51
|
Manogaran P, Walker-Egger C, Samardzija M, Waschkies C, Grimm C, Rudin M, Schippling S. Exploring experimental autoimmune optic neuritis using multimodal imaging. Neuroimage 2018; 175:327-339. [PMID: 29627590 DOI: 10.1016/j.neuroimage.2018.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. METHODS 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). RESULTS In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = -0.80, p = 0.02, optic tract: rho = -0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. CONCLUSION OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo.
Collapse
Affiliation(s)
- Praveena Manogaran
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Christine Walker-Egger
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Conny Waschkies
- Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Visceral and Transplant Surgery Research, University Hospital Zurich, Zurich, Switzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Markus Rudin
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland; Institue for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Clinic for Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
52
|
Zhang P, Mocci J, Wahl DJ, Meleppat RK, Manna SK, Quintavalla M, Muradore R, Sarunic MV, Bonora S, Pugh EN, Zawadzki RJ. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Exp Eye Res 2018; 172:86-93. [PMID: 29604280 PMCID: PMC6417837 DOI: 10.1016/j.exer.2018.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 01/09/2023]
Abstract
For in vivo mouse retinal imaging, especially with Adaptive Optics instruments, application of a contact lens is desirable, as it allows maintenance of cornea hydration and helps to prevent cataract formation during lengthy imaging sessions. However, since the refractive elements of the eye (cornea and lens) serve as the objective for most in vivo retinal imaging systems, the use of a contact lens, even with 0 Dpt. refractive power, can alter the system’s optical properties. In this investigation we examined the effective focal length change and the aberrations that arise from use of a contact lens. First, focal length changes were simulated with a Zemax mouse eye model. Then ocular aberrations with and without a 0 Dpt. contact lens were measured with a Shack-Hartmann wavefront sensor (SHWS) in a customized AO-SLO system. Total RMS wavefront errors were measured for two groups of mice (14-month, and 2.5-month-old), decomposed into 66 Zernike aberration terms, and compared. These data revealed that vertical coma and spherical aberrations were increased with use of a contact lens in our system. Based on the ocular wavefront data we evaluated the effect of the contact lens on the imaging system performance as a function of the pupil size. Both RMS error and Strehl ratios were quantified for the two groups of mice, with and without contact lenses, and for different input beam sizes. These results provide information for determining optimum pupil size for retinal imaging without adaptive optics, and raise critical issues for design of mouse optical imaging systems that incorporate contact lenses.
Collapse
Affiliation(s)
- Pengfei Zhang
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Jacopo Mocci
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Daniel J Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Ratheesh Kumar Meleppat
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Suman K Manna
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States
| | - Martino Quintavalla
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | | | - Marinko V Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Edward N Pugh
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States
| | - Robert J Zawadzki
- UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, United States; UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, CA 95817, United States.
| |
Collapse
|
53
|
Dietrich M, Helling N, Hilla A, Heskamp A, Issberner A, Hildebrandt T, Kohne Z, Küry P, Berndt C, Aktas O, Fischer D, Hartung HP, Albrecht P. Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model. J Neuroinflammation 2018. [PMID: 29514678 PMCID: PMC5840773 DOI: 10.1186/s12974-018-1111-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. Methods Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG35–55-induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. Results All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. Conclusions A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful. Electronic supplementary material The online version of this article (10.1186/s12974-018-1111-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Niklas Helling
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Alexander Hilla
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Annemarie Heskamp
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Andrea Issberner
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Thomas Hildebrandt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Zippora Kohne
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Dietmar Fischer
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
54
|
Schön C, Sothilingam V, Mühlfriedel R, Garcia Garrido M, Beck SC, Tanimoto N, Wissinger B, Paquet-Durand F, Biel M, Michalakis S, Seeliger MW. Gene Therapy Successfully Delays Degeneration in a Mouse Model of PDE6A-Linked Retinitis Pigmentosa (RP43). Hum Gene Ther 2017; 28:1180-1188. [PMID: 29212391 DOI: 10.1089/hum.2017.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa type 43 (RP43) is a blinding disease caused by mutations in the gene for rod phosphodiesterase 6 alpha (PDE6A). The disease process begins with a dysfunction of rod photoreceptors, subsequently followed by a currently untreatable progressive degeneration of the entire outer retina. Aiming at a curative approach via PDE6A gene supplementation, a novel adeno-associated viral (AAV) vector was developed for expression of the human PDE6A cDNA under control of the human rhodopsin promotor (rAAV8.PDE6A). This study assessed the therapeutic efficacy of rAAV8.PDE6A in the Pde6anmf363/nmf363-mutant mouse model of RP43. All mice included in this study were treated with sub-retinal injections of the vector at 2 weeks after birth. The therapeutic effect was monitored at 1 month and 6 months post injection. Biological function of the transgene was assessed in vivo by means of electroretinography. The degree of morphological rescue was investigated both in vivo using optical coherence tomography and ex vivo by immunohistological staining. It was found that the novel rAAV8.PDE6A vector resulted in a stable and efficient expression of PDE6A protein in rod photoreceptors of Pde6anmf363/nmf363 mice following treatment at both the short- and long-term time points. The treatment led to a substantial morphological preservation of outer nuclear layer thickness, rod outer segment structure, and prolonged survival of cone photoreceptors for at least 6 months. Additionally, the ERG analysis confirmed a restoration of retinal function in a group of treated mice. Taken together, this study provides successful proof-of-concept for the cross-species efficacy of the rAAV8.PDE6A vector developed for use in human patients. Importantly, the data show stable expression and rescue effects for a prolonged period of time, raising hope for future translational studies based on this approach.
Collapse
Affiliation(s)
- Christian Schön
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Regine Mühlfriedel
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Marina Garcia Garrido
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Susanne C Beck
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Naoyuki Tanimoto
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Eberhard Karls University, Tuebingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tuebingen, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM at the Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Divisions of Ocular Neurodegeneration, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
55
|
Kokona D, Jovanovic J, Ebneter A, Zinkernagel MS. In Vivo Imaging of Cx3cr1gfp/gfp Reporter Mice with Spectral-domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. J Vis Exp 2017. [PMID: 29155795 DOI: 10.3791/55984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1gfp/gfp) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases1,2,3,4,5,6. This protocol provides a detailed approach for generation of retinal B-scans, with SD-OCT, and imaging of microglia cell distribution in Cx3cr1gfp/gfp mice with SLO in vivo, using an ophthalmic imaging platform system. The protocol can be used in several reporter mouse lines. However, there are some limitations to the protocol presented here. First, both SLO and SD-OCT, when used in the high-resolution mode, collect data with high axial resolution but the lateral resolution is lower (3.5 µm and 6 µm, respectively). Moreover, the focus and saturation level in SLO is highly dependent on parameter selection and correct alignment of the eye. Additionally, using devices designed for human patients in mice is challenging due to the higher total optical power of the mouse eye compared to the human eye; this can lead to lateral magnification inaccuracies7, which are also dependent on the magnification by the mouse lens among others. However, despite that the axial scan position is dependent upon lateral magnification, the axial SD-OCT measurements are accurate8.
Collapse
Affiliation(s)
- Despina Kokona
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern;
| | - Joël Jovanovic
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Andreas Ebneter
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Bern University Hospital and University of Bern
| |
Collapse
|
56
|
Zhao M, Rodríguez-Villagra E, Kowalczuk L, Le Normand M, Berdugo M, Levy-Boukris R, El Zaoui I, Kaufmann B, Gurny R, Bravo-Osuna I, Molina-Martínez IT, Herrero-Vanrell R, Behar-Cohen F. Tolerance of high and low amounts of PLGA microspheres loaded with mineralocorticoid receptor antagonist in retinal target site. J Control Release 2017; 266:187-197. [PMID: 28947395 DOI: 10.1016/j.jconrel.2017.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) contributes to retinal/choroidal homeostasis. Excess MR activation has been shown to be involved in pathogenesis of central serous chorioretinopathy (CSCR). Systemic administration of MR antagonist (MRA) reduces subretinal fluid and choroidal vasodilation, and improves the visual acuity in CSCR patients. To achieve long term beneficial effects in the eye while avoiding systemic side-effects, we propose the use of biodegradable spironolactone-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (MSs). In this work we have evaluated the ocular tolerance of MSs containing spironolactone in rat' eyes. As previous step, we have also studied the tolerance of the commercial solution of canrenoate salt, active metabolite of spironolactone. PLGA MSs allowed in vitro sustained release of spironolactone for 30days. Rat eyes injected with high intravitreous concentration of PLGA MSs (10mg/mL) unloaded and loaded with spironolactone maintained intact retinal lamination at 1month. However enhanced glial fibrillary acidic protein immunostaining and activated microglia/macrophages witness retinal stress were observed. ERG also showed impaired photoreceptor function. Intravitreous PLGA MSs concentration of 2mg/mL unloaded and loaded with spironolactone resulted well tolerated. We observed reduced microglial/macrophage activation in rat retina compared to high concentration of MSs with normal retinal function according to ERG. Spironolactone released from low concentration of MSs was active in the rat retina. Low concentration of spironolactone-loaded PLGA MSs could be a safe therapeutic choice for chorioretinal disorders in which illicit MR activation could be pathogenic.
Collapse
Affiliation(s)
- Min Zhao
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Esther Rodríguez-Villagra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | | | - Manon Le Normand
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Rinath Levy-Boukris
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ikram El Zaoui
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Béatrice Kaufmann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Irene T Molina-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain.
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; University of Lausanne, Switzerland
| |
Collapse
|
57
|
Jagodzinska J, Sarzi E, Cavalier M, Seveno M, Baecker V, Hamel C, Péquignot M, Delettre C. Optical Coherence Tomography: Imaging Mouse Retinal Ganglion Cells In Vivo. J Vis Exp 2017. [PMID: 28994761 DOI: 10.3791/55865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Structural changes in the retina are common manifestations of ophthalmic diseases. Optical coherence tomography (OCT) enables their identification in vivo-rapidly, repetitively, and at a high resolution. This protocol describes OCT imaging in the mouse retina as a powerful tool to study optic neuropathies (OPN). The OCT system is an interferometry-based, non-invasive alternative to common post mortem histological assays. It provides a fast and accurate assessment of retinal thickness, allowing the possibility to track changes, such as retinal thinning or thickening. We present the imaging process and analysis with the example of the Opa1delTTAG mouse line. Three types of scans are proposed, with two quantification methods: standard and homemade calipers. The latter is best for use on the peripapillary retina during radial scans; being more precise, is preferable for analyzing thinner structures. All approaches described here are designed for retinal ganglion cells (RGC) but are easily adaptable to other cell populations. In conclusion, OCT is efficient in mouse model phenotyping and has the potential to be used for the reliable evaluation of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Marie Seveno
- INSERM U1051, Institut of Neurosciences of Montpellier
| | | | - Christian Hamel
- INSERM U1051, Institut of Neurosciences of Montpellier; University of Montpellier; CHRU Montpellier, Centre of Reference for Genetic Sensory Diseases, CHU Gui de Chauliac Hospital
| | | | | |
Collapse
|
58
|
Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB. Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017; 58:BIO211-BIO226. [PMID: 28785769 PMCID: PMC5557213 DOI: 10.1167/iovs.17-21872] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose To summarize and contextualize recent histology and clinical imaging publications on retinal pigment epithelium (RPE) fate in advanced age-related macular degeneration (AMD); to support RPE activation and migration as important precursors to atrophy, manifest as intraretinal hyperreflective foci in spectral-domain optical coherence tomography (SDOCT). Methods The Project MACULA online resource for AMD histopathology was surveyed systematically to form a catalog of 15 phenotypes of RPE and RPE-derived cells and layer thicknesses in advanced disease. Phenotypes were also sought in correlations with clinical longitudinal eye-tracked SDOCT and with ex vivo imaging–histopathology correlations in geographic atrophy (GA) and pigment epithelium detachments (PED). Results The morphology catalog suggested two main pathways of RPE fate: basolateral shedding of intracellular organelles (apparent apoptosis in situ) and activation with anterior migration. Acquired vitelliform lesions may represent a third pathway. Migrated cells are packed with RPE organelles and confirmed as hyperreflective on SDOCT. RPE layer thickening due to cellular dysmorphia and thick basal laminar deposit is observed near the border of GA. Drusenoid PED show a life cycle of slow growth and rapid collapse preceded by RPE layer disruption and anterior migration. Conclusions RPE activation and migration comprise an important precursor to atrophy that can be observed at the cellular level in vivo via validated SDOCT. Collapse of large drusen and drusenoid PED appears to occur when RPE death and migration prevent continued production of druse components. Data implicate excessive diffusion distance from choriocapillaris in RPE death as well as support a potential benefit in targeting drusen in GA.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States
| | - Emma C Zanzottera
- Eye Clinic, Department of Clinical Science "Luigi Sacco," Sacco Hospital, University of Milan, Milan, Italy
| | - Thomas Ach
- University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany
| | - Chandrakumar Balaratnasingam
- Center for Ophthalmology and Visual Sciences, Lions Eye Institute, University of Western Australia, Perth, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - K Bailey Freund
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, Alabama, United States.,Eye Clinic, Department of Clinical Science "Luigi Sacco," Sacco Hospital, University of Milan, Milan, Italy.,University Hospital Würzburg, Department of Ophthalmology, Würzburg, Germany.,Center for Ophthalmology and Visual Sciences, Lions Eye Institute, University of Western Australia, Perth, Australia.,Sir Charles Gairdner Hospital, Perth, Australia.,Vitreous Retina Macula Consultants of New York, New York, New York, United States.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Institute, New York, New York, United States.,Department of Ophthalmology, New York University Langone School of Medicine, New York, New York, United States
| |
Collapse
|
59
|
Antony BJ, Kim BJ, Lang A, Carass A, Prince JL, Zack DJ. Automated segmentation of mouse OCT volumes (ASiMOV): Validation & clinical study of a light damage model. PLoS One 2017; 12:e0181059. [PMID: 28817571 PMCID: PMC5560565 DOI: 10.1371/journal.pone.0181059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/26/2017] [Indexed: 12/16/2022] Open
Abstract
The use of spectral-domain optical coherence tomography (SD-OCT) is becoming commonplace for the in vivo longitudinal study of murine models of ophthalmic disease. Longitudinal studies, however, generate large quantities of data, the manual analysis of which is very challenging due to the time-consuming nature of generating delineations. Thus, it is of importance that automated algorithms be developed to facilitate accurate and timely analysis of these large datasets. Furthermore, as the models target a variety of diseases, the associated structural changes can also be extremely disparate. For instance, in the light damage (LD) model, which is frequently used to study photoreceptor degeneration, the outer retina appears dramatically different from the normal retina. To address these concerns, we have developed a flexible graph-based algorithm for the automated segmentation of mouse OCT volumes (ASiMOV). This approach incorporates a machine-learning component that can be easily trained for different disease models. To validate ASiMOV, the automated results were compared to manual delineations obtained from three raters on healthy and BALB/cJ mice post LD. It was also used to study a longitudinal LD model, where five control and five LD mice were imaged at four timepoints post LD. The total retinal thickness and the outer retina (comprising the outer nuclear layer, and inner and outer segments of the photoreceptors) were unchanged the day after the LD, but subsequently thinned significantly (p < 0.01). The retinal nerve fiber-ganglion cell complex and the inner plexiform layers, however, remained unchanged for the duration of the study.
Collapse
Affiliation(s)
- Bhavna Josephine Antony
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD 21218 United States of America
| | - Byung-Jin Kim
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD 21287 United States of America
| | - Andrew Lang
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD 21218 United States of America
| | - Aaron Carass
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD 21218 United States of America
| | - Jerry L. Prince
- Electrical and Computer Engineering, Johns Hopkins University, Baltimore MD 21218 United States of America
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD 21287 United States of America
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 United States of America
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 United States of America
- Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 United States of America
| |
Collapse
|
60
|
Yoshioka N, Zangerl B, Nivison-Smith L, Khuu SK, Jones BW, Pfeiffer RL, Marc RE, Kalloniatis M. Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye. Invest Ophthalmol Vis Sci 2017. [PMID: 28632847 PMCID: PMC5482244 DOI: 10.1167/iovs.17-21450] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease.
Collapse
Affiliation(s)
- Nayuta Yoshioka
- Centre for Eye Health, University of New South Wales (UNSW), Sydney, New South Wales, Australia 2School of Optometry and Vision Science, UNSW, Sydney, New South Wales, Australia
| | - Barbara Zangerl
- Centre for Eye Health, University of New South Wales (UNSW), Sydney, New South Wales, Australia 2School of Optometry and Vision Science, UNSW, Sydney, New South Wales, Australia
| | - Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales (UNSW), Sydney, New South Wales, Australia 2School of Optometry and Vision Science, UNSW, Sydney, New South Wales, Australia
| | - Sieu K Khuu
- School of Optometry and Vision Science, UNSW, Sydney, New South Wales, Australia
| | - Bryan W Jones
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Rebecca L Pfeiffer
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Robert E Marc
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales (UNSW), Sydney, New South Wales, Australia 2School of Optometry and Vision Science, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
61
|
Zeng Y, Petralia RS, Vijayasarathy C, Wu Z, Hiriyanna S, Song H, Wang YX, Sieving PA, Bush RA. Retinal Structure and Gene Therapy Outcome in Retinoschisin-Deficient Mice Assessed by Spectral-Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2017; 57:OCT277-87. [PMID: 27409484 PMCID: PMC4968785 DOI: 10.1167/iovs.15-18920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Spectral-domain optical coherence tomography (SD-OCT) was used to characterize the retinal phenotype, natural history, and treatment responses in a mouse model of X-linked retinoschisis (Rs1-KO) and to identify new structural markers of AAV8-mediated gene therapy outcome. Methods Optical coherence tomography scans were performed on wild-type and Rs1-KO mouse retinas between 1 and 12 months of age and on Rs1-KO mice after intravitreal injection of AAV8-scRS/IRBPhRS (AAV8-RS1). Cavities and photoreceptor outer nuclear layer (ONL) thickness were measured, and outer retina reflective band (ORRB) morphology was examined with age and after AAV8-RS1 treatment. Outer retina reflective band morphology was compared to immunohistochemical staining of the outer limiting membrane (OLM) and photoreceptor inner segment (IS) mitochondria and to electron microscopy (EM) images of IS. Results Retinal cavity size in Rs1-KO mice increased between 1 and 4 months and decreased thereafter, while ONL thickness declined steadily, comparable to previous histologic studies. Wild-type retina had four ORRBs. In Rs1-KO, ORRB1was fragmented from 1 month, but was normal after 8 months; ORRB2 and ORRB3 were merged at all ages. Outer retina reflective band morphology returned to normal after AAV-RS1 therapy, paralleling the recovery of the OLM and IS mitochondria as indicated by anti–β-catenin and anti-COX4 labeling, respectively, and EM. Conclusions Spectral-domain OCT is a sensitive, noninvasive tool to monitor subtle changes in retinal morphology, disease progression, and effects of therapies in mouse models. The ORRBs may be useful to assess the outcome of gene therapy in the treatment of X-linked retinoschisis patients.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Camasamudram Vijayasarathy
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Suja Hiriyanna
- Ocular Gene Therapy Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hongman Song
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States 4National Eye Institute, National Institutes of Healt
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
62
|
Mühlfriedel R, Tanimoto N, Schön C, Sothilingam V, Garcia Garrido M, Beck SC, Huber G, Biel M, Seeliger MW, Michalakis S. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 2017; 11:292. [PMID: 28596720 PMCID: PMC5442229 DOI: 10.3389/fnins.2017.00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Susanne C Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| |
Collapse
|
63
|
Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity. J Ophthalmol 2017; 2017:9620876. [PMID: 28573047 PMCID: PMC5442435 DOI: 10.1155/2017/9620876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background Retinopathy of prematurity (ROP) is a condition of abnormal retinal vascular development (RVD) in premature infants. Fluorescein angiography (FA) has depicted phases (early, mid, late, and mature) of RVD in oxygen-induced retinopathy (OIR) mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT). Method 63 mice were exposed to 77% oxygen at postnatal day 7 (P7) for 5 days, while 63 mice remained in room air (RA). Total retinal thickness (TRT), inner retinal thickness (IRT), and outer retinal thickness (ORT) were calculated at early (P19), mid (P24), late (P32), and mature (P47) phases of RVD. Results TRT was reduced in OIR (162.66 ± 17.75 μm, n = 13) compared to RA mice at P19 (197.57 ± 3.49 μm, n = 14), P24, P32, and P49 (P < 0.0001). ORT was similar in RA and OIR mice at all ages (P > 0.05). IRT was reduced in OIR (71.60 ± 17.14 μm) compared to RA (103.07 ± 3.47 μm) mice at P19 and all ages (P < 0.0001). Conclusion We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.
Collapse
|
64
|
|
65
|
DeRamus ML, Stacks DA, Zhang Y, Huisingh CE, McGwin G, Pittler SJ. GARP2 accelerates retinal degeneration in rod cGMP-gated cation channel β-subunit knockout mice. Sci Rep 2017; 7:42545. [PMID: 28198469 PMCID: PMC5309851 DOI: 10.1038/srep42545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
The Cngb1 locus-encoded β-subunit of rod cGMP-gated cation channel and associated glutamic acid rich proteins (GARPs) are required for phototransduction, disk morphogenesis, and rod structural integrity. To probe individual protein structure/function of the GARPs, we have characterized several transgenic mouse lines selectively restoring GARPs on a Cngb1 knockout (X1−/−) mouse background. Optical coherence tomography (OCT), light and transmission electron microscopy (TEM), and electroretinography (ERG) were used to analyze 6 genotypes including WT at three and ten weeks postnatal. Comparison of aligned histology/OCT images demonstrated that GARP2 accelerates the rate of degeneration. ERG results are consistent with the structural analyses showing the greatest attenuation of function when GARP2 is present. Even 100-fold or more overexpression of GARP1 could not accelerate degeneration as rapidly as GARP2, and when co-expressed GARP1 attenuated the structural and functional deficits elicited by GARP2. These results indicate that the GARPs are not fully interchangeable and thus, likely have separate and distinct functions in the photoreceptor. We also present a uniform murine OCT layer naming nomenclature system that is consistent with human retina layer designations to standardize murine OCT, which will facilitate data evaluation across different laboratories.
Collapse
Affiliation(s)
- Marci L DeRamus
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Delores A Stacks
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Youwen Zhang
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| | - Carrie E Huisingh
- Department of Ophthalmology, University of Alabama at Birmingham, 700 18th Street South, Suite 609, Birmingham, AL 35294, USA
| | - Gerald McGwin
- Department of Epidemiology, University of Alabama at Birmingham, Ryals Public Health Building, 1665 University Boulevard, Birmingham, AL 35294, USA
| | - Steven J Pittler
- Departments of Optometry and Vision Science, University of Alabama at Birmingham, 1670 University Blvd, VH 375, Birmingham, AL 35294-0019, USA
| |
Collapse
|
66
|
Tschulakow AV, Schraermeyer U, Rodemann HP, Julien-Schraermeyer S. Establishment of a novel retinoblastoma (Rb) nude mouse model by intravitreal injection of human Rb Y79 cells - comparison of in vivo analysis versus histological follow up. Biol Open 2016; 5:1625-1630. [PMID: 27694105 PMCID: PMC5155534 DOI: 10.1242/bio.019976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinoblastoma (Rb) is the most frequent primary intraocular tumour in children and, if left untreated, can cause death. Preclinical animal models that mimic molecular, genetic, and cellular features of cancers are essential for studying cancer and searching for promising diagnosis and treatment modalities. There are several models described for Rb, but none of them fully meet our requirements. The aim of this study was to create a novel xenograft-nude mouse-model with broad application possibilities, which closely resembles the clinical observations of Rb patients and which could be used to investigate the development and spread of the tumour by using scanning laser ophthalmoscopy/optical coherence tomography (SLO/OCT) as well as histology methods. We injected human retinoblastoma Y79 cells intravitreally in both eyes of immune-deficient nude mice. The incidences of retinoblastoma as well as growth velocity were analysed 3, 6, 9 and 12 weeks after cell injection in vivo by SLO/OCT as well as ex vivo by electron microscopy (EM) and hematoxylin/eosin (HE) staining. Moreover, internal organs were histologically screened for potentially occurring metastases. Three weeks post-injection, animals developed a retinoblastoma, and after five weeks tumour growth resulted in swelling of the eyes in individual animals, showing a similar phenotype to that of untreated Rb patients at advanced stages of tumour-development. After 12 weeks, 67.5% of all analysed eyes (29 of 42) contained a retinoblastoma. At early stages of Rb development, the SLO/OCT analysis correlated with the histology results. If the tumours were too large, only histological investigations were feasible. The ultrastructural characteristics of the xenograft-tumours were very similar to those described for patient's tumours. In one mouse, brain metastases were observed. Our retinoblastoma mouse model closely resembles the human disease. SLO/OCT can be used for the detection of Rb at early stages of development and could be used for monitoring the success of future therapies. Summary: We present a novel retinoblastoma nude xenograft mouse model which closely resembles the human disease and allows broad application possibilities and a comparison of in vivo and histological analysis.
Collapse
Affiliation(s)
- Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| | - H Peter Rodemann
- Division of Radiobiology & Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tuebingen Tuebingen 72076, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Center for Ophthalmology, Eberhard Karls University Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
67
|
Dietrich M, Cruz-Herranz A, Yiu H, Aktas O, Brandt AU, Hartung HP, Green A, Albrecht P. Whole-body positional manipulators for ocular imaging of anaesthetised mice and rats: a do-it-yourself guide. BMJ Open Ophthalmol 2016; 1:e000008. [PMID: 29354694 PMCID: PMC5759402 DOI: 10.1136/bmjophth-2016-000008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background In vivo retinal imaging of rodents has gained a growing interest in ophthalmology and neurology. The bedding of the animals with the possibility to perform adjustments in order to obtain an ideal camera-to-eye angle is challenging. Methods We provide a guide for a cost-effective, do-it-yourself rodent holder for ocular imaging techniques. The set-up was tested and refined in over 2000 optical coherence tomography measurements of mice and rats. Results The recommended material is very affordable, readily available and easily assembled. The holder can be adapted to both mice and rats. A custom-made mouthpiece is provided for the use of inhalant anaesthesia. The holder is highly functional and assures that the rodent’s eye is the centre of rotation for adjustments in both the axial and the transverse planes with a major time benefit over unrestrained positioning of the rodents. Conclusion We believe this guide is very useful for eye researchers focusing on in vivo retinal imaging in rodents as it significantly reduces examination times for ocular imaging.
Collapse
Affiliation(s)
- Michael Dietrich
- Department of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Andrés Cruz-Herranz
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States
| | - Hao Yiu
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States
| | - Orhan Aktas
- Department of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ari Green
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States
| | - Philipp Albrecht
- Department of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
68
|
Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography. PLoS One 2016; 11:e0162835. [PMID: 27644042 PMCID: PMC5028068 DOI: 10.1371/journal.pone.0162835] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022] Open
Abstract
Purpose To evaluate the correlation between optical coherence tomography (OCT) and the histological, ultrastructural and electroretinography (ERG) findings of retinal degeneration in Royal College of Surgeons (RCS-/-) rats. Materials and Methods Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN) day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls. Results After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS) ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS) layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P < 0.01) and hyperreflective compared with that in the controls; conversely, the photoreceptor IS and OS layers, as well as the inner retinal layers, became significantly thicker (P < 0.001 and P = 0.05, respectively). The apical hyperreflective band, as well as the IS ellipsoid zone, gradually disappeared between PN day 20 and PN day 30; concurrently, the ERG a- and b-wave amplitudes deteriorated. In contrast, the thicknesses of the combined retinal pigment epithelium and choroid did not differ significantly between RCS-/- and RCS+/+ rats. Conclusion Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa.
Collapse
|
69
|
HCN1 Channels Enhance Rod System Responsivity in the Retina under Conditions of Light Exposure. PLoS One 2016; 11:e0147728. [PMID: 26807953 PMCID: PMC4725747 DOI: 10.1371/journal.pone.0147728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/07/2016] [Indexed: 11/20/2022] Open
Abstract
Purpose Vision originates in rods and cones at the outer retina. Already at these early stages, diverse processing schemes shape and enhance image information to permit perception over a wide range of lighting conditions. In this work, we address the role of hyperpolarization-activated and cyclic nucleotide-gated channels 1 (HCN1) in rod photoreceptors for the enhancement of rod system responsivity under conditions of light exposure. Methods To isolate HCN1 channel actions in rod system responses, we generated double mutant mice by crossbreeding Hcn1-/- mice with Cnga3-/- mice in which cones are non-functional. Retinal function in the resulting Hcn1-/-Cnga3-/- animals was followed by means of electroretinography (ERG) up to the age of four month. Retinal imaging via scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) was also performed to exclude potential morphological alterations. Results This study on Hcn1-/-Cnga3-/- mutant mice complements our previous work on HCN1 channel function in the retina. We show here in a functional rod-only setting that rod responses following bright light exposure terminate without the counteraction of HCN channels much later than normal. The resulting sustained signal elevation does saturate the retinal network due to an intensity-dependent reduction in the dynamic range. In addition, the lack of rapid adaptational feedback modulation of rod photoreceptor output via HCN1 in this double mutant limits the ability to follow repetitive (flicker) stimuli, particularly under mesopic conditions. Conclusions This work corroborates the hypothesis that, in the absence of HCN1-mediated feedback, the amplitude of rod signals remains at high levels for a prolonged period of time, leading to saturation of the retinal pathways. Our results demonstrate the importance of HCN1 channels for regular vision.
Collapse
|
70
|
Krebs MP, Xiao M, Sheppard K, Hicks W, Nishina PM. Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye. Methods Mol Biol 2016; 1438:395-415. [PMID: 27150100 DOI: 10.1007/978-1-4939-3661-8_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Noninvasive live imaging has been used extensively for ocular phenotyping in mouse vision research. Bright-field imaging and optical coherence tomography (OCT) are two methods that are particularly useful for assessing the posterior mouse eye (fundus), including the retina, retinal pigment epithelium, and choroid, and are widely applied due to the commercial availability of sophisticated instruments and software. Here, we provide a guide to using these approaches with an emphasis on post-acquisition image processing using Fiji, a bundled version of the Java-based public domain software ImageJ. A bright-field fundus imaging protocol is described for acquisition of multi-frame videos, followed by image registration to reduce motion artifacts, averaging to reduce noise, shading correction to compensate for uneven illumination, filtering to improve image detail, and rotation to adjust orientation. An OCT imaging protocol is described for acquiring replicate volume scans, with subsequent registration and averaging to yield three-dimensional datasets that show reduced motion artifacts and enhanced detail. The Fiji algorithms used in these protocols are designed for batch processing and are freely available. The image acquisition and processing approaches described here may facilitate quantitative phenotyping of the mouse eye in drug discovery, mutagenesis screening, and the functional cataloging of mouse genes by individual laboratories and large-scale projects, such as the Knockout Mouse Phenotyping Project and International Mouse Phenotyping Consortium.
Collapse
Affiliation(s)
- Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| | - Mei Xiao
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Keith Sheppard
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Wanda Hicks
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| |
Collapse
|
71
|
OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION: Optical Coherence Tomographic Findings Correspond to Histology. Retina 2015; 35:1339-50. [PMID: 25635579 DOI: 10.1097/iae.0000000000000471] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To compare optical coherence tomography (OCT) and histology of outer retinal tubulation (ORT) secondary to advanced age-related macular degeneration in patients and in postmortem specimens, with particular attention to the basis of the hyperreflective border of ORT. METHOD A private referral practice (imaging) and an academic research laboratory (histology) collaborated on two retrospective case series. High-resolution OCT raster scans of 43 eyes (34 patients) manifesting ORT secondary to advanced age-related macular degeneration were compared to high-resolution histologic sections through the fovea and superior perifovea of donor eyes (13 atrophic age-related macular degeneration and 40 neovascular age-related macular degeneration) preserved ≤4 hours after death. RESULTS Outer retinal tubulation seen on OCT correlated with histologic findings of tubular structures consisted largely of cones lacking outer segments and lacking inner segments. Four phases of cone degeneration were histologically distinguishable in ORT lumenal walls, nascent, mature, degenerate, and end stage (inner segments and outer segments, inner segments only, no inner segments, and no photoreceptors and only Müller cells forming external limiting membrane, respectively). Mitochondria, which are normally long and bundled within inner segment ellipsoids, were small and scattered within shrunken inner segments and cell bodies of surviving cones. A lumenal border was delimited by an external limiting membrane. Outer retinal tubulation observed in closed and open configurations was distinguishable from cysts and photoreceptor islands on both OCT and histology. Hyperreflective lumenal material seen on OCT represents trapped retinal pigment epithelium and nonretinal pigment epithelium cells. CONCLUSION The defining OCT features of ORT are location in the outer nuclear layer, a hyperreflective band differentiating it from cysts, and retinal pigment epithelium that is either dysmorphic or absent. Histologic and OCT findings of outer retinal tubulation corresponded in regard to composition, location, shape, and stages of formation. The reflectivity of ORT lumenal walls on OCT apparently does not require an outer segment or an inner/outer segment junction, indicating an independent reflectivity source, possibly mitochondria, in the inner segments.
Collapse
|
72
|
Long time remodeling during retinal degeneration evaluated by optical coherence tomography, immunocytochemistry and fundus autofluorescence. Exp Eye Res 2015; 150:122-34. [PMID: 26521765 DOI: 10.1016/j.exer.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE To characterize the relationship between fundus autofluorescence (FAF), Optical Coherence Tomography (OCT) and immunohistochemistry (IHC) over the course of chronic retinal degeneration in the P23H rat. METHODS Homozygous albino P23H rats, Sprague-Dawley (SD) rats as controls and pigmented Long Evans (LE) rats were used. A Spectralis HRA OCT system was used for scanning laser ophthalmoscopy (SLO) imaging OCT and angiography. To determine FAF, fluorescence was excited using diode laser at 488 nm. A fast retina map OCT was performed using the optic nerve as a landmark. IHC was performed to correlate with the findings of OCT and FAF changes. RESULTS During the course of retinal degeneration, the FAF pattern evolved from some spotting at 2 months old to a mosaic of hyperfluorescent dots in rats 6 months and older. Retinal thicknesses progressively diminished over the course of the disease. At later stages of degeneration, OCT documented changes in the retinal layers, however, IHC better identified the cell loss and remodeling changes. Angiography revealed attenuation of the retinal vascular plexus with time. CONCLUSION We provide for the first time a detailed long-term analysis of the course of retinal degeneration in P23H rats using a combination of SLO and OCT imaging, angiography, FAF and IHC. Although, the application of noninvasive methods enables longitudinal studies and will decrease the number of animals needed for a study, IHC is still an essential tool to identify retinal changes at the cellular level.
Collapse
|
73
|
Iaculli C, Barone A, Scudieri M, Giovanna Palumbo M, Delle Noci N. OUTER RETINAL TUBULATION. Retina 2015; 35:1979-84. [DOI: 10.1097/iae.0000000000000609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Dysli C, Enzmann V, Sznitman R, Zinkernagel MS. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Transl Vis Sci Technol 2015; 4:9. [PMID: 26336634 DOI: 10.1167/tvst.4.4.9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. METHODS Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2 /J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. RESULTS Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. CONCLUSIONS Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. TRANSLATIONAL RELEVANCE The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland ; Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland ; Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Raphael Sznitman
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland ; ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland ; Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
De Clerck EEB, Schouten JSAG, Berendschot TTJM, Kessels AGH, Nuijts RMMA, Beckers HJM, Schram MT, Stehouwer CDA, Webers CAB. New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes Endocrinol 2015; 3:653-63. [PMID: 26184671 DOI: 10.1016/s2213-8587(15)00136-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/30/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
Optical coherence tomography (OCT) of the retina and around the optic nerve head and corneal confocal microscopy (CCM) are non-invasive and repeatable techniques that can quantify ocular neurodegenerative changes in individuals with diabetes. We systematically reviewed studies of ocular neurodegenerative changes in adults with type 1 or type 2 diabetes and noted changes in the retina, the optic nerve head, and the cornea. Of the 30 studies that met our inclusion criteria, 14 used OCT and 16 used CCM to assess ocular neurodegenerative changes. Even in the absence of diabetic retinopathy, several layers in the retina and the mean retinal nerve fibre layer around the optic nerve head were significantly thinner (-5·36 μm [95% CI -7·13 to -3·58]) in individuals with type 2 diabetes compared with individuals without diabetes. In individuals with type 1 diabetes without retinopathy none of the intraretinal layer thicknesses were significantly reduced compared with individuals without diabetes. In the absence of diabetic polyneuropathy, individuals with type 2 diabetes had a lower nerve density (nerve branch density: -1·10/mm(2) [95% CI -4·22 to 2·02]), nerve fibre density: -5·80/mm(2) [-8·06 to -3·54], and nerve fibre length: -4·00 mm/mm(2) [-5·93 to -2·07]) in the subbasal nerve plexus of the cornea than individuals without diabetes. Individuals with type 1 diabetes without polyneuropathy also had a lower nerve density (nerve branch density: -7·74/mm(2) [95% CI -14·13 to -1·34], nerve fibre density: -2·68/mm(2) [-5·56 to 0·20]), and nerve fibre length: -2·58 mm/mm(2) [-3·94 to -1·21]). Ocular neurodegenerative changes are more evident when diabetic retinopathy or polyneuropathy is present. OCT and CCM are potentially useful, in addition to conventional clinical methods, to assess diabetic neurodegenerative changes. Additional research is needed to determine their incremental benefit and to standardise procedures before the application of OCT and CCM in daily practice.
Collapse
Affiliation(s)
- Eline E B De Clerck
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands.
| | - Jan S A G Schouten
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Tos T J M Berendschot
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Alfons G H Kessels
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Rudy M M A Nuijts
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Henny J M Beckers
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Miranda T Schram
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Center +, Maastricht, Netherlands
| | - Carroll A B Webers
- Department of Ophthalmology, Maastricht University Medical Center +, Maastricht, Netherlands
| |
Collapse
|
76
|
Bousquet E, Zhao M, Thillaye-Goldenberg B, Lorena V, Castaneda B, Naud MC, Bergin C, Besson-Lescure B, Behar-Cohen F, de Kozak Y. Choroidal Mast Cells in Retinal Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2083-95. [DOI: 10.1016/j.ajpath.2015.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 01/23/2023]
|
77
|
Sothilingam V, Garcia Garrido M, Jiao K, Buena-Atienza E, Sahaboglu A, Trifunović D, Balendran S, Koepfli T, Mühlfriedel R, Schön C, Biel M, Heckmann A, Beck SC, Michalakis S, Wissinger B, Seeliger MW, Paquet-Durand F. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype. Hum Mol Genet 2015; 24:5486-99. [PMID: 26188004 DOI: 10.1093/hmg/ddv275] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions.
Collapse
Affiliation(s)
- Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Kangwei Jiao
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany, Second People's Hospital of Yunnan Province and Fourth Affiliated Hospital of Kunming Medical University, 176 Qingnian Road, Wuhua, Kunming, Yunnan 650021, China
| | - Elena Buena-Atienza
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Ayse Sahaboglu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Dragana Trifunović
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Sukirthini Balendran
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Tanja Koepfli
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | | | - Susanne C Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany,
| |
Collapse
|
78
|
Garcia Garrido M, Mühlfriedel RL, Beck SC, Wallrapp C, Seeliger MW. Scale Adjustments to Facilitate Two-Dimensional Measurements in OCT Images. PLoS One 2015; 10:e0131154. [PMID: 26110792 PMCID: PMC4482384 DOI: 10.1371/journal.pone.0131154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/31/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To address the problem of unequal scales for the measurement of two-dimensional structures in OCT images, and demonstrate the use of intra¬ocular objects of known dimensions in the murine eye for the equal calibration of axes. Methods The first part of this work describes the mathematical foundation of major distortion effects introduced by X-Y scaling differences. Illustrations were generated with CorelGraph X3 software. The second part bases on image data obtained with a HRA2 Spectralis (Heidelberg Engineering) in SV129 wild-type mice. Subretinally and intravitreally implanted microbeads, alginate capsules with a diameter of 154±5 μm containing GFP-marked mesenchymal stem cells (CellBeads), were used as intraocular objects for calibration. Results The problems encountered with two-dimensional measurements in cases of unequal scales are demonstrated and an estimation of the resulting errors is provided. Commonly, the Y axis is reliably calibrated using outside standards like histology or manufacturer data. We show here that intraocular objects like dimensionally stable spherical alginate capsules allow for a two-dimensional calibration of the acquired OCT raw images by establishing a relation between X and Y axis data. For our setup, a correction factor of about 3.3 was determined using both epiretinally and subretinally positioned beads (3.350 ± 0.104 and 3.324 ± 0.083, respectively). Conclusions In this work, we highlight the distortion-related problems in OCT image analysis induced by unequal X and Y scales. As an exemplary case, we provide data for a two-dimensional in vivo OCT image calibration in mice using intraocular alginate capsules. Our results demonstrate the need for a proper two-dimensional calibration of OCT data, and we believe that equal scaling will certainly improve the efficiency of OCT image analysis.
Collapse
Affiliation(s)
- Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
- * E-mail:
| | - Regine L. Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | | | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| |
Collapse
|
79
|
Sulaiman RS, Quigley J, Qi X, O'Hare MN, Grant MB, Boulton ME, Corson TW. A Simple Optical Coherence Tomography Quantification Method for Choroidal Neovascularization. J Ocul Pharmacol Ther 2015; 31:447-54. [PMID: 26060878 DOI: 10.1089/jop.2015.0049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Therapeutic efficacy is routinely assessed by measurement of lesion size using flatmounted choroids and confocal microscopy in the laser-induced choroidal neovascularization (L-CNV) rodent model. We investigated whether optical coherence tomography (OCT) quantification, using an ellipsoid volume measurement, was comparable to standard ex vivo evaluation methods for this model and whether this approach could be used to monitor treatment-related lesion changes. METHODS Bruch's membrane was ruptured by argon laser in the dilated eyes of C57BL/6J mice, followed by intravitreal injections of anti-VEGF164 or vehicle, or no injection. In vivo OCT images were acquired using Micron III or InVivoVue systems at 7, 10, and/or 14 days post-laser and neovascular lesion volume was calculated as an ellipsoid. Subsequently, lesion volume was compared to that calculated from confocal Z-stack images of agglutinin-stained choroidal flatmounts. RESULTS Ellipsoid volume measurement of orthogonal 2-dimensional OCT images obtained from different imaging systems correlated with ex vivo lesion volumes for L-CNV (Spearman's ρ=0.82, 0.75, and 0.82 at days 7, 10, and 14, respectively). Ellipsoid volume calculation allowed temporal monitoring and evaluation of CNV lesions in response to antivascular endothelial growth factor treatment. CONCLUSIONS Ellipsoid volume measurements allow rapid, quantitative use of OCT for the assessment of CNV lesions in vivo. This novel method can be used with different OCT imaging systems with sensitivity to distinguish between treatment conditions. It may serve as a useful adjunct to the standard ex vivo confocal quantification, to assess therapeutic efficacy in preclinical models of CNV, and in models of other ocular diseases.
Collapse
Affiliation(s)
- Rania S Sulaiman
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana.,4 Department of Biochemistry, Faculty of Pharmacy, Cairo University , Cairo, Egypt
| | - Judith Quigley
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Xiaoping Qi
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael N O'Hare
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,5 School of Biomedical Science, University of Ulster , Coleraine, Northern Ireland, United Kingdom
| | - Maria B Grant
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael E Boulton
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy W Corson
- 1 Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine , Indianapolis, Indiana.,2 Department of Ophthalmology, Indiana University School of Medicine , Indianapolis, Indiana.,3 Department of Pharmacology and Toxicology, Indiana University School of Medicine , Indianapolis, Indiana.,6 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana.,7 Indiana University Melvin and Bren Simon Cancer Center , Indianapolis, Indiana
| |
Collapse
|
80
|
Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015; 141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The goal of this review is to summarize the most common imaging methods currently applied for in vivo assessment of ocular structure in animal models of experimental glaucoma with an emphasis on translational relevance to clinical studies of the human disease. The most common techniques in current use include optical coherence tomography and scanning laser ophthalmoscopy. In reviewing the application of these and other imaging modalities to study glaucomatous optic neuropathy, this article is organized into three major sections: 1) imaging the optic nerve head, 2) imaging the retinal nerve fiber layer and 3) imaging retinal ganglion cell soma and dendrites. The article concludes with a brief section on possible future directions.
Collapse
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, OR 97232, USA.
| |
Collapse
|
81
|
Kohl S, Zobor D, Chiang WC, Weisschuh N, Staller J, Gonzalez Menendez I, Chang S, Beck SC, Garcia Garrido M, Sothilingam V, Seeliger MW, Stanzial F, Benedicenti F, Inzana F, Héon E, Vincent A, Beis J, Strom TM, Rudolph G, Roosing S, Hollander AID, Cremers FPM, Lopez I, Ren H, Moore AT, Webster AR, Michaelides M, Koenekoop RK, Zrenner E, Kaufman RJ, Tsang SH, Wissinger B, Lin JH. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat Genet 2015; 47:757-65. [PMID: 26029869 DOI: 10.1038/ng.3319] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/04/2015] [Indexed: 01/10/2023]
Abstract
Achromatopsia (ACHM) is an autosomal recessive disorder characterized by color blindness, photophobia, nystagmus and severely reduced visual acuity. Using homozygosity mapping and whole-exome and candidate gene sequencing, we identified ten families carrying six homozygous and two compound-heterozygous mutations in the ATF6 gene (encoding activating transcription factor 6A), a key regulator of the unfolded protein response (UPR) and cellular endoplasmic reticulum (ER) homeostasis. Patients had evidence of foveal hypoplasia and disruption of the cone photoreceptor layer. The ACHM-associated ATF6 mutations attenuate ATF6 transcriptional activity in response to ER stress. Atf6(-/-) mice have normal retinal morphology and function at a young age but develop rod and cone dysfunction with increasing age. This new ACHM-related gene suggests a crucial and unexpected role for ATF6A in human foveal development and cone function and adds to the list of genes that, despite ubiquitous expression, when mutated can result in an isolated retinal photoreceptor phenotype.
Collapse
Affiliation(s)
- Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Wei-Chieh Chiang
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Jennifer Staller
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez Menendez
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stanley Chang
- 1] Department of Ophthalmology, Columbia University, New York, New York, USA. [2] Edward Harkness Eye Institute, New York Presbyterian Hospital, New York, New York, USA
| | - Susanne C Beck
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mathias W Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franco Stanzial
- Clinical Genetics Service, Regional Hospital Bozen, Bozen, Italy
| | | | - Francesca Inzana
- Clinical Genetics Service, Regional Hospital Bozen, Bozen, Italy
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, Programme of Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Programme of Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jill Beis
- Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Tim M Strom
- 1] Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany. [2] Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- 1] Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. [2] Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Lopez
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Huanan Ren
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anthony T Moore
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK. [3] Ophthalmology Department, University of California San Francisco Medical School, San Francisco, California, USA
| | - Andrew R Webster
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- 1] University College London Institute of Ophthalmology, University College London, London, UK. [2] Moorfields Eye Hospital, London, UK
| | - Robert K Koenekoop
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Eberhart Zrenner
- 1] Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany. [2] Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Stephen H Tsang
- 1] Department of Ophthalmology, Columbia University, New York, New York, USA. [2] Jonas Laboratory of Stem Cell and Regenerative Medicine, Columbia University, New York, New York, USA. [3] Brown Glaucoma Laboratory, Columbia University, New York, New York, USA. [4] Institute of Human Nutrition, Columbia University, New York, New York, USA. [5] Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Jonathan H Lin
- 1] Department of Pathology, University of California, San Diego, La Jolla, California, USA. [2] Department of Ophthalmology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
82
|
In vitro and in vivo ocular biocompatibility of electrospun poly(ɛ-caprolactone) nanofibers. Eur J Pharm Sci 2015; 73:9-19. [DOI: 10.1016/j.ejps.2015.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 03/03/2015] [Indexed: 11/23/2022]
|
83
|
Al-Halafi AM. Outer retinal tubulation in diabetic macular edema following anti-VEGF treatment. EYE AND VISION 2015; 2:9. [PMID: 26613090 PMCID: PMC4660850 DOI: 10.1186/s40662-015-0018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/19/2015] [Indexed: 11/19/2022]
Abstract
Background To address the presence and features of outer retinal tubulation (ORT) found in diabetic macular edema (DME) treated with anti-vascular endothelial growth factor (anti-VEGF) and to differentiate between ORT and cystoid DME, which have different plans of management. Methods This was a retrospective review of a total of 514 patients investigated with spectral domain optical coherence tomography (OCT) in patients with diabetic macular edema treated with anti-VEGF. ORT was seen in 12 eyes of 11 patients. The morphologic characteristics of ORT and its progress over time were examined using OCT data. The retinal images were obtained by horizontal and vertical scans to analyze the possible presence of ORT and to explore their morphologic features and location in the retinal layers. Results ORT was seen in DME treated with anti-VEGF. ORT was shown as round or ovoid hyporeflective spaces with hyperreflective borders on the B-scans, measuring 30 to 120 μm high and 30 to 1775 μm wide. The tubules generally remained stable over time. In a retinal practice specializing in advanced diabetic retinopathy clinic, this ORT was seen in 12 eyes of 11 patients during a 12-month period. ORT presented either after receiving 0.05 mL open-label intravitreal injections of 0.5 mg ranibizumab or 1.25 mg bevacizumab. Conclusion ORT is found in DME treated with anti-VEGF that may show damage to the outer retina secondary to the severity and chronicity of the DME. ORT may be a result of underlying chronic and severe diabetic macular edema that may occur later possibly secondary to retinal layers rearrangement after several anti-VEGF injections. It is important to differentiate between ORT and cystoids DME. The presence of the ORT entity alone without the presence of DME does not require further anti-VEGF re-injections.
Collapse
Affiliation(s)
- Ali M Al-Halafi
- Department of Surgery, Ophthalmology Division, Consultant and Vitreoretinal Surgeon Security forces Hospital, PO Box 3643, Riyadh, 11481 Kingdom of Saudi Arabia
| |
Collapse
|
84
|
Ebneter A, Agca C, Dysli C, Zinkernagel MS. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion. PLoS One 2015; 10:e0119046. [PMID: 25775456 PMCID: PMC4361633 DOI: 10.1371/journal.pone.0119046] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.
Collapse
Affiliation(s)
- Andreas Ebneter
- Department of Ophthalmology, Bern University Hospital, Inselspital, and University of Bern, Bern, Switzerland
| | - Cavit Agca
- Department of Ophthalmology, Bern University Hospital, Inselspital, and University of Bern, Bern, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Bern University Hospital, Inselspital, and University of Bern, Bern, Switzerland
| | - Martin S. Zinkernagel
- Department of Ophthalmology, Bern University Hospital, Inselspital, and University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
85
|
Brennenstuhl C, Tanimoto N, Burkard M, Wagner R, Bolz S, Trifunovic D, Kabagema-Bilan C, Paquet-Durand F, Beck SC, Huber G, Seeliger MW, Ruth P, Wissinger B, Lukowski R. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory. J Biol Chem 2015; 290:10242-55. [PMID: 25739440 DOI: 10.1074/jbc.m114.611921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.
Collapse
Affiliation(s)
- Christina Brennenstuhl
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | - Markus Burkard
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Rebecca Wagner
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | - Clement Kabagema-Bilan
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | | | | | - Peter Ruth
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Bernd Wissinger
- the Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Robert Lukowski
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy,
| |
Collapse
|
86
|
Cuenca N, Fernández-Sánchez L, Sauvé Y, Segura FJ, Martínez-Navarrete G, Tamarit JM, Fuentes-Broto L, Sanchez-Cano A, Pinilla I. Correlation between SD-OCT, immunocytochemistry and functional findings in an animal model of retinal degeneration. Front Neuroanat 2014; 8:151. [PMID: 25565976 PMCID: PMC4273614 DOI: 10.3389/fnana.2014.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023] Open
Abstract
Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | | | - Yves Sauvé
- Departments of Ophthalmology and Physiology, University of Alberta Edmonton, AB, Canada
| | - Francisco J Segura
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Surgery, School of Medicine, University of Zaragoza Zaragoza, Aragon, Spain
| | | | - José Manuel Tamarit
- Bloss Group Company, Spain and Heidelberg Engineering Gmbh Heidelberg, Germany
| | - Lorena Fuentes-Broto
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Physiology, University of Zaragoza Zaragoza, Aragon, Spain
| | - Ana Sanchez-Cano
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Applied Physics, University of Zaragoza Zaragoza, Aragon, Spain
| | - Isabel Pinilla
- Aragon Health Science Institute, IIS Aragon Zaragoza, Aragon, Spain ; Department of Surgery, School of Medicine, University of Zaragoza Zaragoza, Aragon, Spain ; Department of Ophthalmology, Lozano Blesa University Hospital Zaragoza, Aragon, Spain
| |
Collapse
|
87
|
Thaler S, Haritoglou C, Schuettauf F, Choragiewicz T, May CA, Gekeler F, Fischer MD, Langhals H, Schatz A. In vivo biocompatibility of a new cyanine dye for ILM peeling. Eye (Lond) 2014; 29:428-35. [PMID: 25523205 DOI: 10.1038/eye.2014.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/02/2014] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the biocompatibility of the new cyanine dye: 3,3'-Di-(4-sulfobutyl)-1,1,1',1'-tetramethyl-di-1H-benz[e]indocarbocyanine (DSS) as a vital dye for intraocular application in an in vivo rat model and to evaluate the effects of this dye on retinal structure and function. METHODS DSS at a concentration of 0.5% was applied via intravitreal injections to adult Brown Norway rats with BSS serving as a control. Retinal toxicity was assessed 7 days later by means of retinal ganglion cell (RGC) counts, light microscopy, optical coherence tomography (OCT), and electroretinography (ERG). RESULTS No significant decrease in RGC numbers was observed. No structural changes of the central retina were observed either in vivo (OCT) or under light microscopy. ERGs detected a temporary reduction of retinal function 7 days after injection; this was no longer evident 14 days after injection. CONCLUSIONS DSS showed good biocompatibility in a well-established experimental in vivo setting and may be usable for intraocular surgery as an alternative to other cyanine dyes. In contrast to indocyanine green, it additionally offers fluorescence in the visual spectrum. Further studies with other animal models are needed before translation into clinical application.
Collapse
Affiliation(s)
- S Thaler
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - C Haritoglou
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | - F Schuettauf
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - T Choragiewicz
- 1] Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany [2] 1st Eye Hospital, Medical University of Lublin, Lublin, Poland
| | - C A May
- Department of Anatomy, Medical Faculty 'Carl Gustav Carus', Technical University of Dresden, Dresden, Germany
| | - F Gekeler
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - M D Fischer
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - H Langhals
- Department of Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - A Schatz
- Eye Clinic and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
88
|
Ferguson LR, Grover S, Dominguez II JM, Balaiya S, Chalam KV. Retinal thickness measurement obtained with spectral domain optical coherence tomography assisted optical biopsy accurately correlates with ex vivo histology. PLoS One 2014; 9:e111203. [PMID: 25360629 PMCID: PMC4216007 DOI: 10.1371/journal.pone.0111203] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This study determines 'correlation constants' between the gold standard histological measurement of retinal thickness and the newer spectral-domain optical coherence tomography (SD-OCT) technology in adult C57BL/6 mice. METHODS Forty-eight eyes from adult mice underwent SD-OCT imaging and then were histologically prepared for frozen sectioning with H&E staining. Retinal thickness was measured via 10x light microscopy. SD-OCT images and histological sections were standardized to three anatomical sites relative to the optic nerve head (ONH) location. The ratios between SD-OCT to histological thickness for total retinal thickness (TRT) and six sublayers were defined as 'correlation constants'. RESULTS Mean (± SE) TRT for SD-OCT and histological sections was 210.95 µm (± 1.09) and 219.58 µm (± 2.67), respectively. The mean 'correlation constant' for TRT between the SD-OCT and histological sections was 0.96. The retinal thickness for all sublayers measured by SD-OCT vs. histology were also similar, the 'correlation constant' values ranged from 0.70 to 1.17. All SD-OCT and histological measurements demonstrated highly significant (p<0.01) strong positive correlations. CONCLUSION This study establishes conversion factors for the translation of ex vivo data into in vivo information; thus enhancing the applicability of SD-OCT in translational research.
Collapse
Affiliation(s)
- Lee R. Ferguson
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida, United States of America
| | - Sandeep Grover
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida, United States of America
| | - James M. Dominguez II
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Sankarathi Balaiya
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida, United States of America
| | - Kakarla V. Chalam
- Department of Ophthalmology, University of Florida College of Medicine, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
89
|
Knier B, Rothhammer V, Heink S, Puk O, Graw J, Hemmer B, Korn T. Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. J Autoimmun 2014; 56:34-44. [PMID: 25282335 DOI: 10.1016/j.jaut.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Optic neuritis is a common inflammatory manifestation of multiple sclerosis (MS). In experimental autoimmune encephalomyelitis (EAE), the optic nerve is affected as well. Here, we investigated whether autoimmune inflammation in the optic nerve is distinct from inflammation in other parts of the central nervous system (CNS). In our study, inflammatory infiltrates in the optic nerve and the brain were characterized by a high fraction of Ly6G(+) granulocytes whereas in the spinal cord, macrophage infiltrates were predominant. At the peak of disease, IL-17 mRNA abundance was highest in the optic nerve as compared with other parts of the CNS. The ratio of IL-17 vs IFN-γ producing CD4(+) T cells was higher in the optic nerve and brain than in the spinal cord and more effector CD4(+) T cells were committed to the Th17 transcriptional program in the optic nerve than in the spinal cord. IL-17 producing γδ T cells but rather not Ly6G(+) granulocytes themselves contributed to IL-17 production. Optical coherence tomography (OCT) studies on murine eyes revealed a decline in thickness of the retinal nerve fiber layer (RNFL) and the common layer of ganglion cells and inner plexiform layer (GCL+) after the recovery from motor symptoms indicating that autoimmune inflammation induced a significant atrophy of optic nerve fibers during EAE. Neutralization of IL-17 by treatment with anti-IL-17 antibodies reduced but did not abrogate motor symptoms of EAE. However, RNFL and GCL+ atrophy were completely prevented by blocking IL-17. Thus, the optic nerve compartment is particularly prone to support IL-17 mediated inflammatory responses during CNS autoimmunity and structural integrity of the retina can be preserved by neutralizing IL-17.
Collapse
Affiliation(s)
- Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Sylvia Heink
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Oliver Puk
- Institute for Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jochen Graw
- Institute for Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany; Munich Cluster for Systems Neurology (SyNergy), München, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 München, Germany; Munich Cluster for Systems Neurology (SyNergy), München, Germany.
| |
Collapse
|
90
|
Huang R, Baranov P, Lai K, Zhang X, Ge, J, Young MJ. Functional and morphological analysis of the subretinal injection of human retinal progenitor cells under Cyclosporin A treatment. Mol Vis 2014; 20:1271-80. [PMID: 25352736 PMCID: PMC4168833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 09/17/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the functional and morphological changes in subretinal xenografts of human retinal progenitor cells (hRPCs) in B6 mice treated with Cyclosporin A (CsA; 210 mg/l in drinking water). METHODS The hRPCs from human fetal eyes were isolated and expanded for transplantation. These cells, with green fluorescent protein (GFP) at 11 passages, were transplanted into the subretinal space in B6 mice. A combination of invasive and noninvasive approaches was used to analyze the structural and functional consequences of the subretinal injection of the hRPCs. The process of change was monitored using spectral domain optical coherence tomography (SDOCT), histology, and electroretinography (ERG) at 3 days, 1 week, and 3 weeks after transplantation. Cell counts were used to evaluate the survival rate with a confocal microscope. ERGs were performed to evaluate the physiologic changes, and the structural changes were evaluated using SDOCT and histological examination. RESULTS The results of the histological examination showed that the hRPCs gained a better survival rate in the mice treated with CsA. The SDOCT showed that the bleb size of the retinal detachment was significantly decreased, and the retinal reattachment was nearly complete by 3 weeks. The ERG response amplitudes in the CsA group were less decreased after the injection, when compared with the control group, in the dark-adapted and light-adapted conditions. However, the cone-mediated function in both groups was less affected by the transplantation after 3 weeks than the rod-mediated function. CONCLUSIONS Although significant functional and structural recovery was observed after the subretinal injection of the hRPCs, the effectiveness of CsA in xenotransplantation may be a novel and potential approach for increasing retinal progenitor cell survival.
Collapse
Affiliation(s)
- Rui Huang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China,Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Kunbei Lai
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China,Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Xinmei Zhang
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Jian Ge,
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Michael J. Young
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
91
|
Optical coherence tomography: a new strategy to image planarian regeneration. Sci Rep 2014; 4:6316. [PMID: 25204535 PMCID: PMC4159628 DOI: 10.1038/srep06316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/11/2014] [Indexed: 02/02/2023] Open
Abstract
The planarian is widely used as a model for studying tissue regeneration. In this study, we used optical coherence tomography (OCT) for the real-time, high-resolution imaging of planarian tissue regeneration. Five planaria were sliced transversely to produce 5 head and 5 tail fragments. During a 2-week regeneration period, OCT images of the planaria were acquired to analyze the signal attenuation rates, intensity ratios, and image texture features (including contrast, correlation, homogeneity, energy, and entropy) to compare the primitive and regenerated tissues. In the head and tail fragments, the signal attenuation rates of the regenerated fragments decreased from −0.2 dB/μm to −0.05 dB/μm, between Day 1 and Day 6, and then increased to −0.2 dB/μm on Day 14. The intensity ratios decreased to approximately 0.8 on Day 6, and increased to between 0.8 and 0.9 on Day 14. The texture parameters of contrast, correlation, and homogeneity exhibited trends similar to the signal attenuation rates and intensity ratios during the planarian regeneration. The proposed OCT parameters might provide biological information regarding cell apoptosis and the formation of a mass of new cells during planarian regeneration. Therefore, OCT imaging is a potentially effective method for planarian studies.
Collapse
|
92
|
Garcia Garrido M, Beck SC, Mühlfriedel R, Julien S, Schraermeyer U, Seeliger MW. Towards a quantitative OCT image analysis. PLoS One 2014; 9:e100080. [PMID: 24927180 PMCID: PMC4057353 DOI: 10.1371/journal.pone.0100080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. METHODS Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-Laser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/). RESULTS Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated. CONCLUSIONS OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the potential of this approach in the long-term follow-up of therapeutic strategies.
Collapse
Affiliation(s)
- Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
- * E-mail:
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Sylvie Julien
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| |
Collapse
|
93
|
Boretsky A, Gupta P, Tirgan N, Liu R, Godley BF, Zhang W, Tilton RG, Motamedi M. Nicotine accelerates diabetes-induced retinal changes. Curr Eye Res 2014; 40:368-77. [PMID: 24911405 DOI: 10.3109/02713683.2014.924147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the effects of nicotine on retinal alterations in early-stage diabetes in an established rodent model. MATERIALS AND METHODS Sprague-Dawley rats were examined using a combination of confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography to determine changes in retinal structure in response to nicotine exposure, diabetes and the combined effects of nicotine and diabetes. Diabetes was induced by a single injection of 65 mg/kg streptozotocin and nicotine injections were administered subcutaneously daily. Retinal thickness in the superior, inferior, nasal and temporal quadrants were determined based on the spectral domain optical coherence tomography (SD-OCT) volume scans (20° × 20°) centered on the optic disc. Segmentation of discrete retinal layers was performed on a subset of SD-OCT cross-sections to further examine changes in each treatment group. Survival of neurons within the ganglion cell layer (GCL) was assessed by confocal morphometric imaging. RESULTS The control group did not experience any significant change throughout the study. The nicotine treatment group experienced an average decrease in total retinal thickness (TRT) of 9.4 µm with the majority of the loss localized within the outer nuclear layer (ONL) as determined by segmentation analysis (p < 0.05). The diabetic group exhibited a trend toward decreased TRT while segmentation analysis of the diabetic retinopathy (DR) group revealed significant thinning within the ONL (p < 0.05). The combination of nicotine and diabetes revealed a significant increase of 8.9 µm in the TRT (p < 0.05) accompanied by a decrease in the number of GCL neurons. CONCLUSIONS We demonstrated significant temporal changes in retinal morphology in response to nicotine exposure, diabetes and with the combined effects of nicotine and diabetes. These findings may have implications in determining treatment strategies for diabetic patients using products containing nicotine, such as cigarettes, smokeless tobacco, electronic cigarettes or smoking cessation products.
Collapse
|
94
|
Park YG, Seifert E, Roh YJ, Theisen-Kunde D, Kang S, Brinkmann R. Tissue response of selective retina therapy by means of a feedback-controlled energy ramping mode. Clin Exp Ophthalmol 2014; 42:846-55. [PMID: 24698550 DOI: 10.1111/ceo.12342] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/27/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The purpose of the study was to evaluate the safety and selectivity of the retinal pigment epithelium lesions by using automatic energy ramping and dosimetry technique for selective retina therapy and to investigate the healing response. METHODS Ten eyes of Chinchilla Bastard rabbits were treated with an automatic dosage controlled selective retina therapy laser (frequency doubled Q-switched Nd:YLF, wavelength: 527 nm, pulse duration: 1.7 μs, repetition rate: 100 Hz, pulse energy: linear increasing from pulse to pulse up to shut down - maximal 110 μJ, max. number of pulses in a burst: 30, retinal spot diameter: 133 μm). After treatment, fundus photography, optical coherence tomography and fluorescein angiography were performed at three time points from 1 h to 3 weeks. Histological analysis was performed. RESULTS A total of 381 selective retina therapy laser spots were tested (range 13-104 μJ).Typical fundus photographs obtained at 1 h after irradiation showed that 379 out of 381 lesions produced by selective retina therapy were not visible ophthalmoscopically and the lesions could be detected by angiography only. Optical coherence tomography images revealed that the structure of photoreceptors was preserved, but a disrupted retinal pigment epithelium layer was observed as was expected. By 3 weeks, histology showed selective retinal pigment epithelium damage without any effect on the inner retina and focal proliferation of the retinal pigment epithelium layer. CONCLUSIONS Automatically controlled selective retina therapy is a significant improvement in this innovative treatment. It could be demonstrated that the non-contact, reflectometric technique with a controlled pulse energy ramp is safe and selective.
Collapse
Affiliation(s)
- Young-Gun Park
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
95
|
Aziz MK, Ni A, Esserman DA, Chavala SH. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98:984-9. [PMID: 24671925 DOI: 10.1136/bjophthalmol-2013-304515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND To study spatiotemporal in vivo changes in retinal morphology and quantify thickness of retinal layers in a mouse model of light-induced retinal degeneration using spectral domain optical coherence tomography (SD-OCT). METHODS BALB/c mice were exposed to 5000 lux of constant light for 3 h. SD-OCT images were taken 3 h, 24 h, 3 days, 1 week and 1 month after light exposure and were compared with histology at the same time points. SD-OCT images were also taken at 0, 1 and 2 h after light exposure in order to analyse retinal changes at the earliest time points. The thickness of retinal layers was measured using the Bioptigen software InVivoVue Diver. RESULTS SD-OCT demonstrated progressive outer retinal thinning. 3 h after light exposure, the outer nuclear layer converted from hyporeflective to hyper-reflective. At 24 h, outer retinal bands and nuclear layer demonstrated similar levels of hyper-reflectivity. Significant variations in outer retinal thickness, vitreous opacities and retinal detachments occurred within days of injury. Thinning of the retina was observed at 1 month after injury. It was also determined that outer nuclear layer changes precede photoreceptor segment structure disintegration and the greatest change in segment structure occurs between 1 and 2 h after light exposure. CONCLUSIONS Longitudinal SD-OCT reveals intraretinal changes that cannot be observed by histopathology at early time points in the light injury model.
Collapse
Affiliation(s)
- Mehak K Aziz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aiguo Ni
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Denise A Esserman
- Departments of Medicine, Division of General Medicine and Clinical Epidemiology and Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sai H Chavala
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
96
|
Harimoto K, Ito M, Karasawa Y, Sakurai Y, Takeuchi M. Evaluation of mouse experimental autoimmune uveoretinitis by spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98:808-12. [PMID: 24574437 DOI: 10.1136/bjophthalmol-2013-304421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To evaluate the efficacy of spectral domain optical coherence tomography (SD-OCT) in monitoring the development of mouse experimental autoimmune uveoretinitis (EAU) as an animal model of endogenous uveitis, and to develop an OCT-based grading system for EAU severity. METHODS C57BL/6 mice were immunised with human interphotoreceptor retinoid-binding protein (amino acid sequence 1-20) peptide and complete Freund's adjuvant to induce EAU. The development of EAU was monitored by SD-OCT serially throughout the disease course, and the images were graded from 1 to 4 and compared with the clinical and histopathological grades. RESULTS SD-OCT images depicted retinal lamella structures including the inner segment/outer segment (IS/OS) line in normal mice. Retinal structural changes were observed on SD-OCT images in mice that developed EAU clinically scored as grade 1 or higher, which precisely corresponded to the pathological findings. The SD-OCT images of EAU were graded as follows: grade 1, a few infiltrating cells in the vitreous and retina; grade 2, increased vitreous cells, retinal vasculitis, and granulomatous lesion; grade 3, cell infiltration into the whole retina, disappearance of IS/OS line, and destruction of the retinal layer structure; and grade 4, disappearance of the outer retina. The SD-OCT grade of EAU based on these criteria correlated significantly with both the clinical grade (R(2)=0.282, p<0.005) and histopathological grade (R(2)=0.846, p<0.0001). CONCLUSIONS SD-OCT is useful for evaluating the development and severity of mouse EAU. The SD-OCT scoring system we developed accurately reflects clinical and histopathological changes.
Collapse
Affiliation(s)
- Kohzou Harimoto
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Yoko Karasawa
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Yutaka Sakurai
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Saitama, Tokorozawa, Japan
| |
Collapse
|
97
|
Pellissier LP, Lundvig DMS, Tanimoto N, Klooster J, Vos RM, Richard F, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice. Hum Mol Genet 2014; 23:3759-71. [PMID: 24565864 DOI: 10.1093/hmg/ddu089] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations. Crb1Crb2 double mutant retinas have severe developmental defects similar to the phenotype observed in LCA patients associated with CRB1 mutations. Therefore, CRB2 is a candidate modifying gene of human CRB1-related retinal dystrophy. In this study, we studied the cellular localization of CRB1 and CRB2 in human retina and tested the influence of the Crb2 gene allele on Crb1-retinal dystrophies in mice. We found that in contrast to mice, in the human retina CRB1 protein was expressed at the subapical region in photoreceptors and Müller glia cells, and CRB2 only in Müller glia cells. Genetic ablation of one allele of Crb2 in heterozygote Crb1(+/-) retinas induced a mild retinal phenotype, but in homozygote Crb1 knockout mice lead to an early and severe phenotype limited to the entire inferior retina. Our data provide mechanistic insight for CRB1-related LCA and RP.
Collapse
Affiliation(s)
| | | | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - Jan Klooster
- Department of Retinal Signal Processing, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, The Netherlands
| | | | - Fabrice Richard
- Aix-Marseille Université, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Case 907, Marseille, Cedex 09 13288, France
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - André Le Bivic
- Aix-Marseille Université, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Case 907, Marseille, Cedex 09 13288, France
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | | |
Collapse
|
98
|
Song Q, Sun X, Nie Q, Xu Y, Ding Y, Xie P, Liu Q, Yuan S. A novel method of multi-parameter measurements for the mouse retina in vivo using optical coherence tomography. Exp Eye Res 2014; 121:66-73. [PMID: 24566037 DOI: 10.1016/j.exer.2014.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Qinglu Song
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xinghong Sun
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qiao Nie
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yidan Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yuzhi Ding
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ping Xie
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Qinghuai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Songtao Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
99
|
Abstract
PURPOSE To demonstrate outer retinal tubulation (ORT) in various degenerative retinal disorders. METHODS This was a retrospective review of the multimodal imaging of 29 eyes of 15 patients with various retinal dystrophies and inflammatory maculopathies manifesting ORT. The morphologic features of ORT and its evolution over time were analyzed using spectral-domain optical coherence tomography data. RESULTS Outer retinal tubulation was identified as round or ovoid structures with hyperreflective borders in pattern dystrophy (six eyes), acute zonal occult outer retinopathy (five eyes), retinitis pigmentosa (four eyes), Stargardt disease (four eyes), gyrate atrophy (two eyes), choroideremia (two eyes), and various other degenerative conditions. These structures appeared to develop from the invagination of photoreceptors at the junction of intact and atrophic outer retina. During follow-up, the number and distribution of ORT largely remained stable. As zones of atrophy enlarged, the frequency of ORT appeared to increase. The ORT structures were found in <10% of patients with retinitis pigmentosa, Stargardt disease, or pattern dystrophy. CONCLUSION Outer retinal tubulation is found in various degenerative retinal disorders that share in common damage to the outer retina and/or retinal pigment epithelium. The presence of ORT may be an indicator of underlying disease stage and severity.
Collapse
|
100
|
Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2014; 5:189ra76. [PMID: 23761039 DOI: 10.1126/scitranslmed.3005708] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inherited retinal degenerative diseases are a clinically promising focus of adeno-associated virus (AAV)-mediated gene therapy. These diseases arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), leading to cell death and structural deterioration. Because current gene delivery methods require an injurious subretinal injection to reach the photoreceptors or RPE and transduce just a fraction of the retina, they are suitable only for the treatment of rare degenerative diseases in which retinal structures remain intact. To address the need for broadly applicable gene delivery approaches, we implemented in vivo-directed evolution to engineer AAV variants that deliver the gene cargo to the outer retina after injection into the eye's easily accessible vitreous humor. This approach has general implications for situations in which dense tissue penetration poses a barrier for gene delivery. A resulting AAV variant mediated widespread delivery to the outer retina and rescued the disease phenotypes of X-linked retinoschisis and Leber's congenital amaurosis in corresponding mouse models. Furthermore, it enabled transduction of primate photoreceptors from the vitreous, expanding its therapeutic promise.
Collapse
Affiliation(s)
- Deniz Dalkara
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1462, USA
| | | | | | | | | | | | | | | |
Collapse
|