible mutations in the coding region of OPTN or its promoter. RNA was extracted from leukocytes of patients and controls and converted to cDNA by reverse transcriptase enzyme, and quantitative PCR was used to assess expression levels of OPTN and the β-globulin gene. The ratio of OPTN expression to β-globulin gene expression for POAG patients was compared to that of controls and to clinical characteristics of POAG patients. RESULTS No mutation(s) were detected in any of the patients after sequencing the full OPTN gene and its promoter region. Mean OPTN (p≤0.35), and β-globulin (p≤0.48) gene expression values were statistically similar in POAG patients and controls. OPTN/β-globulin (p≤0.83) ratios were also indistinguishable between POAG patients and controls. OPTN/β-globulin ratios were not significantly associated with age, sex, or ethnicity of patients within the POAG group. Similarly, OPTN/β-globulin ratios were not significantly affected by ethnicity or clinical parameters related to POAG severity including maximum intraocular pressure, vertical cup-to-disk ratio, static perimetry mean deviation, or static perimetry pattern standard deviation. CONCLUSIONS OPTN expression is not altered in the blood of POAG patients, suggesting that OPTN expression is not changed systemically and implying that other mechanisms are involved in POAG pathogenesis.
Collapse
Affiliation(s)
- Khaled K. Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia,Department of Ophthalmology, College of Medicine, University of Florida, Jacksonville, FL
| | - Taif Anwar Azad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - George L. Spaeth
- William and Anna Goldberg Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan Myers
- William and Anna Goldberg Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - L. Jay Katz
- William and Anna Goldberg Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Marlene Moster
- William and Anna Goldberg Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Thomas M. Bosley
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
87
|
Holt R, Sykes NH, Conceição IC, Cazier JB, Anney RJL, Oliveira G, Gallagher L, Vicente A, Monaco AP, Pagnamenta AT. CNVs leading to fusion transcripts in individuals with autism spectrum disorder. Eur J Hum Genet 2012; 20:1141-7. [PMID: 22549408 PMCID: PMC3476715 DOI: 10.1038/ejhg.2012.73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is strong evidence that rare copy number variants (CNVs) have a role in susceptibility to autism spectrum disorders (ASDs). Much research has focused on how CNVs mediate a phenotypic effect by altering gene expression levels. We investigated an alternative mechanism whereby CNVs combine the 5′ and 3′ ends of two genes, creating a ‘fusion gene'. Any resulting mRNA with an open reading frame could potentially alter the phenotype via a gain-of-function mechanism. We examined 2382 and 3096 rare CNVs from 996 individuals with ASD and 1287 controls, respectively, for potential to generate fusion transcripts. There was no increased burden in individuals with ASD; 122/996 cases harbored at least one rare CNV of this type, compared with 179/1287 controls (P=0.89). There was also no difference in the overall frequency distribution between cases and controls. We examined specific examples of such CNVs nominated by case–control analysis and a candidate approach. Accordingly, a duplication involving REEP1-POLR1A (found in 3/996 cases and 0/1287 controls) and a single occurrence CNV involving KIAA0319-TDP2 were tested. However, no fusion transcripts were detected by RT-PCR. Analysis of additional samples based on cell line availability resulted in validation of a MAPKAPK5-ACAD10 fusion transcript in two probands. However, this variant was present in controls at a similar rate and is unlikely to influence ASD susceptibility. In summary, although we find no evidence that fusion-gene generating CNVs lead to ASD susceptibility, discovery of a MAPKAPK5-ACAD10 transcript with an estimated frequency of ∼1/200 suggests that gain-of-function mechanisms should be considered in future CNVs studies.
Collapse
Affiliation(s)
- Richard Holt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Abu-Amero KK, Azad TA, Spaeth GL, Myers J, Katz LJ, Moster M, Bosley TM. Unaltered myocilin expression in the blood of primary open angle glaucoma patients. Mol Vis 2012; 18:1004-9. [PMID: 22550394 PMCID: PMC3339032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/18/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the expression of the myocilin gene (MYOC) in the blood of primary open angle glaucoma (POAG) patients to determine if altered systemic expression is playing a role. METHODS Patients (n=47) were eligible for inclusion if they met standard clinical criteria for POAG. Control subjects (n=27) were recruited who were free from glaucoma by examination. RNA was extracted from leukocytes of patients and controls and converted to cDNA by reverse transcriptase enzyme, and quantitative PCR was used to assess expression levels of MYOC and the house keeping gene β-globulin (HBB). The ratio of MYOC expression to HBB expression for POAG patients was compared to that of controls and to clinical characteristics of POAG patients. RESULTS Mean gene expression values were statistically similar in POAG patients and controls for both MYOC (p≤0.55) and HBB (p≤0.48). MYOC/HBB ratios were also statistically indistinguishable between POAG patients and controls (p≤0.90). MYOC/HBB ratios were not significantly associated with age, sex, or ethnicity of patients within the POAG group. Similarly, MYOC/HBB ratios were not significantly associated with clinical parameters related to POAG severity, including maximum intraocular pressure, vertical cup-to-disk ratio, static perimetry mean deviation, or static perimetry pattern standard deviation. CONCLUSIONS MYOC expression is not altered in the blood of POAG patients, unlike MYOC expression in trabecular meshwork (TM) cultures. These results suggests that MYOC expression is not altered systemically but rather that MYOC expression may contribute to POAG pathogenesis in specific tissues such as TM.
Collapse
Affiliation(s)
- Khaled K Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
89
|
Hu VW. From genes to environment: using integrative genomics to build a "systems-level" understanding of autism spectrum disorders. Child Dev 2012; 84:89-103. [PMID: 22497667 DOI: 10.1111/j.1467-8624.2012.01759.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism. Emphasis is placed on the need to study defined ASD phenotypes as well as to integrate large-scale "omics" data in order to develop a "systems-level" perspective of ASD, which in turn is necessary to allow predictions regarding responses to specific perturbations and interventions.
Collapse
Affiliation(s)
- Valerie W Hu
- The George Washington University, School of Medicine and Health Sciences.
| |
Collapse
|
90
|
Lee TL, Raygada MJ, Rennert OM. Integrative gene network analysis provides novel regulatory relationships, genetic contributions and susceptible targets in autism spectrum disorders. Gene 2012; 496:88-96. [PMID: 22306264 PMCID: PMC3303594 DOI: 10.1016/j.gene.2012.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of diseases exhibiting impairment in social drive, communication/language skills and stereotyped behaviors. Though an increased number of candidate genes and molecular interactions have been identified by various approaches, the pathogenesis remains elusive. Based on clinical observations, data from accessible GWAS and expression datasets we identified ASDs gene candidates. Integrative gene network and a novel CNV-centric Node Network (CNN) analysis method highlighted ASDs-associated key elements and biological processes. Functional analysis identified neurological functions including synaptic cholinergic receptor (CHRNA) families, dopamine receptor (DRD2), and correlations between social behavior and oxytocin related pathways. CNN analysis of genome-wide genetic and expression data identified inheritance-related clusters related to PTEN/TSC1/FMR1 and mTor/PI3K regulation. Integrative analysis identified potential regulators of networks, specifically TNF and beta-estradiol, suggesting a potential central role in ASDs. Our data provide information on potential disease mechanisms, and key regulators that may generate novel postulations, and diagnostic molecular biomarkers.
Collapse
Affiliation(s)
- Tin-Lap Lee
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
91
|
Ebstein RP, Knafo A, Mankuta D, Chew SH, Lai PS. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav 2012; 61:359-79. [PMID: 22245314 DOI: 10.1016/j.yhbeh.2011.12.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXT) are social hormones and mediate affiliative behaviors in mammals and as recently demonstrated, also in humans. There is intense interest in how these simple nonapeptides mediate normal and abnormal behavior, especially regarding disorders of the social brain such as autism that are characterized by deficits in social communication and social skills. The current review examines in detail the behavioral genetics of the first level of human AVP-OXT pathway genes including arginine vasopressin 1a receptor (AVPR1a), oxytocin receptor (OXTR), AVP (AVP-neurophysin II [NPII]) and OXT (OXT neurophysin I [NPI]), oxytocinase/vasopressinase (LNPEP), ADP-ribosyl cyclase (CD38) and arginine vasopressin 1b receptor (AVPR1b). Wherever possible we discuss evidence from a variety of research tracks including molecular genetics, imaging genomics, pharmacology and endocrinology that support the conclusions drawn from association studies of social phenotypes and detail how common polymorphisms in AVP-OXT pathway genes contribute to the behavioral hard wiring that enables individual Homo sapiens to interact successfully with conspecifics. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
92
|
Kaya N, Colak D, Albakheet A, Al-Owain M, Abu-Dheim N, Al-Younes B, Al-Zahrani J, Mukaddes NM, Dervent A, Al-Dosari N, Al-Odaib A, Kayaalp IV, Al-Sayed M, Al-Hassnan Z, Nester MJ, Al-Dosari M, Al-Dhalaan H, Chedrawi A, Gunoz H, Karakas B, Sakati N, Alkuraya FS, Gascon GG, Ozand PT. A novel X-linked disorder with developmental delay and autistic features. Ann Neurol 2011; 71:498-508. [DOI: 10.1002/ana.22673] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/04/2011] [Accepted: 11/04/2011] [Indexed: 12/21/2022]
|
93
|
Carayol J, Sacco R, Tores F, Rousseau F, Lewin P, Hager J, Persico AM. Converging evidence for an association of ATP2B2 allelic variants with autism in male subjects. Biol Psychiatry 2011; 70:880-7. [PMID: 21757185 DOI: 10.1016/j.biopsych.2011.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/16/2011] [Accepted: 05/08/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autism is a severe developmental disorder, with strong genetic underpinnings. Previous genome-wide scans unveiled a linkage region spanning 3.5 Mb, located on human chromosome 3p25. This region encompasses the ATP2B2 gene, encoding the plasma membrane calcium-transporting ATPase 2 (PMCA2), which extrudes calcium (Ca2+) from the cytosol into the extracellular space. Multiple lines of evidence support excessive intracellular Ca2+ signaling in autism spectrum disorder (ASD), making ATP2B2 an attractive candidate gene. METHODS We performed a family-based association study in an exploratory sample of 277 autism genetic resource exchange families and in a replication sample including 406 families primarily recruited in Italy. RESULTS Several markers were significantly associated with ASD in the exploratory sample, and the same risk alleles at single nucleotide polymorphisms rs3774180, rs2278556, and rs241509 were found associated with ASD in the replication sample after correction for multiple testing. In both samples, the association was present in male subjects only. Markers associated with autism are all comprised within a single block of strong linkage disequilibrium spanning several exons, and the "risk" allele seems to follow a recessive mode of transmission. CONCLUSIONS These results provide converging evidence for an association between ATP2B2 gene variants and autism in male subjects, spurring interest into the identification of functional variants, most likely involved in the homeostasis of Ca2+ signaling. Additional support comes from a recent genome-wide association study by the Autism Genome Project, which highlights the same linkage disequilibrium region of the gene.
Collapse
|
94
|
Kuwano Y, Kamio Y, Kawai T, Katsuura S, Inada N, Takaki A, Rokutan K. Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children. PLoS One 2011; 6:e24723. [PMID: 21935445 PMCID: PMC3174190 DOI: 10.1371/journal.pone.0024723] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/18/2011] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control), healthy mothers having children with ASD (asdMO), and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder.
Collapse
Affiliation(s)
- Yuki Kuwano
- Department of Stress Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
95
|
Ruta L, Ingudomnukul E, Taylor K, Chakrabarti B, Baron-Cohen S. Increased serum androstenedione in adults with autism spectrum conditions. Psychoneuroendocrinology 2011; 36:1154-63. [PMID: 21398041 DOI: 10.1016/j.psyneuen.2011.02.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/31/2011] [Accepted: 02/11/2011] [Indexed: 12/15/2022]
Abstract
Molecular and behavioural evidence points to an association between sex-steroid hormones and autism spectrum conditions (ASC) and/or autistic traits. Prenatal androgen levels are associated with autistic traits, and several genes involved in steroidogenesis are associated with autism, Asperger Syndrome and/or autistic traits. Furthermore, higher rates of androgen-related conditions (such as Polycystic Ovary Syndrome, hirsutism, acne and hormone-related cancers) are reported in women with autism spectrum conditions. A key question therefore is if serum levels of gonadal and adrenal sex-steroids (particularly testosterone, estradiol, dehydroepiandrosterone sulfate and androstenedione) are elevated in individuals with ASC. This was tested in a total sample of n=166 participants. The final eligible sample for hormone analysis comprised n=128 participants, n=58 of whom had a diagnosis of Asperger Syndrome or high functioning autism (33 males and 25 females) and n=70 of whom were age- and IQ-matched typical controls (39 males and 31 females). ASC diagnosis (without any interaction with sex) strongly predicted androstenedione levels (p<0.01), and serum androstenedione levels were significantly elevated in the ASC group (Mann-Whitney W=2677, p=0.002), a result confirmed by permutation testing in females (permutation-corrected p=0.02). This result is discussed in terms of androstenedione being the immediate precursor of, and being converted into, testosterone, dihydrotestosterone, or estrogens in hormone-sensitive tissues and organs.
Collapse
Affiliation(s)
- Liliana Ruta
- Autism Research Centre, Department of Psychiatry, Cambridge University, Cambridge, UK.
| | | | | | | | | |
Collapse
|
96
|
Kerzendorfer C, Hart L, Colnaghi R, Carpenter G, Alcantara D, Outwin E, Carr AM, O’Driscoll M. CUL4B-deficiency in humans: Understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mech Ageing Dev 2011; 132:366-73. [DOI: 10.1016/j.mad.2011.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 02/08/2011] [Indexed: 01/21/2023]
|
97
|
Gene expression studies in autism: moving from the genome to the transcriptome and beyond. Neurobiol Dis 2011; 45:69-75. [PMID: 21839838 DOI: 10.1016/j.nbd.2011.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 07/20/2011] [Indexed: 12/22/2022] Open
Abstract
Autism is a clinically and genetically heterogeneous neurodevelopmental disorder. Although multiple genes, risk alleles and copy number variants (CNVs) have been implicated in ASD, none of the currently established genetic causes of ASD accounts for more than 2% of the cases, and a genetic diagnosis is not yet possible for most autism patients. Thus, advancing our understanding of autism genetics requires the integration of genetic information with information on genome function, as provided by transcriptomic data. We review recent autism transcriptome studies, in the context of current knowledge of autism genetics, and discuss the utility of gene expression data in evaluating the functional relevance of genetic variants and identifying common molecular pathways dysregulated in autism.
Collapse
|
98
|
Sbacchi S, Acquadro F, Calò I, Calì F, Romano V. Functional annotation of genes overlapping copy number variants in autistic patients: focus on axon pathfinding. Curr Genomics 2011; 11:136-45. [PMID: 20885821 PMCID: PMC2874223 DOI: 10.2174/138920210790886880] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 12/30/2022] Open
Abstract
We have used Gene Ontology (GO) and pathway analyses to uncover the common functions associated to the genes overlapping Copy Number Variants (CNVs) in autistic patients. Our source of data were four published studies [1-4]. We first applied a two-step enrichment strategy for autism-specific genes. We fished out from the four mentioned studies a list of 2928 genes overall overlapping 328 CNVs in patients and we first selected a sub-group of 2044 genes after excluding those ones that are also involved in CNVs reported in the Database of Genomic Variants (enrichment step 1). We then selected from the step 1-enriched list a sub-group of 514 genes each of which was found to be deleted or duplicated in at least two patients (enrichment step 2). The number of statistically significant processes and pathways identified by the Database for Annotation, Visualization and Integrated Discovery and Ingenuity Pathways Analysis softwares with the step 2-enriched list was significantly higher compared to the step 1-enriched list. In addition, statistically significant GO terms, biofunctions and pathways related to nervous system development and function were exclusively identified by the step 2-enriched list of genes. Interestingly, 21 genes were associated to axon growth and pathfinding. The latter genes and other ones associated to nervous system in this study represent a new set of autism candidate genes deserving further investigation. In summary, our results suggest that the autism’s “connectivity genes” in some patients affect very early phases of neurodevelopment, i.e., earlier than synaptogenesis.
Collapse
Affiliation(s)
- Silvia Sbacchi
- Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche, Università degli Studi di Palermo, Palermo
| | | | | | | | | |
Collapse
|
99
|
Napolioni V, Persico AM, Porcelli V, Palmieri L. The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 2011; 44:83-92. [PMID: 21691713 DOI: 10.1007/s12035-011-8192-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Autism spectrum disorder (ASD) is a severe, complex neurodevelopmental disorder characterized by impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and behaviors. Recent evidence has unveiled an important role for calcium (Ca(2+)) signaling in the pathogenesis of ASD. Post-mortem studies of autistic brains have pointed toward abnormalities in mitochondrial function as possible downstream consequences of altered Ca(2+) signaling, abnormal synapse formation, and dysreactive immunity. SLC25A12, an ASD susceptibility gene, encodes the Ca(2+)-regulated mitochondrial aspartate-glutamate carrier, isoform 1 (AGC1). AGC1 is an important component of the malate/aspartate shuttle, a crucial system supporting oxidative phosphorylation and adenosine triphosphate (ATP) production. Here, we review the physiological roles of AGC1, its links to calcium homeostasis, and its involvement in autism pathogenesis.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Molecular Psychiatry & Neurogenetics, University Campus Bio-Medico, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | | | | | | |
Collapse
|
100
|
Mamdani F, Berlim MT, Beaulieu MM, Labbe A, Merette C, Turecki G. Gene expression biomarkers of response to citalopram treatment in major depressive disorder. Transl Psychiatry 2011; 1:e13. [PMID: 22832429 PMCID: PMC3309465 DOI: 10.1038/tp.2011.12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is significant variability in antidepressant treatment outcome, with ∼30-40% of patients with major depressive disorder (MDD) not presenting with adequate response even following several trials. To identify potential biomarkers of response, we investigated peripheral gene expression patterns of response to antidepressant treatment in MDD. We did this using Affymetrix HG-U133 Plus2 microarrays in blood samples, from untreated individuals with MDD (N=63) ascertained at a community outpatient clinic, pre and post 8-week treatment with citalopram, and used a regression model to assess the impact of gene expression differences on antidepressant response. We carried out technical validation of significant probesets by quantitative reverse transcriptase PCR and conducted central nervous system follow-up of the most significant result in post-mortem brain samples from 15 subjects who died during a current MDD episode and 11 sudden-death controls. A total of 32 probesets were differentially expressed according to response to citalopram treatment following false discovery rate correction. Interferon regulatory factor 7 (IRF7) was the most significant differentially expressed gene and its expression was upregulated by citalopram treatment in individuals who responded to treatment. We found these results to be concordant with our observation of decreased expression of IRF7 in the prefrontal cortex of MDDs with negative toxicological evidence for antidepressant treatment at the time of death. These findings point to IRF7 as a gene of interest in studies investigating genomic factors associated with antidepressant response.
Collapse
Affiliation(s)
- F Mamdani
- McGill Group for Suicide Studies and Depressive Disorders Program, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - M T Berlim
- McGill Group for Suicide Studies and Depressive Disorders Program, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - M-M Beaulieu
- McGill Group for Suicide Studies and Depressive Disorders Program, Douglas Mental Health University Institute, Montréal, Quebec, Canada
| | - A Labbe
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - C Merette
- Centre de Recherche Université Laval Robert-Giffard, Quebec City, Quebec, Canada
| | - G Turecki
- McGill Group for Suicide Studies and Depressive Disorders Program, Douglas Mental Health University Institute, Montréal, Quebec, Canada,McGill Group for Suicide Studies, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, Montréal, Quebec H4H 1R3, Canada. E-mail:
| |
Collapse
|