51
|
Menon RT, Shrestha AK, Barrios R, Reynolds C, Shivanna B. Tie-2 Cre-Mediated Deficiency of Extracellular Signal-Regulated Kinase 2 Potentiates Experimental Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension in Neonatal Mice. Int J Mol Sci 2020; 21:ijms21072408. [PMID: 32244398 PMCID: PMC7177249 DOI: 10.3390/ijms21072408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a significant lung morbidity of infants, and disrupted lung angiogenesis is a hallmark of this disease. We observed that extracellular signal-regulated kinases (ERK) 1/2 support angiogenesis in vitro, and hyperoxia activates ERK1/2 in fetal human pulmonary microvascular endothelial cells (HPMECs) and in neonatal murine lungs; however, their role in experimental BPD and PH is unknown. Therefore, we hypothesized that Tie2 Cre-mediated deficiency of ERK2 in the endothelial cells of neonatal murine lungs would potentiate hyperoxia-induced BPD and PH. We initially determined the role of ERK2 in in vitro angiogenesis using fetal HPMECs. To disrupt endothelial ERK2 signaling in the lungs, we decreased ERK2 expression by breeding ERK2flox/flox mice with Tie-Cre mice. One-day-old endothelial ERK2-sufficient (eERK2+/+) or –deficient (eERK2+/−) mice were exposed to normoxia or hyperoxia (FiO2 70%) for 14 d. We then performed lung morphometry, gene and protein expression studies, and echocardiography to determine the extent of inflammation, oxidative stress, and development of lungs and PH. The knockdown of ERK2 in HPMECs decreased in vitro angiogenesis. Hyperoxia increased lung inflammation and oxidative stress, decreased lung angiogenesis and alveolarization, and induced PH in neonatal mice; however, these effects were augmented in the presence of Tie2-Cre mediated endothelial ERK2 deficiency. Therefore, we conclude that endothelial ERK2 signaling is necessary to mitigate hyperoxia-induced experimental BPD and PH in neonatal mice. Our results indicate that endothelial ERK2 is a potential therapeutic target for the management of BPD and PH in infants.
Collapse
Affiliation(s)
- Renuka T. Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
| | - Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Corey Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
- Correspondence: ; Tel.: +1-832-824-6474; Fax: +1-832-825-3204
| |
Collapse
|
52
|
Medfai H, Khalil A, Rousseau A, Nuyens V, Paumann-Page M, Sevcnikar B, Furtmüller PG, Obinger C, Moguilevsky N, Peulen O, Herfs M, Castronovo V, Amri M, Van Antwerpen P, Vanhamme L, Zouaoui Boudjeltia K. Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt, and FAK pathways. Cardiovasc Res 2020; 115:463-475. [PMID: 29982533 DOI: 10.1093/cvr/cvy179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
Aims The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo. Methods and results We analysed the effects of peroxidasin 1 gene silencing and supplementation by recombinant hsPxd01 in TeloHAEC endothelial cells on cell migration, tubulogenesis in matrigel, and intracellular signal transduction as assessed by kinase phosphorylation and expression of pro-angiogenic genes as measured by qRT-PCR. We further evaluated the angiogenic potential of recombinant peroxidasin in a chicken chorioallantoic membrane model. RNA silencing of endogenous hsPxd01 significantly reduced tube formation and cell migration, whereas supplementation by the recombinant peroxidase promoted tube formation in vitro and stimulated vascularization in vivo through its catalytic activity. Moreover, recombinant hsPxd01 promoted phosphorylation of Extracellular signal-Regulated Kinases (ERK1/2), Protein kinase B (Akt), and Focal Adhesion Kinase (FAK), and induced the expression of pro-angiogenic downstream genes: Platelet Derived Growth Factor Subunit B (PDGFB), endothelial-derived Heparin Binding EGF-like growth factor (HB-EGF), CXCL-1, Hairy-Related Transcription Factor 1 (HEY-1), DNA-binding protein inhibitor (ID-2), Snail Family Zinc Finger 1 (SNAI-1), as well as endogenous hsPxd01. However, peroxidasin silencing significantly reduced Akt and FAK phosphorylation but induced ERK1/2 activation after supplementation by recombinant hsPxd01. While hsPxd01 silencing significantly reduced expression of HEY-1, ID-2, and PDGFB, it did not affect expression of SNAI-1, HB-EGF, and CXCL-1 after supplementation by recombinant hsPxd01. Conclusion Our findings suggest a role of enzymatically active peroxidasin 1 as a pro-angiogenic peroxidase and a modulator of ERK1/2, Akt and FAK signalling.
Collapse
Affiliation(s)
- Hayfa Medfai
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium.,Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Alia Khalil
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Martina Paumann-Page
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Benjamin Sevcnikar
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Nicole Moguilevsky
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Michael Herfs
- Department of Pathology, Laboratory of Experimental Pathology, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga-Cancer, University of Liege, Quartier Hopital, Avenue de l'Hopital, 11, 4000 Liège, Belgium
| | - Mohamed Amri
- Department of Biological Sciences, Laboratory of Functional Neurophysiology and Pathology, UR/11ES09, Université de Tunis El Manar, Faculté des Sciences de Tunis, 20 Rue de Tolède, 2092 Manar II, Tunis,Tunisia
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la plaine CP205/09, Boulevard du Triomphe, 1050 Bruxelles, Belgium; and
| | - Luc Vanhamme
- Laboratory of Molecular Parasitology, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), Faculté de Médecine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Hôpital André Vésale, 706, Rue de Gozée, 6110 Montigny-le-Tilleul, Charleroi, Belgium
| |
Collapse
|
53
|
Isoform-Specific Roles of ERK1 and ERK2 in Arteriogenesis. Cells 2019; 9:cells9010038. [PMID: 31877781 PMCID: PMC7017123 DOI: 10.3390/cells9010038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global Erk1 knockout as well as Erk1 and Erk2 floxed mice to delete Erk1 or Erk2 in endothelial cells, macrophages, and smooth muscle cells. We found that ERK1 controls macrophage infiltration following an ischemic event. Loss of ERK1 in endothelial cells and macrophages induced an excessive macrophage infiltration leading to an increased but poorly functional arteriogenesis. Loss of ERK2 in endothelial cells leads to a decreased arteriogenesis due to decreased endothelial cell proliferation and a reduced eNOS expression. These findings show for the first time that isoform-specific roles of ERK1 and ERK2 in the control of arteriogenesis.
Collapse
|
54
|
Carroll LS, Uehara H, Fang D, Choi S, Zhang X, Singh M, Sandhu Z, Cummins PM, Curtis TM, Stitt AW, Archer BJ, Ambati BK. Intravitreal AAV2.COMP-Ang1 Attenuates Deep Capillary Plexus Expansion in the Aged Diabetic Mouse Retina. Invest Ophthalmol Vis Sci 2019; 60:2494-2502. [PMID: 31185088 PMCID: PMC6559753 DOI: 10.1167/iovs.18-26182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We determine whether intravitreal angiopoietin-1 combined with the short coiled-coil domain of cartilage oligomeric matrix protein by adeno-associated viral serotype 2 (AAV2.COMP-Ang1) delivery following the onset of vascular damage could rescue or repair damaged vascular beds and attenuate neuronal atrophy and dysfunction in the retinas of aged diabetic mice. Methods AAV2.COMP-Ang1 was bilaterally injected into the vitreous of 6-month-old male Ins2Akita mice. Age-matched controls consisted of uninjected C57BL/6J and Ins2Akita males, and of Ins2Akita males injected with PBS or AAV2.REPORTER (AcGFP or LacZ). Retinal thickness and visual acuity were measured in vivo at baseline and at the 10.5-month endpoint. Ex vivo vascular parameters were measured from retinal flat mounts, and Western blot was used to detect protein expression. Results All three Ins2Akita control groups showed significantly increased deep vascular density at 10.5 months compared to uninjected C57BL/6J retinas (as measured by vessel area, length, lacunarity, and number of junctions). In contrast, deep microvascular density of Ins2Akita retinas treated with AAV2.COMP-Ang1 was more similar to uninjected C57BL/6J retinas for all parameters. However, no significant improvement in retinal thinning or diabetic retinopathy-associated visual loss was found in treated diabetic retinas. Conclusions Deep retinal microvasculature of diabetic Ins2Akita eyes shows late stage changes consistent with disorganized vascular proliferation. We show that intravitreally injected AAV2.COMP-Ang1 blocks this increase in deep microvascularity, even when administered subsequent to development of the first detectable vascular defects. However, improving vascular normalization did not attenuate neuroretinal degeneration or loss of visual acuity. Therefore, additional interventions are required to address neurodegenerative changes that are already underway.
Collapse
Affiliation(s)
- Lara S Carroll
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Hironori Uehara
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Daniel Fang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Susie Choi
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Xiaohui Zhang
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Malkit Singh
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Zoya Sandhu
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Philip M Cummins
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Bonnie J Archer
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Balamurali K Ambati
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
55
|
Pereira NB, Bastos VC, de Souza JC, Diniz MG, Vitório JG, Kitten GT, de Oliveira Andrade L, de Avelar GF, Castro WH, Bernardes VF, Dias AAM, Gomez RS, Gomes CC. First insights for targeted therapies in odontogenic myxoma. Clin Oral Investig 2019; 24:2451-2458. [PMID: 31713744 DOI: 10.1007/s00784-019-03107-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Odontogenic myxoma (OM) occasionally responds poorly to surgical treatment. The MAPK pathway is constitutively activated in several neoplasms and we aimed to test if the MAPK pathway is activated in OM, in order to pave the way for an alternative therapy for aggressive and recurrent cases. MATERIALS AND METHODS The immunoexpression of phosphorylated ERK1/2 (pERK1/2) was assessed in OM. We established a 3D organotypic culture model for the in vitro study and patient-derived xenografts (PDX) in mice for the in vivo study. The MEK inhibitor U0126 was used to inhibit phosphorylation of ERK1/2 in the in vitro and in vivo models. RESULTS All OM showed strong pERK1/2 immunoexpression, consistent with MAPK pathway activation. Treatment of the 3D culture with U0126 resulted in a reduced pERK1/2/ERK1/2 ratio. Consistent with the in vitro results, all PDX of animals treated with U0126 showed a decreased volume fold change compared with controls. CONCLUSIONS The MAPK pathway is activated in OM and its inhibition leads to tumor shrinkage in PDX and cell culture models. CLINICAL RELEVANCE Our results offer a pre-clinical frame for OM-targeted therapy. Further work is needed to determine if this initial finding holds clinical promise.
Collapse
Affiliation(s)
- Núbia Braga Pereira
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil
| | - Victor Coutinho Bastos
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil
| | - Juliana Cristina de Souza
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil
| | - Marina Gonçalves Diniz
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gregory Thomas Kitten
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gleide Fernandes de Avelar
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Wagner Henriques Castro
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vanessa Fátima Bernardes
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil
| | - Adriana Abalen Martins Dias
- Department of General Biology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627 Pampulha, Belo Horizonte, Brazil.
| |
Collapse
|
56
|
AGS-30, an andrographolide derivative, suppresses tumor angiogenesis and growth in vitro and in vivo. Biochem Pharmacol 2019; 171:113694. [PMID: 31706845 DOI: 10.1016/j.bcp.2019.113694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Poor bioavailability and limited efficacy are challenges associated with using andrographolide as a therapeutic agent. We recently synthesized AGS-30, a new andrographolide derivative, in our laboratory. In this study we investigated the potential anti-tumor effect of AGS-30 and the underlying mechanisms, particularly those related to angiogenesis. Results from our in vitro experiments showed that AGS-30 exerted anti-angiogenic effects by inhibiting endothelial cell proliferation, migration, invasion, and tube formation. Phosphorylation and activation of angiogenesis-related signaling molecules (e.g., vascular endothelial growth factor [VEGF] receptor 2, mitogen-activated protein kinase kinase 1/2, extracellular signal-regulated kinase 1/2, mechanistic target of rapamycin [mTOR], protein kinase B [Akt], and p38) were markedly reduced by AGS-30. Meanwhile, AGS-30 potently inhibited cell proliferation and phosphorylation of cell survival-related proteins (e.g., Akt, mTOR, and ERK1/2) and decreased the expression of VEGF in HT-29 colon cancer cells. AGS-30 blocked microvessel sprouting in a rat aortic ring model and blood vessel formation in zebrafish embryos and a mouse Matrigel plug model. Additionally, AGS-30 suppressed tumor growth and angiogenesis in HT-29 colon cancer cell xenografts in nude mice. These effects were not observed when same concentration of andrographolide, the parent compound of AGS-30, was used. Thus, AGS-30 exerted a strong antitumor effect by inhibiting tumor cell growth and angiogenesis and is a candidate compound for the treatment of cancer.
Collapse
|
57
|
Hwang-Bo J, Park JH, Chung IS. 3-O-Acetyloleanolic acid inhibits angiopoietin-1-induced angiogenesis and lymphangiogenesis via suppression of angiopoietin-1/Tie-2 signaling. Phytother Res 2019; 34:359-367. [PMID: 31680342 DOI: 10.1002/ptr.6526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 01/11/2023]
Abstract
Tumor angiogenesis and lymphangiogenesis are important processes in tumor progression and metastasis. The inhibitory effects of 3-O-acetyloleanolic acid (3AOA), a pentacyclic triterpenoid compound isolated from Vigna sinensis K., on tumor-induced angiogenesis and lymphangiogenesis in vitro and in vivo were studied. Angiopoietin-1 is an important angiogenic and lymphangiogenic factor secreted from colon carcinoma CT-26 cells under hypoxia conditions. 3AOA inhibited proliferation, migration, and tube formation of angiopoietin-1-treated human umbilical vein endothelial cells (HUVEC) and human lymphatic microvascular endothelial cells (HLMEC). 3AOA reduced angiogenesis and lymphangiogenesis in angiopoietin-1-stimulated Matrigel plugs. Also, 3AOA inhibited tumor growth and tumor-induced angiogenesis and lymphangiogenesis in an angiopoietin-1-induced CT-26 allograft colon carcinoma animal model. 3AOA inhibited activation of the angiopoietin-1 receptor Tie-2 and activation of the downstream signaling factors FAK, AKT, and ERK1/2 that are involved in the angiopoietin-1/Tie-2-signaling pathway. Thus, 3AOA has an inhibitory effect on angiogenesis and lymphangiogenesis induced by angiopoietin-1 both in vitro and in vivo, and the inhibitory effect of 3AOA is probably due to suppression of angiopoietin-1/Tie-2 signaling in HUVEC and HLMEC.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering, Kyung Hee University, Yongin, Korea.,Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering, Kyung Hee University, Yongin, Korea.,Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - In Sik Chung
- Department of Genetic Engineering, Kyung Hee University, Yongin, Korea.,Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| |
Collapse
|
58
|
The protein tyrosine phosphatase PTPRJ/DEP-1 contributes to the regulation of the Notch-signaling pathway and sprouting angiogenesis. Angiogenesis 2019; 23:145-157. [DOI: 10.1007/s10456-019-09683-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
|
59
|
Alleboina S, Ayalew D, Peravali R, Chen L, Wong T, Dokun AO. Dual specificity phosphatase 5 regulates perfusion recovery in experimental peripheral artery disease. Vasc Med 2019; 24:395-404. [PMID: 31451089 DOI: 10.1177/1358863x19866254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peripheral artery disease (PAD) is caused by atherosclerotic occlusions of vessels outside the heart, particularly those of the lower extremities. Angiogenesis is one critical physiological response to vessel occlusion in PAD, but our understanding of the molecular mechanisms involved in angiogenesis is incomplete. Dual specificity phosphatase 5 (DUSP5) has been shown to play a key role in embryonic vascular development, but its role in post-ischemic angiogenesis is not known. We induced hind limb ischemia in mice and found robust upregulation of Dusp5 expression in ischemic hind limbs. Moreover, in vivo knockdown of Dusp5 resulted in impaired perfusion recovery in ischemic limbs and was associated with increased limb necrosis. In vitro studies showed upregulation of DUSP5 in human endothelial cells exposed to ischemia, and knockdown of DUSP5 in these ischemic endothelial cells resulted in impaired endothelial cell proliferation and angiogenesis, but did not alter apoptosis. Finally, we show that these effects of DUSP5 on post-ischemic angiogenesis are a result of DUSP5-dependent decrease in ERK1/2 phosphorylation and p21 protein expression. Thus, we have identified a role of DUSP5 in post-ischemic angiogenesis and implicated a DUSP5-ERK-p21 pathway that may serve as a therapeutic target for the modulation of post-ischemic angiogenesis in PAD.
Collapse
Affiliation(s)
- Satyanarayana Alleboina
- Division of Endocrinology, Diabetes and Metabolism, Health Sciences Center, University of Tennessee, Memphis, TN, USA
| | - Dawit Ayalew
- Division of Endocrinology, Diabetes and Metabolism, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Rahul Peravali
- Division of Endocrinology, Diabetes and Metabolism, Health Sciences Center, University of Tennessee, Memphis, TN, USA
| | - Lingdan Chen
- Division of Endocrinology, Diabetes and Metabolism, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Thomas Wong
- Division of Endocrinology, Diabetes and Metabolism, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ayotunde O Dokun
- Division of Endocrinology, Diabetes and Metabolism, Carver School of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
60
|
Bräutigam J, Bischoff I, Schürmann C, Buchmann G, Epah J, Fuchs S, Heiss E, Brandes RP, Fürst R. Narciclasine inhibits angiogenic processes by activation of Rho kinase and by downregulation of the VEGF receptor 2. J Mol Cell Cardiol 2019; 135:97-108. [PMID: 31381906 DOI: 10.1016/j.yjmcc.2019.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The process of angiogenesis is involved in several pathological conditions, such as tumor growth or age-related macular degeneration. Although the available anti-angiogenic drugs have improved the therapy of these diseases, major drawbacks, such as unwanted side effects and resistances, still exist. Consequently, the search for new anti-angiogenic substances is still ongoing. Narciclasine, a plant alkaloid from different members of the Amaryllidaceae family, has extensively been characterized as anti-tumor compound. Beyond the field of cancer, the compound has recently been shown to possess anti-inflammatory properties. Surprisingly, potential actions of narciclasine on endothelial cells in the context of angiogenesis have been neglected so far. Thus, we aimed to analyze the effects of narciclasine on angiogenic processes in vitro and in vivo and to elucidate the underlying mechanism. Narciclasine (100-300 nM) effectively inhibited the proliferation, undirected and directed migration, network formation and angiogenic sprouting of human primary endothelial cells. Moreover, narciclasine (1 mg/kg/day) strongly reduced the VEGF-triggered angiogenesis in vivo (Matrigel plug assay in mice). Narciclasine mediated its anti-angiogenic effects in part by a RhoA-independent activation of the Rho kinase ROCK. Most importantly, however, the compound reduced the de novo protein synthesis in endothelial cells by approx. 50% without exhibiting considerable cytotoxic effects. As a consequence, narciclasine diminished the presence of proteins with a short half-life, such as the VEGF receptor 2, which is the basis for its anti-angiogenic effects. Taken together, our study highlights narciclasine as an interesting anti-angiogenic compound that is worth to be further evaluated in preclinical studies.
Collapse
Affiliation(s)
- Jacqueline Bräutigam
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Giulia Buchmann
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Jeremy Epah
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Simone Fuchs
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Elke Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany.
| |
Collapse
|
61
|
Competing Fluid Forces Control Endothelial Sprouting in a 3-D Microfluidic Vessel Bifurcation Model. MICROMACHINES 2019; 10:mi10070451. [PMID: 31277456 PMCID: PMC6680389 DOI: 10.3390/mi10070451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022]
Abstract
Sprouting angiogenesis-the infiltration and extension of endothelial cells from pre-existing blood vessels-helps orchestrate vascular growth and remodeling. It is now agreed that fluid forces, such as laminar shear stress due to unidirectional flow in straight vessel segments, are important regulators of angiogenesis. However, regulation of angiogenesis by the different flow dynamics that arise due to vessel branching, such as impinging flow stagnation at the base of a bifurcating vessel, are not well understood. Here we used a recently developed 3-D microfluidic model to investigate the role of the flow conditions that occur due to vessel bifurcations on endothelial sprouting. We observed that bifurcating fluid flow located at the vessel bifurcation point suppresses the formation of angiogenic sprouts. Similarly, laminar shear stress at a magnitude of ~3 dyn/cm2 applied in the branched vessels downstream of the bifurcation point, inhibited the formation of angiogenic sprouts. In contrast, co-application of ~1 µm/s average transvascular flow across the endothelial monolayer with laminar shear stress induced the formation of angiogenic sprouts. These results suggest that transvascular flow imparts a competing effect against bifurcating fluid flow and laminar shear stress in regulating endothelial sprouting. To our knowledge, these findings are the first report on the stabilizing role of bifurcating fluid flow on endothelial sprouting. These results also demonstrate the importance of local flow dynamics due to branched vessel geometry in determining the location of sprouting angiogenesis.
Collapse
|
62
|
Ricard N, Scott RP, Booth CJ, Velazquez H, Cilfone NA, Baylon JL, Gulcher JR, Quaggin SE, Chittenden TW, Simons M. Endothelial ERK1/2 signaling maintains integrity of the quiescent endothelium. J Exp Med 2019; 216:1874-1890. [PMID: 31196980 PMCID: PMC6683988 DOI: 10.1084/jem.20182151] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/12/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
The endothelial ERK1/2 pathway plays a crucial role in the maintenance of endothelial homeostasis. Its suppression results in activation of TGFβ signaling, leading to hypertension, renal failure, fibrosis, and sudden death, findings similar to those observed in patients treated with anti-VEGF agents. To define the role of ERK1/2 signaling in the quiescent endothelium, we induced endothelial Erk2 knockout in adult Erk1−/− mice. This resulted in a rapid onset of hypertension, a decrease in eNOS expression, and an increase in endothelin-1 plasma levels, with all mice dying within 5 wk. Immunostaining and endothelial fate mapping showed a robust increase in TGFβ signaling leading to widespread endothelial-to-mesenchymal transition (EndMT). Fibrosis affecting the cardiac conduction system was responsible for the universal lethality in these mice. Other findings included renal endotheliosis, loss of fenestrated endothelia in endocrine organs, and hemorrhages. An ensemble computational intelligence strategy, comprising deep learning and probabilistic programing of RNA-seq data, causally linked the loss of ERK1/2 in HUVECs in vitro to activation of TGFβ signaling, EndMT, suppression of eNOS, and induction of endothelin-1 expression. All in silico predictions were verified in vitro and in vivo. In summary, these data establish the key role played by ERK1/2 signaling in the maintenance of vascular normalcy.
Collapse
Affiliation(s)
- Nicolas Ricard
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Rizaldy P Scott
- Feinberg Cardiovascular and Renal Research Institute, Division of Nephrology/Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT
| | - Heino Velazquez
- Department of Medicine, Veterans Affairs Connecticut Healthcare System, Yale University, New Haven, CT
| | - Nicholas A Cilfone
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA.,Complex Biological Systems Alliance, Medford, MA
| | - Javier L Baylon
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA.,Complex Biological Systems Alliance, Medford, MA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Division of Nephrology/Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXi NextCODE, Cambridge, MA .,Complex Biological Systems Alliance, Medford, MA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
63
|
Abstract
Appropriate therapeutic modulation of endothelial proliferation and sprouting is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The current view is that an increase in growth factor concentration, and the resulting mitogenic activity, increases both endothelial proliferation and sprouting. Here, we modulate mitogenic stimuli in different vascular contexts by interfering with the function of the VEGF and Notch signalling pathways at high spatiotemporal resolution in vivo. Contrary to the prevailing view, our results indicate that high mitogenic stimulation induced by VEGF, or Notch inhibition, arrests the proliferation of angiogenic vessels. This is due to the existence of a bell-shaped dose-response to VEGF and MAPK activity that is counteracted by Notch and p21, determining whether endothelial cells sprout, proliferate, or become quiescent. The identified mechanism should be considered to achieve optimal therapeutic modulation of angiogenesis. High mitogenic stimuli have been suggested to promote endothelial cell proliferation and sprouting during angiogenesis. Here Pontes-Quero et al., by interfering with levels of VEGF and Notch signalling in single endothelial cells in vivo, find that high mitogenic stimuli instead arrest angiogenesis due to a bell-shaped dose-response to VEGF and MAPK activity that is counteracted by Notch and p21.
Collapse
|
64
|
Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, Ducruet AF. C3a Receptor Inhibition Protects Brain Endothelial Cells Against Oxygen-glucose Deprivation/Reperfusion. Exp Neurobiol 2019; 28:216-228. [PMID: 31138990 PMCID: PMC6526115 DOI: 10.5607/en.2019.28.2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Shah Alam Khan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,Oman Medical College, Muscat 130, Sultanate of Oman
| | - Maaz Ahmed
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| |
Collapse
|
65
|
Zou T, Jiang S, Dissanayaka WL, Heng BC, Xu J, Gong T, Huang X, Zhang C. Sema4D/PlexinB1 promotes endothelial differentiation of dental pulp stem cells via activation of AKT and ERK1/2 signaling. J Cell Biochem 2019; 120:13614-13624. [PMID: 30937968 DOI: 10.1002/jcb.28635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Inducing of dental pulp stem cells (DPSCs) into endothelial cells (ECs) to prevascularize pulp tissue constructs may offer a novel and viable approach for enhancing pulp regeneration. However, there are numerous challenges in current methods for the acquisition of sufficient translational ECs. It was known that Sema4D/PlexinB1 signaling exerts profound effects on enhancing vascular endothelial growth factor (VEGF) secretion and angiogenesis. Whether Sema4D/PlexinB1 could regulate endothelial differentiation of DPSCs is not yet investigated. In this study, when DPSCs were treated with Sema4D (2 μg/mL), ECs-specific (VEGFR1, VEGFR2, CD31, and vWF), and angiogenic genes and proteins were significantly upregulated. The induced ECs exhibited similar endothelial vessel formation ability to that of human umbilical vein endothelial cells (HUVECs). Furthermore, phosphorylation of AKT increased dramatically within 5 minutes (from 0.93 to 21.8), while p-ERK1/2 was moderately elevated (from 0.94 to 2.65). In summary, our results demonstrated that Sema4D/PlexinB1 signaling induces endothelial differentiation of DPSCs. The interactions of Sema4D, VEGF, ANGPTL4, ANG1, and HIF-1α may play a crucial role in mediating the differentiation process.
Collapse
Affiliation(s)
- Ting Zou
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Shan Jiang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | | | - Boon Chin Heng
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Jianguang Xu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Gong
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xiaojing Huang
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
66
|
Danilucci TM, Santos PK, Pachane BC, Pisani GFD, Lino RLB, Casali BC, Altei WF, Selistre-de-Araujo HS. Recombinant RGD-disintegrin DisBa-01 blocks integrin α vβ 3 and impairs VEGF signaling in endothelial cells. Cell Commun Signal 2019; 17:27. [PMID: 30894182 PMCID: PMC6425665 DOI: 10.1186/s12964-019-0339-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvβ3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvβ3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvβ3/VEGFR2 cross-talk and its downstream pathways. Methods Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvβ3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. Results DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvβ3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and β3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvβ3 integrin and VEGFR2 in treated cells. Conclusions Disintegrin inhibition of αvβ3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis. Electronic supplementary material The online version of this article (10.1186/s12964-019-0339-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taís M Danilucci
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Patty K Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bianca C Pachane
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Graziéle F D Pisani
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Rafael L B Lino
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bruna C Casali
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Wanessa F Altei
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Heloisa S Selistre-de-Araujo
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil.
| |
Collapse
|
67
|
Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, Fang Z, Yan HH, Park JH, Han B, Cheon MJ, Woo MG, Lim JH, Kim YS, Hong SS. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett 2018; 438:174-186. [DOI: 10.1016/j.canlet.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
|
68
|
Khalil A, Poelvoorde P, Fayyad-Kazan M, Rousseau A, Nuyens V, Uzureau S, Biston P, El-Makhour Y, Badran B, Van Antwerpen P, Boudjeltia KZ, Vanhamme L. Apoliporotein L3 interferes with endothelial tube formation via regulation of ERK1/2, FAK and Akt signaling pathway. Atherosclerosis 2018; 279:73-87. [PMID: 30423477 DOI: 10.1016/j.atherosclerosis.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND AIMS Endothelial cells are main actors in vascular homeostasis as they regulate vascular pressure and permeability as well as hemostasis and inflammation. Disturbed stimuli delivered to and by endothelial cells correlate with the so-called endothelial dysfunction and disrupt this homeostasis. As constituents of the inner layer of blood vessels, endothelial cells are also involved in angiogenesis. Apolipoprotein Ls (APOL) comprise a family of newly discovered apolipoproteins with yet poorly understood function, and are suggested to be involved in inflammatory processes and cell death mechanisms. Here we investigate the role of APOLs in endothelial cells stimulated with factors known to be involved in atherogenesis and their possible contribution to endothelial dysfunction with an emphasis on inflammation driven-angiogenesis in vitro. METHODS Using the CRISPR/Cas9 technique, we analyzed the effect of APOL3 gene knock out in HMEC-1 endothelial cells on cell migration, tubulogenesis, endothelial permeability, intracellular signal transduction as assessed by kinase phosphorylation, and angiogenesis gene expression (measured by qRT-PCR). RESULTS Our results indicate that among the family, APOL3 was the only member induced by myeloperoxidase, oxidized LDL, VEGF and FGF treatments. APOL3 invalidation increased endothelial permeability, reduced wound repair and tubule formation in vitro, the latter only in MPO and VEGF-induced conditions. Accordingly, some pro-angiogenic signaling pathways (ERK1/2 and FAK but not Akt) and some pro-angiogenic genes were partially inhibited in APOL3 knock out cells. CONCLUSIONS These findings suggest the involvement of APOL3 in angiogenesis in vitro and as a modulator of MAPK and FAK signaling in endothelial cells.
Collapse
Affiliation(s)
- Alia Khalil
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium; Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Philippe Poelvoorde
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohammad Fayyad-Kazan
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Sophie Uzureau
- Laboratory of Molecular Parasitology, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Patrick Biston
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Yolla El-Makhour
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium.
| |
Collapse
|
69
|
Zuo S, Dai G, Wang L, Wen Y, Huang Z, Yang W, Ma W, Ren X. Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2. Arch Virol 2018; 164:69-82. [PMID: 30259141 DOI: 10.1007/s00705-018-4026-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
Abstract
Tumor growth, invasion and metastasis are dependent on angiogenesis. The Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling pathway plays a pivotal role in tumor angiogenesis and therefore represents a reasonable target for anti-angiogenesis/anti-tumor therapy. In the present study, we generated T4 recombinant phages expressing the extracellular domain of VEGFR2 (T4-VEGFR2) and investigated their anti-angiogenic activity. The T4-VEGFR2 phages were able to bind to VEGF specifically and inhibit VEGF-mediated phosphorylation of VEGFR2 and its downstream kinases such as extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK). The in vitro experiments showed that the T4-VEGFR2 phages could inhibit VEGF-stimulated cell proliferation and migration of endothelial cells. Finally, administration of T4-VEGFR2 phages was able to suppress tumor growth and decrease microvascular density in murine models of Lewis lung carcinoma and colon carcinoma, and prolong the survival of tumor bearing mice. In conclusion, this study reveals that the recombinant T4-VEGFR2 phages generated using T4-based phage display system can inhibit VEGF-mediated tumor angiogenesis and the T4 phage display technology can therefore be used for the development of novel anti-cancer strategies.
Collapse
Affiliation(s)
- Shuguang Zuo
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China. .,Institute of Infection and Immunity, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Gongpeng Dai
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Liping Wang
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yuqing Wen
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhiang Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Wenyi Yang
- Department of Gastroenterology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Wanli Ma
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Xuequn Ren
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China. .,Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
70
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
71
|
Aly AA, El-Sheref EM, Bakheet MEM, Mourad MAE, Brown AB, Bräse S, Nieger M, Ibrahim MAA. Synthesis of novel 1,2-bis-quinolinyl-1,4-naphthoquinones: ERK2 inhibition, cytotoxicity and molecular docking studies. Bioorg Chem 2018; 81:700-712. [PMID: 30268050 DOI: 10.1016/j.bioorg.2018.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Two novel series of N-2,3-bis(6-substituted-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)naphthalene-1,4-diones 3a-d and substituted N-(methyl/ethyl)bisquinolinone triethyl-ammonium salts 4e,f were successfully synthesized. The synthesized compounds were targeted as new candidates to extracellular signal-regulated kinases 1/2 (ERK1/2) with considerable antineoplastic activity. The synthesis involved the reactions of 2 equivalents of 4-hydroxy-2(1H)-quinolinones 1a-f and one equivalent of 1,4-naphthoquinone (2) in a mixture of ethanol/dimethylformamide (1:1) as a solvent and 0.5 mL Et3N. In the reaction of 6-methyl-4-hydroxyquinolone 1b with 2, a side product 4b of the second series was obtained. In general, the presence of free NH-quinolone gave a single compound of the first series, whereas reaction of N-methyl/ethyl-quinolones 1e,f with 2 enhanced the formation of compounds of the second series. The structures of the new compounds were proved by different spectroscopic techniques such as IR, NMR (2D-NMR) and mass spectra, elemental analysis, and X-ray crystallography. To further elucidate the mechanism of action of these newly synthesized compounds, compounds 3a, 3b, 4e and 4f were selected to investigate for their MAP Kinases pathway inhibition together with molecular docking using ATP-binding site of ERK2. The results revealed that compounds 3a, 3b and 4f inhibited ETS-1 phosphorylation by ERK2 in a dose dependent manner. Also, compound 4f showed highest potency for ERK2 inhibition with ATP-competitive inhibition mechanism which was confirmed by the formation of three hydrogen bond in the molecular docking studies. The synthesized compounds were then tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Interestingly, the selected compounds displayed from modest to strong cytotoxic activities. Compound 3b demonstrated broad spectrum anti-tumor activity against the nine tumor sub-panels tested, while compound 3d proved to be lethal to most of the cancer cell lines as shown by their promising GI50 and TGI values in NCI in vitro five dose testing. These results revealed that the synthesized compounds can potentially serve as leads for the development of novel chemotherapeutic agents and structure improvement will be necessary for some derivatives for enhancing their cellular activities and pharmacokinetic profile.
Collapse
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt.
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Momtaz E M Bakheet
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42526, Egypt
| | - Alan B Brown
- Chemistry Department, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; Institute of Toxikologie und Genetik, Hermann-von-Helmholtz Platz 1, Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014 Helsinki, Finland
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| |
Collapse
|
72
|
Khalil A, Medfai H, Poelvoorde P, Kazan MF, Delporte C, Van Antwerpen P, El-Makhour Y, Biston P, Delrée P, Badran B, Vanhamme L, Boudjeltia KZ. Myeloperoxidase promotes tube formation, triggers ERK1/2 and Akt pathways and is expressed endogenously in endothelial cells. Arch Biochem Biophys 2018; 654:55-69. [PMID: 30016634 DOI: 10.1016/j.abb.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
Myeloperoxidase is a member of the mammalian peroxidase family, mainly expressed in the myeloblastic cell lineage. It is considered a major bactericidal agent as it is released in the phagosome where it catalyzes the formation of reactive oxygen species. It is also released in the extracellular spaces including blood where it is absorbed on (lipo)proteins and endothelial cell surface, interfering with endothelial function. We performed RNA sequencing on MPO-treated endothelial cells, analyzed their transcriptome and validated the profile of gene expression by individual qRT-PCR. Some of the induced genes could be grouped in several functional networks, including tubulogenesis, angiogenesis, and blood vessel morphogenesis and development as well as signal transduction pathways associated to these mechanisms. MPO treatment mimicked the effects of VEGF on several signal transduction pathways, such as Akt, ERK or FAK involved in angiogenesis. Accordingly MPO, independently of its enzymatic activity, stimulated tube formation by endothelial cells. RNA interference also pointed at a role of endogenous MPO in tubulogenesis and endothelium wound repair in vitro. These data suggest that MPO, whether from endogenous or exogenous sources, could play a role in angiogenesis and vascular repair in vivo.
Collapse
Affiliation(s)
- Alia Khalil
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium; Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Hayfa Medfai
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Philippe Poelvoorde
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Mohammad Fayyad Kazan
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Cedric Delporte
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Chemistry and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Yolla El-Makhour
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Patrick Biston
- Department of Intensive Care Unit, CHU de Charleroi, Charleroi, Belgium
| | - Paul Delrée
- IPG, Avenue Georges Lemaître 25, 6041, Gosselies, Belgium
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Luc Vanhamme
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium; Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| |
Collapse
|
73
|
Hyperoxia Disrupts Extracellular Signal-Regulated Kinases 1/2-Induced Angiogenesis in the Developing Lungs. Int J Mol Sci 2018; 19:ijms19051525. [PMID: 29783779 PMCID: PMC5983575 DOI: 10.3390/ijms19051525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 11/17/2022] Open
Abstract
Hyperoxia contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of infants that is characterized by interrupted alveologenesis. Disrupted angiogenesis inhibits alveologenesis, but the mechanisms of disrupted angiogenesis in the developing lungs are poorly understood. In pre-clinical BPD models, hyperoxia increases the expression of extracellular signal-regulated kinases (ERK) 1/2; however, its effects on the lung endothelial ERK1/2 signaling are unclear. Further, whether ERK1/2 activation promotes lung angiogenesis in infants is unknown. Hence, we tested the following hypotheses: (1) hyperoxia exposure will increase lung endothelial ERK1/2 signaling in neonatal C57BL/6J (WT) mice and in fetal human pulmonary artery endothelial cells (HPAECs); (2) ERK1/2 inhibition will disrupt angiogenesis in vitro by repressing cell cycle progression. In mice, hyperoxia exposure transiently increased lung endothelial ERK1/2 activation at one week of life, before inhibiting it at two weeks of life. Interestingly, hyperoxia-mediated decrease in ERK1/2 activation in mice was associated with decreased angiogenesis and increased endothelial cell apoptosis. Hyperoxia also transiently activated ERK1/2 in HPAECs. ERK1/2 inhibition disrupted angiogenesis in vitro, and these effects were associated with altered levels of proteins that modulate cell cycle progression. Collectively, these findings support our hypotheses, emphasizing that the ERK1/2 pathway is a potential therapeutic target for BPD infants with decreased lung vascularization.
Collapse
|
74
|
Stakaitytė G, Nwogu N, Lippiat JD, Blair GE, Poterlowicz K, Boyne JR, Macdonald A, Mankouri J, Whitehouse A. The cellular chloride channels CLIC1 and CLIC4 contribute to virus-mediated cell motility. J Biol Chem 2018; 293:4582-4590. [PMID: 29462791 PMCID: PMC5868249 DOI: 10.1074/jbc.ra117.001343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 12/11/2022] Open
Abstract
Ion channels regulate many aspects of cell physiology, including cell proliferation, motility, and migration, and aberrant expression and activity of ion channels is associated with various stages of tumor development, with K+ and Cl− channels now being considered the most active during tumorigenesis. Accordingly, emerging in vitro and preclinical studies have revealed that pharmacological manipulation of ion channel activity offers protection against several cancers. Merkel cell polyomavirus (MCPyV) is a major cause of Merkel cell carcinoma (MCC), primarily because of the expression of two early regulatory proteins termed small and large tumor antigens (ST and LT, respectively). Several molecular mechanisms have been attributed to MCPyV-mediated cancer formation but, thus far, no studies have investigated any potential link to cellular ion channels. Here we demonstrate that Cl− channel modulation can reduce MCPyV ST-induced cell motility and invasiveness. Proteomic analysis revealed that MCPyV ST up-regulates two Cl− channels, CLIC1 and CLIC4, which when silenced, inhibit MCPyV ST-induced motility and invasiveness, implicating their function as critical to MCPyV-induced metastatic processes. Consistent with these data, we confirmed that CLIC1 and CLIC4 are up-regulated in primary MCPyV-positive MCC patient samples. We therefore, for the first time, implicate cellular ion channels as a key host cell factor contributing to virus-mediated cellular transformation. Given the intense interest in ion channel modulating drugs for human disease. This highlights CLIC1 and CLIC4 activity as potential targets for MCPyV-induced MCC.
Collapse
Affiliation(s)
- Gabrielė Stakaitytė
- From the School of Molecular and Cellular Biology.,Astbury Centre for Structural Molecular Biology
| | - Nnenna Nwogu
- From the School of Molecular and Cellular Biology.,Astbury Centre for Structural Molecular Biology
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom and
| | - G Eric Blair
- From the School of Molecular and Cellular Biology
| | - Krzysztof Poterlowicz
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - James R Boyne
- Centre for Skin Sciences, School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Andrew Macdonald
- From the School of Molecular and Cellular Biology.,Astbury Centre for Structural Molecular Biology
| | - Jamel Mankouri
- From the School of Molecular and Cellular Biology, .,Astbury Centre for Structural Molecular Biology
| | - Adrian Whitehouse
- From the School of Molecular and Cellular Biology, .,Astbury Centre for Structural Molecular Biology
| |
Collapse
|
75
|
Cannizzo CM, Adonopulos AA, Solly EL, Ridiandries A, Vanags LZ, Mulangala J, Yuen SCG, Tsatralis T, Henriquez R, Robertson S, Nicholls SJ, Di Bartolo BA, Ng MKC, Lam YT, Bursill CA, Tan JTM. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia. FASEB J 2018; 32:2911-2922. [PMID: 29401597 DOI: 10.1096/fj.201700617r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.-Cannizzo, C. M., Adonopulos, A. A., Solly, E. L., Ridiandries, A., Vanags, L. Z., Mulangala, J., Yuen, S. C. G., Tsatralis, T., Henriquez, R., Robertson, S., Nicholls, S. J., Di Bartolo, B. A., Ng, M. K. C., Lam, Y. T., Bursill, C. A., Tan, J. T. M. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia.
Collapse
Affiliation(s)
- Carla M Cannizzo
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Aaron A Adonopulos
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Emma L Solly
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Laura Z Vanags
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Jocelyne Mulangala
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Sui Ching G Yuen
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Tania Tsatralis
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Rodney Henriquez
- The Heart Research Institute, Newtown, New South Wales, Australia
| | - Stacy Robertson
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Belinda A Di Bartolo
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Martin K C Ng
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Yuen Ting Lam
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Christina A Bursill
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| | - Joanne T M Tan
- The Heart Research Institute, Newtown, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia.,Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
76
|
Tang F, Pacheco MTF, Chen P, Liang D, Li W. Secretogranin III promotes angiogenesis through MEK/ERK signaling pathway. Biochem Biophys Res Commun 2018; 495:781-786. [PMID: 29154827 PMCID: PMC5736013 DOI: 10.1016/j.bbrc.2017.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/11/2017] [Indexed: 01/08/2023]
Abstract
Secretogranin III (Scg3) was recently discovered as the first highly diabetic retinopathy-associated angiogenic factor, and its neutralizing antibody alleviated the disease with high efficacy in diabetic mice. Investigation of its molecular mechanisms will facilitate the translation of this novel therapy. Scg3 was reported to induce the phosphorylation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Here we characterized the importance of MEK/ERK activation to Scg3 angiogenic activity. Our results showed that MEK inhibitor PD98059 blocked Scg3-induced proliferation of human umbilical vein endothelial cells (HUVECs). This finding was corroborated by PD98059 inhibition of HUVEC migration and tube formation. Furthermore, ERK inhibitor SCH772984 also suppressed Scg3-induced proliferation and migration of HUVECs. Taken together, these findings suggest that MEK-ERK pathway plays an important role in Scg3-induced angiogenesis.
Collapse
Affiliation(s)
- Fen Tang
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Mario Thiego F Pacheco
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, USA
| | - Ping Chen
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, USA; Department of Ophthalmology, Renji Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Wei Li
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, USA; Vascular Biology Institute, University of Miami, School of Medicine, Miami, FL, USA.
| |
Collapse
|
77
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
78
|
CLEC14a-HSP70-1A interaction regulates HSP70-1A-induced angiogenesis. Sci Rep 2017; 7:10666. [PMID: 28878328 PMCID: PMC5587741 DOI: 10.1038/s41598-017-11118-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022] Open
Abstract
CLEC14a (C-type lectin domain family 14 member) is a tumor endothelial cell marker protein that is known to play an important role in tumor angiogenesis, but the basic molecular mechanisms underlying this function have not yet been clearly elucidated. In this study, using various proteomic tools, we isolated a 70-kDa protein that interacts with the C-type lectin-like domain of CLEC14a (CLEC14a-CTLD) and identified it as heat shock protein 70-1A (HSP70-1A). Co-immunoprecipitation showed that HSP70-1A and CLEC14a interact on endothelial cells. In vitro binding analyses identified that HSP70-1A specifically associates with the region between amino acids 43 and 69 of CLEC14a-CTLD. Competitive blocking experiments indicated that this interacting region of CLEC14a-CTLD significantly inhibits HSP70-1A-induced extracellular signal-regulated kinase (ERK) phosphorylation and endothelial tube formation by directly inhibiting CLEC14a-CTLD-mediated endothelial cell-cell contacts. Our data suggest that the specific interaction of HSP70-1A with CLEC14a may play a critical role in HSP70-1A-induced angiogenesis and that the HSP70-1A-interacting region of CLEC14a-CTLD may be a useful tool for inhibiting HSP70-1A-induced angiogenesis.
Collapse
|
79
|
Zhang L, Tao L. miR-132 promotes retinal neovascularization under anoxia and reoxygenation conditions through up-regulating Egr1, ERK2, MMP2, VEGFA and VEGFC expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8845-8857. [PMID: 31966751 PMCID: PMC6965475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/30/2017] [Indexed: 06/10/2023]
Abstract
Retinal neovascularization (RNV) is a prominent pathological angiogenesis, which causes detrimental outcomes in visual functions. Previous literature represents that miR-132 induces angiogenesis in tumor development and ischemic diseases. Considering the important role in angiogenesis, we hypothesized that miR-132 might be involved in RNV. In this study, human retinal microvascular endothelial cells were maintained in hypoxia for indicated time, followed by further incubation in normoxic conditions to establish hypoxia/reoxygenation (H/R) models in vitro. mRNA microarray analysis was undertaken to detect alterations in gene profiles in the cells. qRT-PCR and Western blotting were performed to evaluate expression of genes that are closely associated to neovascularization. Results showed that miR-132 expression was increased under hypoxic conditions. Reoxygenation for a limited time (6 h) failed to restore miR-132 expression to basal level. Interference of miR-132 expression via its inhibitor suppressed the cell proliferation under H/R conditions, increasing the apoptosis rate. mRNA microarray analysis revealed that miR-132 is involved in the regulation of vasculature development, blood vessel morphogenesis, and proliferation and migration of microvascular endothelial cells through regulating genes such as early growth response gene 1 (Egr1), extracellular signal-regulated kinase (ERK), metal matrix proteinase (MMP2), vascular endothelial growth factor (VEGF)-A and VEGF-C. qRT-PCR and Western blotting further demonstrated that miR-132 up-regulated their gene and protein expression under H/R conditions. In summary, miR-132 was involved in the development of RNV under H/R conditions, at least partly, through up-regulating Egr1, ERK2, MMP2, VEGFA and VEGFC expression. This finding facilitates the understanding of pathogenic mechanisms of RNV.
Collapse
Affiliation(s)
- Lixin Zhang
- Department of Ophthalmology, Hunan Children's Hospital Changsha 410008, Hunan, P. R. China
| | - Lijuan Tao
- Department of Ophthalmology, Hunan Children's Hospital Changsha 410008, Hunan, P. R. China
| |
Collapse
|
80
|
Engineered microenvironments for synergistic VEGF - Integrin signalling during vascularization. Biomaterials 2017; 126:61-74. [PMID: 28279265 PMCID: PMC5354119 DOI: 10.1016/j.biomaterials.2017.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/24/2022]
Abstract
We have engineered polymer-based microenvironments that promote vasculogenesis both in vitro and in vivo through synergistic integrin-growth factor receptor signalling. Poly(ethyl acrylate) (PEA) triggers spontaneous organization of fibronectin (FN) into nanonetworks which provide availability of critical binding domains. Importantly, the growth factor binding (FNIII12-14) and integrin binding (FNIII9-10) regions are simultaneously available on FN fibrils assembled on PEA. This material platform promotes synergistic integrin/VEGF signalling which is highly effective for vascularization events in vitro with low concentrations of VEGF. VEGF specifically binds to FN fibrils on PEA compared to control polymers (poly(methyl acrylate), PMA) where FN remains in a globular conformation and integrin/GF binding domains are not simultaneously available. The vasculogenic response of human endothelial cells seeded on these synergistic interfaces (VEGF bound to FN assembled on PEA) was significantly improved compared to soluble administration of VEGF at higher doses. Early onset of VEGF signalling (PLCγ1 phosphorylation) and both integrin and VEGF signalling (ERK1/2 phosphorylation) were increased only when VEGF was bound to FN nanonetworks on PEA, while soluble VEGF did not influence early signalling. Experiments with mutant FN molecules with impaired integrin binding site (FN-RGE) confirmed the role of the integrin binding site of FN on the vasculogenic response via combined integrin/VEGF signalling. In vivo experiments using 3D scaffolds coated with FN and VEGF implanted in the murine fat pad demonstrated pro-vascularization signalling by enhanced formation of new tissue inside scaffold pores. PEA-driven organization of FN promotes efficient presentation of VEGF to promote vascularization in regenerative medicine applications.
Collapse
|
81
|
Dorard C, Vucak G, Baccarini M. Deciphering the RAS/ERK pathway in vivo. Biochem Soc Trans 2017; 45:27-36. [PMID: 28202657 DOI: 10.1042/bst20160135] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
The RAS/ERK pathway has been intensely studied for about three decades, not least because of its role in human pathologies. ERK activation is observed in the majority of human cancers; in about one-third of them, it is driven by mutational activation of pathway components. The pathway is arguably one of the best targets for molecule-based pharmacological intervention, and several small-molecule inhibitors are in clinical use. Genetically engineered mouse models have greatly contributed to our understanding of signaling pathways in development, tissue homeostasis, and disease. In the specific case of the RAS/ERK pathway, they have revealed unique biological roles of structurally and functionally similar proteins, new kinase-independent effectors, and unsuspected relationships with other cascades. This short review summarizes the contribution of mouse models to our current understanding of the pathway.
Collapse
Affiliation(s)
- Coralie Dorard
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Georg Vucak
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| | - Manuela Baccarini
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
82
|
Heterodimerisation between VEGFR-1 and VEGFR-2 and not the homodimers of VEGFR-1 inhibit VEGFR-2 activity. Vascul Pharmacol 2017; 88:11-20. [DOI: 10.1016/j.vph.2016.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/20/2016] [Indexed: 01/13/2023]
|
83
|
Otabe O, Kikuchi K, Tsuchiya K, Katsumi Y, Yagyu S, Miyachi M, Iehara T, Hosoi H. MET/ERK2 pathway regulates the motility of human alveolar rhabdomyosarcoma cells. Oncol Rep 2016; 37:98-104. [PMID: 27840956 DOI: 10.3892/or.2016.5213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/15/2016] [Indexed: 11/05/2022] Open
Abstract
In alveolar rhabdomyosarcoma (ARMS) that is a highly malignant pediatric soft tissue tumor, MET, a receptor of hepatocyte growth factor (HGF), was reported to be downstream of the PAX3-FOXO1 fusion gene specific to ARMS, and a key mediator of metastatic behavior in RMS. So far, no studies have investigated the downstream signaling pathways of MET in ARMS, even though HGF and MET have been suggested to be deeply involved in the invasiveness of ARMS. In this study, we demonstrated the functions of MET signaling in ARMS in vitro by using three human ARMS cell lines and three human embryonal rhabdomyosarcoma (ERMS) cell lines. MET mRNA levels and MET protein expression in ARMS cell lines was higher than those in ERMS cell lines as detected by real-time quantitative PCR and western blotting, respectively. Based on cell growth and cell cycle analyses it was found that HGF stimulation did not enhance the proliferation of ERMS or ARMS cell lines. HGF-stimulated cell motility of ARMS cell lines was inhibited by U0126 (ERK1/2 inhibitor) but was only partially inhibited by PD98059 (ERK1 inhibitor) or rapamycin (mTOR inhibitor) as observed in wound-healing and migration assays. Western blotting revealed that ERK1/2 was dephosphorylated by U0126 to a higher extent than by PD98059 in the ARMS cells. HGF-stimulated cell motility of Rh30 cell line was inhibited not by ERK1 siRNA, but by ERK2 siRNA. Our data thus suggest that HGF/MET signaling promotes motility of ARMS cells mainly through ERK2 signaling. A specific inhibitor of ERK2 phosphorylation could therefore be a specific anticancer agent against invasiveness and metastasis in ARMS.
Collapse
Affiliation(s)
- Osamu Otabe
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshiki Katsumi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
84
|
Shin M, Beane TJ, Quillien A, Male I, Zhu LJ, Lawson ND. Vegfa signals through ERK to promote angiogenesis, but not artery differentiation. Development 2016; 143:3796-3805. [PMID: 27578780 PMCID: PMC5087643 DOI: 10.1242/dev.137919] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Vascular endothelial growth factor a (Vegfa) is essential for blood vessel formation and can induce activation of numerous signaling effectors in endothelial cells. However, it is unclear how and where these function in developmental contexts during vascular morphogenesis. To address this issue, we have visualized activation of presumptive Vegfa effectors at single-cell resolution in zebrafish blood vessels. From these studies, we find that phosphorylation of the serine/threonine kinase ERK (pERK) preferentially occurs in endothelial cells undergoing angiogenesis, but not in committed arterial endothelial cells. pERK in endothelial cells was ectopically induced by Vegfa and lost in Vegfa signaling mutants. Both chemical and endothelial autonomous inhibition of ERK prevented endothelial sprouting, but did not prevent initial artery differentiation. Timed chemical inhibition during angiogenesis caused a loss of genes implicated in coordinating tip/stalk cell behaviors, including flt4 and, at later stages, dll4 ERK inhibition also blocked excessive angiogenesis and ectopic flt4 expression in Notch-deficient blood vessels. Together, these studies implicate ERK as a specific effector of Vegfa signaling in the induction of angiogenic genes during sprouting.
Collapse
Affiliation(s)
- Masahiro Shin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Timothy J Beane
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Aurelie Quillien
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ira Male
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
85
|
Lin R, Zhang Z, Chen L, Zhou Y, Zou P, Feng C, Wang L, Liang G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett 2016; 381:165-75. [DOI: 10.1016/j.canlet.2016.07.033] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
86
|
Hammoud L, Adams JR, Loch AJ, Marcellus RC, Uehling DE, Aman A, Fladd C, McKee TD, Jo CEB, Al-Awar R, Egan SE, Rossant J. Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay. Stem Cell Reports 2016; 7:787-801. [PMID: 27618721 PMCID: PMC5063585 DOI: 10.1016/j.stemcr.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/05/2022] Open
Abstract
Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens. Development of ESC-based vascular differentiation assay amenable to drug screening Screening a kinase library identified RSK and TTK as angiogenic modulators RSK and TTK inhibition disrupted angiogenesis in vitro RSK and TTK inhibition inhibited Lewis lung tumor growth and angiogenesis in vivo
Collapse
Affiliation(s)
- Lamis Hammoud
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Richard C Marcellus
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David E Uehling
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Ahmed Aman
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Christopher Fladd
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Trevor D McKee
- Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Rima Al-Awar
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
87
|
Tan HY, Wang N, Takahashi M, Feng Y, Li H, Feng Y. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:ijms17081277. [PMID: 27527161 PMCID: PMC5000674 DOI: 10.3390/ijms17081277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.
Collapse
Affiliation(s)
- Hor-Yue Tan
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Ning Wang
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Masao Takahashi
- Heimat Co., Ltd., Heimat Building, 1-21-3 Nihonbashi, Chuo-Ku, Tokyo 103-0027, Japan.
| | - Yigang Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Hongyun Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yibin Feng
- LKS Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
88
|
Roth Flach RJ, Guo CA, Danai LV, Yawe JC, Gujja S, Edwards YJK, Czech MP. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function. Mol Cell Biol 2016; 36:1740-9. [PMID: 27044870 PMCID: PMC4907094 DOI: 10.1128/mcb.01121-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/02/2016] [Accepted: 03/30/2016] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate.
Collapse
Affiliation(s)
- Rachel J Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chang-An Guo
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Laura V Danai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joseph C Yawe
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sharvari Gujja
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
89
|
Buscà R, Pouysségur J, Lenormand P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front Cell Dev Biol 2016; 4:53. [PMID: 27376062 PMCID: PMC4897767 DOI: 10.3389/fcell.2016.00053] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
The MAP kinase signaling cascade Ras/Raf/MEK/ERK has been involved in a large variety of cellular and physiological processes that are crucial for life. Many pathological situations have been associated to this pathway. More than one isoform has been described at each level of the cascade. In this review we devoted our attention to ERK1 and ERK2, which are the effector kinases of the pathway. Whether ERK1 and ERK2 specify functional differences or are in contrast functionally redundant, constitutes an ongoing debate despite the huge amount of studies performed to date. In this review we compiled data on ERK1 vs. ERK2 gene structures, protein sequences, expression levels, structural and molecular mechanisms of activation and substrate recognition. We have also attempted to perform a rigorous analysis of studies regarding the individual roles of ERK1 and ERK2 by the means of morpholinos, siRNA, and shRNA silencing as well as gene disruption or gene replacement in mice. Finally, we comment on a recent study of gene and protein evolution of ERK isoforms as a distinct approach to address the same question. Our review permits the evaluation of the relevance of published studies in the field especially when measurements of global ERK activation are taken into account. Our analysis favors the hypothesis of ERK1 and ERK2 exhibiting functional redundancy and points to the concept of the global ERK quantity, and not isoform specificity, as being the essential determinant to achieve ERK function.
Collapse
Affiliation(s)
- Roser Buscà
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| | - Jacques Pouysségur
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia AntipolisNice, France; Centre Scientifique de MonacoMonaco, Monaco
| | - Philippe Lenormand
- Centre National de la Recherche Scientifique UMR7284, Institut National de la Santé et de la Recherche Médicale, Centre A. Lacassagne, Institute for Research on Cancer and Ageing of Nice, University of Nice-Sophia Antipolis Nice, France
| |
Collapse
|
90
|
Kim SH, Kim EC, Kim WJ, Lee MH, Kim SY, Kim TJ. Coptis japonica Makino extract suppresses angiogenesis through regulation of cell cycle-related proteins. Biosci Biotechnol Biochem 2016; 80:1095-106. [DOI: 10.1080/09168451.2016.1148574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Angiogenesis, neovascularization from pre-existing vessels, is a key step in tumor growth and metastasis, and anti-angiogenic agents that can interfere with these essential steps of cancer development are a promising strategy for human cancer treatment. In this study, we characterized the anti-angiogenic effects of Coptis japonica Makino extract (CJME) and its mechanism of action. CJME significantly inhibited the proliferation, migration, and invasion of vascular endothelial growth factor (VEGF)-stimulated HUVECs. Furthermore, CJME suppressed VEGF-induced tube formation in vitro and VEGF-induced microvessel sprouting ex vivo. According to our study, CJME blocked VEGF-induced cell cycle transition in G1. CJME decreased expression of cell cycle-regulated proteins, including Cyclin D, Cyclin E, Cdk2, and Cdk4 in response to VEGF. Taken together, the results of our study indicate that CJME suppresses VEGF-induced angiogenic events such as proliferation, migration, and tube formation via cell cycle arrest in G1.
Collapse
Affiliation(s)
- Seo Ho Kim
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Eok-Cheon Kim
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Wan-Joong Kim
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Myung-Hun Lee
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Sun-Young Kim
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| | - Tack-Joong Kim
- Yonsei-Fraunhofer Medical Device Lab, Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Korea
| |
Collapse
|
91
|
Parvathy M, Sreeja S, Kumar R, Pillai MR. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells. BMC Cancer 2016; 16 Suppl 1:293. [PMID: 27229476 PMCID: PMC4896241 DOI: 10.1186/s12885-016-2263-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. RESULTS Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. CONCLUSIONS Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer.
Collapse
Affiliation(s)
- Muraleedharan Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sreeharshan Sreeja
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rakesh Kumar
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington DC, USA
| | | |
Collapse
|
92
|
Kumar R, Janjanam J, Singh NK, Rao GN. A new role for cofilin in retinal neovascularization. J Cell Sci 2016; 129:1234-49. [PMID: 26857814 DOI: 10.1242/jcs.179382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
Pak1 plays an important role in several cellular processes, including cell migration, but its role in pathological angiogenesis is not known. Here, we have determined its role in pathological retinal angiogenesis using an oxygen-induced retinopathy (OIR) model. VEGFA induced phosphorylation of Pak1 and its effector cofilin in a manner that was dependent on time as well as p38MAPKβ (also known as MAPK11) in human retinal microvascular endothelial cells (HRMVECs). Depletion of the levels of any of these molecules inhibited VEGFA-induced HRMVEC F-actin stress fiber formation, migration, proliferation, sprouting and tube formation. In accordance with these observations, hypoxia induced Pak1 and cofilin phosphorylation with p38MAPKβ being downstream to Pak1 and upstream to cofilin in mouse retina. Furthermore, Pak1 deficiency abolished hypoxia-induced p38MAPKβ and cofilin phosphorylation and abrogated retinal endothelial cell proliferation, tip cell formation and neovascularization. In addition, small interfering RNA (siRNA)-mediated downregulation of p38MAPKβ or cofilin levels in the wild-type mouse retina also diminished endothelial cell proliferation, tip cell formation and neovascularization. Taken together, these observations suggest that, although the p38MAPKβ-Pak1-cofilin axis is required for HRMVEC migration, proliferation, sprouting and tubulogenesis, Pak1-p38MAPKβ-cofilin signaling is also essential for hypoxia-induced mouse retinal endothelial cell proliferation, tip cell formation and neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
93
|
Kim TK, Na HJ, Lee WR, Jeoung MH, Lee S. Heat shock protein 70-1A is a novel angiogenic regulator. Biochem Biophys Res Commun 2015; 469:222-8. [PMID: 26657847 DOI: 10.1016/j.bbrc.2015.11.125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 12/28/2022]
Abstract
Heat shock protein 70-1A (HSP70-1A) is a stress-inducible protein that provides an essential intracellular molecular chaperone function; however, the mechanism of HSP70-1A in angiogenesis has not been clarified. Herein, HSP70-1A gene silencing implicated this protein in angiogenesis. Additionally, recombinant human HSP70-1A (rhHSP70-1A) was able to stimulate human umbilical vein endothelial cell (HUVEC) migration and tube formation in vitro and microvessel formation in vivo similarly to recombinant human vascular endothelial growth factor (rhVEGF). Furthermore, rhHSP70-1A was tightly bound to the surface of HUVECs and participated in extracellular signal-related kinase (ERK)-dependent angiogenesis. Together, these results implicate HSP70-1A as a novel angiogenic regulator.
Collapse
Affiliation(s)
- Taek-Keun Kim
- Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea
| | - Hee Jun Na
- Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea
| | - Woo Ran Lee
- Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea
| | - Mee Hyun Jeoung
- Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea
| | - Sukmook Lee
- Scripps Korea Antibody Institute, Hyoja-2-dong, Chuncheon-si, Gangwon-do, 200-701, South Korea.
| |
Collapse
|
94
|
p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol Cell Biol 2015; 35:3990-4005. [PMID: 26391956 DOI: 10.1128/mcb.00630-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023] Open
Abstract
p21-activated kinases (Paks) have been shown to regulate cytoskeleton rearrangements, cell proliferation, attachment, and migration in a variety of cellular contexts, including endothelial cells. However, the role of endothelial Pak in embryo development has not been reported, and currently, there is no consensus on the endothelial function of individual Pak isoforms, in particular p21-activated kinase 2 (Pak2), the main Pak isoform expressed in endothelial cells. In this work, we employ genetic and molecular studies that show that Pak2, but not Pak1, is a critical mediator of development and maintenance of endothelial cell function. Endothelial depletion of Pak2 leads to early embryo lethality due to flawed blood vessel formation in the embryo body and yolk sac. In adult endothelial cells, Pak2 depletion leads to severe apoptosis and acute angiogenesis defects, and in adult mice, endothelial Pak2 deletion leads to increased vascular permeability. Furthermore, ubiquitous Pak2 deletion is lethal in adult mice. We show that many of these defects are mediated through a newly unveiled Pak2/Bmk1 pathway. Our results demonstrate that endothelial Pak2 is essential during embryogenesis and also for adult blood vessel maintenance, and they also pinpoint the Bmk1/Erk5 pathway as a critical mediator of endothelial Pak2 signaling.
Collapse
|
95
|
Arf6 regulates tumour angiogenesis and growth through HGF-induced endothelial β1 integrin recycling. Nat Commun 2015; 6:7925. [PMID: 26239146 DOI: 10.1038/ncomms8925] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/25/2015] [Indexed: 01/26/2023] Open
Abstract
Anti-angiogenic drugs targeting vascular endothelial cell growth factor receptor have provided modest clinical benefit, in part, owing to the actions of additional angiogenic factors that stimulate tumour neoangiogenesis in parallel. To overcome this redundancy, approaches targeting these other signalling pathways are required. Here we show, using endothelial cell-targeted mice, that the small GTPase Arf6 is required for hepatocyte growth factor (HGF)-induced tumour neoangiogenesis and growth. Arf6 deletion from endothelial cells abolishes HGF-stimulated β1 integrin recycling. Pharmacological inhibition of the Arf6 guanine nucleotide exchange factor (GEF) Grp1 efficiently suppresses tumour vascularization and growth. Grp1 as well as other Arf6 GEFs, such as GEP100, EFA6B and EFA6D, regulates HGF-stimulated β1 integrin recycling. These findings provide insight into the mechanism of HGF-induced tumour angiogenesis and offer the possibility that targeting the HGF-activated Arf6 signalling pathway may synergize with existing anti-angiogenic drugs to improve clinical outcomes.
Collapse
|
96
|
Aoyama M, Osuka K, Usuda N, Watanabe Y, Kawaguchi R, Nakura T, Takayasu M. Expression of Mitogen-Activated Protein Kinases in Chronic Subdural Hematoma Outer Membranes. J Neurotrauma 2015; 32:1064-70. [DOI: 10.1089/neu.2014.3594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Masahiro Aoyama
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Koji Osuka
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuo Watanabe
- High Technology Research Center, Pharmacology, Showa Pharmaceutical University, Tokyo, Japan
| | - Reo Kawaguchi
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Takahiro Nakura
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| | - Masakazu Takayasu
- Department of Neurological Surgery, Aichi Medical University, Aichi, Japan
| |
Collapse
|
97
|
Hoeppner LH, Sinha S, Wang Y, Bhattacharya R, Dutta S, Gong X, Bedell VM, Suresh S, Chun C, Ramchandran R, Ekker SC, Mukhopadhyay D. RhoC maintains vascular homeostasis by regulating VEGF-induced signaling in endothelial cells. J Cell Sci 2015; 128:3556-68. [PMID: 26136364 DOI: 10.1242/jcs.167601] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
Vasculogenesis and angiogenesis are controlled by vascular endothelial growth factor A (VEGF-A). Dysregulation of these physiological processes contributes to the pathologies of heart disease, cancer and stroke. Rho GTPase proteins play an integral role in VEGF-mediated formation and maintenance of blood vessels. The regulatory functions of RhoA and RhoB in vasculogenesis and angiogenesis are well defined, whereas the purpose of RhoC remains poorly understood. Here, we describe how RhoC promotes vascular homeostasis by modulating endothelial cell migration, proliferation and permeability. RhoC stimulates proliferation of human umbilical vein endothelial cells (HUVECs) by stabilizing nuclear β-catenin, which promotes transcription of cyclin D1 and subsequently drives cell cycle progression. RhoC negatively regulates endothelial cell migration through MAPKs and downstream MLC2 signaling, and decreases vascular permeability through downregulation of the phospholipase Cγ (PLCγ)-Ca(2+)-eNOS cascade in HUVECs. Using a VEGF-inducible zebrafish (Danio rerio) model, we observed significantly increased vascular permeability in RhoC morpholino (MO)-injected zebrafish compared with control MO-injected zebrafish. Taken together, our findings suggest that RhoC is a key regulator of vascular homeostasis in endothelial cells.
Collapse
Affiliation(s)
- Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sutapa Sinha
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Xun Gong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Victoria M Bedell
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sandip Suresh
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Changzoon Chun
- Department of Developmental Vascular Biology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Ramani Ramchandran
- Department of Developmental Vascular Biology, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
98
|
Wiemhoefer A, Stargardt A, van der Linden WA, Renner MC, van Kesteren RE, Stap J, Raspe MA, Tomkinson B, Kessels HW, Ovaa H, Overkleeft HS, Florea B, Reits EA. Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2. Mol Cell Proteomics 2015; 14:2177-93. [PMID: 26041847 DOI: 10.1074/mcp.m114.043331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function.
Collapse
Affiliation(s)
- Anne Wiemhoefer
- From the ‡Department of Cell Biology and Histology, Academic Medical Centre- University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Anita Stargardt
- From the ‡Department of Cell Biology and Histology, Academic Medical Centre- University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Wouter A van der Linden
- §Department of Pathology, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324
| | - Maria C Renner
- ¶Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- ‖Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Jan Stap
- From the ‡Department of Cell Biology and Histology, Academic Medical Centre- University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Marcel A Raspe
- **Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Birgitta Tomkinson
- ‡‡Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, 75123 Uppsala, Sweden
| | - Helmut W Kessels
- ¶Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, The Netherlands
| | - Huib Ovaa
- **Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Herman S Overkleeft
- §§Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Bogdan Florea
- §§Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Eric A Reits
- From the ‡Department of Cell Biology and Histology, Academic Medical Centre- University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands;
| |
Collapse
|
99
|
Bhattacharya D, Chaudhuri S, Singh MK, Chaudhuri S. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model. Exp Mol Pathol 2015; 98:455-66. [DOI: 10.1016/j.yexmp.2015.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
|
100
|
Golzar F, Javanmard SH. The effects of kisspeptin-10 on migration and proliferation of endothelial cell. Adv Biomed Res 2015; 4:41. [PMID: 25789267 PMCID: PMC4358036 DOI: 10.4103/2277-9175.151250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 02/19/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Migration, expansion and survival of endothelial cells that are an important cellular component of blood vessels plays an important role in the induction of tumor growth. Kisspeptins (kp), peptides that bind to coupled-G protein receptor (GPR54), inhibit each step of metastatic cascade include invasion, migration and homing, angiogenesis, survival and proliferation. In this study we investigated effects of kisspeptin-10, the most potent member of kisspeptin family, on Migration and proliferation of endothelial cells that are necessary for angiogenesis and tumor metastasis. MATERIALS AND METHODS We compared migration of Human Umbilical Vein Endothelial Cells (HUVECs) were treated with 10-100 or 500 nM kp-10 for 24 hours and no treated cells using an in vitro trans membrane migration assay and HUVEC proliferation of treated endothelial cells with 10-100 or 500 nM kp-10 for 48 hours and no treated cells was measured by MTT Cell Proliferation Assay Kit. Analysis of data was performed using the Kruskal-Wallis test followed by the Mann-Whitney test. RESULTS Migration and proliferation of endothelial cells were increased at lower concentration of kp-10 specially at 100 nM while higher concentration reduced both migration and proliferation. CONCLUSION Our data showed that different concentrations of kp-10 have distinct effects on migration and proliferation of endothelial cells.
Collapse
Affiliation(s)
- Fatemeh Golzar
- Department of Physiology, Physiology Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|