51
|
de Carvalho Dias K, Barbugli PA, de Patto F, Lordello VB, de Aquino Penteado L, Medeiros AI, Vergani CE. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response. BMC Microbiol 2017; 17:146. [PMID: 28666415 PMCID: PMC5493077 DOI: 10.1186/s12866-017-1031-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background The objective of this study was to better understand the effects of soluble factors from biofilm of single- and mixed-species Candida albicans (C. albicans) and methicillin-sensitive Staphylococcus aureus (MSSA) cultures after 36 h in culture on keratinocytes (NOK-si and HaCaT) and macrophages (J774A.1). Soluble factors from biofilms of C. albicans and MSSA were collected and incubated with keratinocytes and macrophages, which were subsequently evaluated by cell viability assays (MTT). Lactate dehydrogenase (LDH) enzyme release was measured to assess cell membrane damage to keratinocytes. Cells were analysed by brightfield microscopy after 2 and 24 h of exposure to the soluble factors from biofilm. Cell death was detected by labelling apoptotic cells with annexin V and necrotic cells with propidium iodide (PI) and was visualized via fluorescence microscopy. Soluble factors from biofilm were incubated with J774A.1 cells for 24 h; the subsequent production of NO and the cytokines IL-6 and TNF-α was measured by ELISA. Results The cell viability assays showed that the soluble factors of single-species C. albicans cultures were as toxic as the soluble factors from biofilm of mixed cultures, whereas the soluble factors of MSSA cultures were less toxic than those of C. albicans or mixed cultures. The soluble factors from biofilm of mixed cultures were the most toxic to the NOK-si and HaCaT cells, as confirmed by analyses of PI labelling and cell morphology. Soluble factors from biofilm of single-species MSSA and mixed-species cultures induced the production of IL-6, NO and TNF-α by J744A.1 macrophages. The production of IL-6 and NO induced by the soluble factors from biofilm of mixed cultures was lower than that induced by the soluble factors from biofilm of single-species MSSA cultures, whereas the soluble factors from biofilm of C. albicans cultures induced only low levels of NO. Conclusions Soluble factors from 36-h-old biofilm of C. albicans and MSSA cultures promoted cell death and inflammatory responses.
Collapse
Affiliation(s)
- Kassia de Carvalho Dias
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Fernanda de Patto
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil
| | - Virginia Barreto Lordello
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Letícia de Aquino Penteado
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Alexandra Ivo Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, Oral Rehabilitation Program-Araraquara School of Dentistry UNESP-Univ. Estadual Paulista, Centro, Araraquara, SP, 14801903, Brazil.
| |
Collapse
|
52
|
HNSCC subverts PBMCs to secrete soluble products that promote tumor cell proliferation. Oncotarget 2017; 8:60860-60874. [PMID: 28977830 PMCID: PMC5617390 DOI: 10.18632/oncotarget.18486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/01/2017] [Indexed: 01/13/2023] Open
Abstract
The immune system detects shifts from homeostasis and eliminates altered cells. However, neoplastic cells can modulate the host response to escape immunosurveillance thereby allowing tumor progression. Head and neck squamous cell carcinoma (HNSCC) is one of the most immunosuppressive cancers but its role in co-opting the immune system to actively promote tumor growth has not been investigated. In this study, we investigated the influence of soluble factors secreted by HNSCC and non-neoplastic epithelial cells on proliferation, apoptosis, activation, cytokine gene expression and phenotypic polarization of immune cells of healthy donors. Then, we determined if the immunomodulation caused by HNSCC-derived soluble products leads to immunosubversion by assessing proliferation, migration and survival of tumor cells exposed to soluble products secreted by modulated immune cells or co-cultured with immune cells. Soluble products from HNSCC inhibited proliferation and cytokine expression in PBMCs, activation of T cells, and polarization of CD4+ towards the Th17 phenotype. These changes co-opted the immune cells to favor cell proliferation, survival and migration of HNSCC. This immunosubversion was observed both indirectly with secreted products and with direct cell-to-cell contact. We conclude that HNSCC-derived secreted products create an immunosuppressive environment that facilitates evasion of tumor cells and subverts the immune cells into a pro-tumoral phenotype.
Collapse
|
53
|
Zagni C, Almeida LO, Balan T, Martins MT, Rosselli-Murai LK, Papagerakis P, Castilho RM, Squarize CH. PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports 2017; 9:304-314. [PMID: 28602615 PMCID: PMC5511049 DOI: 10.1016/j.stemcr.2017.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Tissue integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. In the skin, hair follicle stem cells (HFSCs) that reside within the bulge maintain tissue homeostasis in response to activating cues that occur with each new hair cycle or upon injury. We found that PTEN, a major regulator of the PI3K-AKT pathway, controlled HFSC number and size in the bulge and maintained genomically stable pluripotent cells. This regulatory function is central for HFSC quiescence, where PTEN-deficiency phenotype is in part regulated by BMAL1. Furthermore, PTEN ablation led to downregulation of BMI-1, a critical regulator of adult stem cell self-renewal, and elevated senescence, suggesting the presence of a protective system that prevents transformation. We found that short- and long-term PTEN depletion followed by activated BMAL1, a core clock protein, contributed to accumulation of HFSC. PTEN downregulation leads to the enrichment of stem cells in the niche PTEN activates core clock protein BMAL1 BMAL1 plays a role in PTEN-associated stem cell accumulation via AKT
Collapse
Affiliation(s)
- Chiara Zagni
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Tarek Balan
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Marco T Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana K Rosselli-Murai
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Petros Papagerakis
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Center for Organogenesis, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
54
|
Khonsuphap P, Pavasant P, Irwandi RA, Leethanakul C, Vacharaksa A. Epithelial Cells Secrete Interferon-γ Which Suppresses Expression of Receptor Activator of Nuclear Factor Kappa-B Ligand in Human Mandibular Osteoblast-Like Cells. J Periodontol 2017; 88:e65-e74. [DOI: 10.1902/jop.2016.160476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pakchisa Khonsuphap
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University
| | - Rizky Aditya Irwandi
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| | - Chidchanok Leethanakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkla, Thailand
| | - Anjalee Vacharaksa
- Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
55
|
Shams Najafabadi H, Soheili ZS, Samiei S, Ahmadieh H, Ranaei Pirmardan E, Masoumi M. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties. J Cell Physiol 2016; 232:2626-2640. [PMID: 27943290 DOI: 10.1002/jcp.25729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022]
Abstract
The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Ahmadieh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Masoumi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
56
|
Matsumoto CS, Almeida LO, Guimarães DM, Martins MD, Papagerakis P, Papagerakis S, Leopoldino AM, Castilho RM, Squarize CH. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. Oncotarget 2016; 7:42393-42407. [PMID: 27285754 PMCID: PMC5173143 DOI: 10.18632/oncotarget.9877] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/19/2016] [Indexed: 01/23/2023] Open
Abstract
Dysfunctional clock signaling is observed in a variety of pathological conditions. Many members of the clock gene family are upregulated in tumor cells. Here, we explored the consequences of a commonly disrupted signaling pathway in head and neck cancer on the regulation of circadian clock genes. PTEN is a key molecular controller of the PI3K signaling, and loss of PTEN function is often observed in a variety of cancers. Our main goal was to determine whether PTEN regulates circadian clock signaling. We found that oxidation-driven loss of PTEN function resulted in the activation of mTOR signaling and activation of the core clock protein BMAL1 (also known as ARNTL). The PTEN-induced BMAL1 upregulation was further confirmed using small interference RNA targeting PTEN, and in vivo conditional depletion of PTEN from the epidermis. We observed that PTEN-driven accumulation of BMAL1 was mTOR-mediated and that administration of Rapamycin, a specific mTOR inhibitor, resulted in in vivo rescue of normal levels of BMAL1. Accumulation of BMAL1 by deletion of PER2, a Period family gene, was also rescued upon in vivo administration of mTOR inhibitor. Notably, BMAL1 regulation requires mTOR regulatory protein Raptor and Rictor. These findings indicate that mTORC1 and mTORC2 complex plays a critical role in controlling BMAL1, establishing a connection between PI3K signaling and the regulation of circadian rhythm, ultimately resulting in deregulated BMAL1 in tumor cells with disrupted PI3K signaling.
Collapse
Affiliation(s)
- Camila S. Matsumoto
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmacy, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciana O. Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Douglas M. Guimarães
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Oral Pathology, School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Manoela D. Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Center for Organogenesis, University of Michigan, Ann Arbor, MI, USA
| | - Silvana Papagerakis
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Andreia M. Leopoldino
- Department of Clinical Analysis, Toxicology and Bromatology, School of Pharmacy, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
57
|
Influence of different buffers (HEPES/MOPS) on keratinocyte cell viability and microbial growth. J Microbiol Methods 2016; 125:40-2. [DOI: 10.1016/j.mimet.2016.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 01/30/2023]
|
58
|
Giralt A, Coura R, Girault JA. Pyk2 is essential for astrocytes mobility following brain lesion. Glia 2015; 64:620-34. [DOI: 10.1002/glia.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Albert Giralt
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Renata Coura
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Jean-Antoine Girault
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| |
Collapse
|
59
|
Yang KC, Kitamura Y, Wu CC, Chang HH, Ling TY, Kuo TF. Tooth Germ-Like Construct Transplantation for Whole-Tooth Regeneration: An In Vivo Study in the Miniature Pig. Artif Organs 2015; 40:E39-50. [DOI: 10.1111/aor.12630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine; Taipei Medical University; Taipei Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| | - Yutaka Kitamura
- Department of Oral and Maxillofacial Surgery; Matsumoto Dental University; Nagano Japan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City Taiwan
| | - Hao-Hueng Chang
- Department of Dentistry; School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Thai-Yen Ling
- Institute of Pharmacology; College of Medicine; National Taiwan University; Taipei Taiwan
| | - Tzong-Fu Kuo
- Graduate Institute of Veterinary Medicine; School of Veterinary Medicine; National Taiwan University; Taipei Taiwan
| |
Collapse
|
60
|
Calenic B, Greabu M, Caruntu C, Tanase C, Battino M. Oral keratinocyte stem/progenitor cells: specific markers, molecular signaling pathways and potential uses. Periodontol 2000 2015; 69:68-82. [DOI: 10.1111/prd.12097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 12/18/2022]
|
61
|
Oh SY, Lee SJ, Jung YH, Lee HJ, Han HJ. Arachidonic acid promotes skin wound healing through induction of human MSC migration by MT3-MMP-mediated fibronectin degradation. Cell Death Dis 2015; 6:e1750. [PMID: 25950480 PMCID: PMC4669694 DOI: 10.1038/cddis.2015.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
Arachidonic acid (AA) is largely released during injury, but it has not been fully studied yet how AA modulates wound repair with stem cells. Therefore, we investigated skin wound-healing effect of AA-stimulated human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in vivo and its molecular mechanism in vitro. We found that transplantation of hUCB-MSCs pre-treated with AA enhanced wound filling, re-epithelization, and angiogenesis in a mouse skin excisional wound model. AA significantly promoted hUCB-MSCs migration after a 24 h incubation, which was inhibited by the knockdown of G-protein-coupled receptor 40 (GPR40). AA activated mammalian target of rapamycin complex 2 (mTORC2) and Aktser473 through the GPR40/phosphoinositide 3-kinase (PI3K) signaling, which was responsible for the stimulation of an atypical protein kinase C (PKC) isoform, PKCζ. Subsequently, AA stimulated phosphorylation of p38 MAPK and transcription factor Sp1, and induced membrane type 3-matrix metalloproteinase (MT3-MMP)-dependent fibronectin degradation in promoting hUCB-MSCs motility. Finally, the silencing of MT3-MMP in AA-stimulated hUCB-MSCs failed to promote the repair of skin wounds owing to impaired cell motility. In conclusion, AA enhances skin wound healing through induction of hUCB-MSCs motility by MT3-MMP-mediated fibronectin degradation, which relies on GPR40-dependent mTORC2 signaling pathways.
Collapse
Affiliation(s)
- S Y Oh
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - S-J Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - Y H Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - H J Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| | - H J Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 151-741, Korea
| |
Collapse
|
62
|
Bian L, Han G, Zhao CW, Garl PJ, Wang XJ. The role of Smad7 in oral mucositis. Protein Cell 2015; 6:160-9. [PMID: 25566830 PMCID: PMC4348243 DOI: 10.1007/s13238-014-0130-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022] Open
Abstract
Oral mucositis, a severe oral ulceration, is a common toxic effect of radio- or chemoradio-therapy and a limiting factor to using the maximum dose of radiation for effective cancer treatment. Among cancer patients, at least 40% and up to 70%, of individuals treated with standard chemotherapy regimens or upper-body radiation, develop oral mucositis. To date, there is no FDA approved drug to treat oral mucositis in cancer patients. The key challenges for oral mucositis treatment are to repair and protect ulcerated oral mucosa without promoting cancer cell growth. Oral mucositis is the result of complex, multifaceted pathobiology, involving a series of signaling pathways and a chain of interactions between the epithelium and submucosa. Among those pathways and interactions, the activation of nuclear factor-kappa B (NF-κB) is critical to the inflammation process of oral mucositis. We recently found that activation of TGFβ (transforming growth factor β) signaling is associated with the development of oral mucositis. Smad7, the negative regulator of TGFβ signaling, inhibits both NF-κB and TGFβ activation and thus plays a pivotal role in the prevention and treatment of oral mucositis by attenuating growth inhibition, apoptosis, and inflammation while promoting epithelial migration. The major objective of this review is to evaluate the known functions of Smad7, with a particular focus on its molecular mechanisms and its function in blocking multiple pathological processes in oral mucositis.
Collapse
Affiliation(s)
- Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | | | | | | | | |
Collapse
|
63
|
Smith PC, Martínez C, Cáceres M, Martínez J. Research on growth factors in periodontology. Periodontol 2000 2014; 67:234-50. [DOI: 10.1111/prd.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 12/16/2022]
|
64
|
Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice. PLoS One 2014; 9:e102271. [PMID: 25122137 PMCID: PMC4133190 DOI: 10.1371/journal.pone.0102271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023] Open
Abstract
MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1epi−/−) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1epi−/− and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1epi−/− mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1epi−/− mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1epi−/− keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1epi−/− keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1epi−/− keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1epi−/− keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1epi−/− mice. On the other hand, skin wound healing in 6-month-old Med1epi−/− mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1epi−/− mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1epi−/− mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.
Collapse
|
65
|
Pellicioli ACA, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM. Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:028002. [PMID: 24531144 DOI: 10.1117/1.jbo.19.2.028002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
Keratinocytes play a central role in wound healing by responding to tissue injury through the activation of cellular proliferation and migration. Current clinical evidence suggests that the laser phototherapy (LPT) accelerates wound healing in a variety of oral diseases; however, the molecular mechanisms involved in response to LPT are not fully understood. Oral keratinocytes (NOK-SI) maintained under nutritional-deficit culture medium (2% fetal bovine serum) were irradiated with InGaAlP laser (660 nm; 40 mW; 0.04 cm2 spot size) in punctual and contact modes. The energy densities used were 4 and 20 J/cm2 corresponding to 4 and 20 s of exposure times and 0.16 and 0.8 J of energy per point, respectively. Three sessions of irradiations were applied with 6-h intervals. Further, the impact of LPT over cellular migration, proliferation, and activation of the mammalian target of rapamycin (mTOR) pathway, known to play a major role in epithelial migration and wound healing, was analyzed. Compared with control cells, the LPT-treated cells showed accelerated cellular migration without any changes in proliferation. Furthermore, LPT resulted in an increase in the phospho-S6 ribosomal protein, indicating activation of the mTOR signaling pathway. Collectively, these findings suggest that the LPT activates mTOR signaling pathway, promotes epithelial cell migration, and accelerates healing of oral mucosa.
Collapse
Affiliation(s)
- Ana Carolina Amorim Pellicioli
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Manoela Domingues Martins
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Caroline Siviero Dillenburg
- Universidade Federal do Rio Grande do Sul, School of Dentistry, Department of Oral Pathology, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Márcia Martins Marques
- University of São Paulo, School of Dentistry, Department of Dentistry, São Paulo, São Paulo 05508-000, Brazil
| | - Cristiane H Squarize
- University of Michigan, School of Dentistry, Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Ann Arbor, Michigan 48109-1078
| | - Rogerio M Castilho
- University of Michigan, School of Dentistry, Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Ann Arbor, Michigan 48109-1078
| |
Collapse
|
66
|
Rosselli-Murai LK, Almeida LO, Zagni C, Galindo-Moreno P, Padial-Molina M, Volk SL, Murai MJ, Rios HF, Squarize CH, Castilho RM. Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway. PLoS One 2013; 8:e83580. [PMID: 24349533 PMCID: PMC3862800 DOI: 10.1371/journal.pone.0083580] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022] Open
Abstract
Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.
Collapse
Affiliation(s)
- Luciana K. Rosselli-Murai
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luciana O. Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chiara Zagni
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah L. Volk
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marcelo J. Murai
- The Division of Hematology and Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, United States of America
| | - Hector F. Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
67
|
Mydlarz W, Uemura M, Ahn S, Hennessey P, Chang S, Demokan S, Sun W, Shao C, Bishop J, Krosting J, Mambo E, Westra W, Ha P, Sidransky D, Califano J. Clusterin is a gene-specific target of microRNA-21 in head and neck squamous cell carcinoma. Clin Cancer Res 2013; 20:868-77. [PMID: 24327270 DOI: 10.1158/1078-0432.ccr-13-2675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE MicroRNA-21 (miRNA-21) has proto-oncogenic properties, although no miRNA-21-specific targets have been found in head and neck squamous cell carcinoma (HNSCC). Further study of miRNA-21 and its specific targets is essential to understanding HNSCC biology. EXPERIMENTAL DESIGN miRNA expression profiles of 10 HNSCCs and 10 normal mucosa samples were investigated using a custom miRNA microarray. Thirteen HNSCCs and five normal mucosa primary tissue specimens underwent mRNA expression microarray analysis. To identify miRNA-21 downstream targets, oral keratinocyte cells were subjected to microarray analysis after miRNA-21 transient transfection. miRNA and mRNA expression were validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in a separate cohort of 16 HNSCCs and 15 normal mucosal samples. Microarray and bioinformatics analyses were integrated to identify potential gene targets. In vitro assays looked at the function and interaction of miRNA-21 and its specific gene targets. RESULTS miRNA-21 was upregulated in HNSCCs and stimulated cell growth. Integrated analyses identified Clusterin (CLU) as a potential miRNA-21 gene target. CLU was downregulated after forced expression of miRNA-21 in normal and HNSCC cell lines. The activity of a luciferase construct containing the 3'-untranslated region (UTR) of CLU was repressed by the ectopic expression of miRNA-21. CLU was also downregulated in primary HNSCCs and correlated with miRNA-21 overexpression. CLU variant 1 (CLU-1) was the predominant splice variant in HNSCCs and showed growth suppression function that was reversed by miRNA-21 overexpression. CONCLUSIONS CLU is a specific, functional target of oncogenic miRNA-21 in HNSCCs. CLU-1 isoform is the predominant growth-suppressive variant targeted by miRNA-21.
Collapse
Affiliation(s)
- Wojciech Mydlarz
- Authors' Affiliations: Departments of Otolaryngology-Head and Neck Surgery and Pathology, Johns Hopkins Medical Institutions; The Milton J Dance, Jr. Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland; Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey; and Asuragen, Inc. Austin, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia 2013; 15:461-71. [PMID: 23633918 DOI: 10.1593/neo.121024] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
The sequencing of the head and neck cancer has provided a blueprint of the most frequent genetic alterations in this cancer type. They include inactivating mutations in Notch, p53, and p16(ink4a) tumor suppressor genes, in addition to nonoverlapping activating mutations of the PIK3CA and RAS oncogenes or inactivation of the tumor suppressor gene PTEN. Notably, these genetic alterations, along with epigenetic changes, result in increased activity of phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, which is present in most head and neck squamous cell carcinomas (HNSCCs). Moreover, we show here that approximately 30% of HNSCCs exhibit reduced PTEN expression. We challenged the biologic relevance of this finding by combining the intraoral administration of a tobacco surrogate, 4-nitroquinoline 1-oxide, with a genetically defined animal model displaying reduced PTEN expression, achieved by the conditional deletion of Pten using the keratin promoter 14 CRE-lox system. This provided a specific genetic and environmentally defined animal model for HNSCC that resulted in the rapid development of oral-specific carcinomas. Under these experimental conditions, control mice did not develop HNSCC lesions. In contrast, most mice harboring Pten deficiency developed multiple SCC lesions in the lateral border and ventral part of the tongue and floor of the mouth, which are the preferred anatomic sites for human HNSCC. Overall, our study highlights the likely clinical relevance of reduced PTEN expression and/or inactivation in HNSCC progression, while the combined Pten deletion with exposure to tobacco carcinogens or their surrogates may provide a unique experimental model system to study novel molecular targeted treatments for HNSCC patients.
Collapse
|
69
|
Tay CY, Koh CG, Tan NS, Leong DT, Tan LP. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine (Lond) 2013; 8:623-38. [PMID: 23560412 DOI: 10.2217/nnm.13.31] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent developments in the field of mechanobiology have renewed the call for a better understanding of the role of mechanical forces as potent regulators and indicators of stem cell fate. Although it is well established that mechanical forces play a crucial role in guiding tissue development, little is known about how submicroscopic biomechanical forces can influence key stem cell behaviors. This review will detail the use of micro-/nano-technologies that are advancing our current understanding of stem cell mechanobiology, and mechanoregulation of stem cell fate using engineered surface topographies and small-scale patterning techniques. The involvement of focal adhesions and the cytoskeleton systems as a common biophysical impetus through which these mechanical signals are transduced via distinct signaling pathways will also be discussed. These insights are envisioned to provide the basis for the rational design of future biocompatible materials and may inspire alternative drug-free therapeutic strategies to manage diseased sites via biomechanical management.
Collapse
Affiliation(s)
- Chor Yong Tay
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | | | | | | | | |
Collapse
|
70
|
Abstract
Primary human oral epithelial cells are readily available and have been recently employed for tissue engineering. These cells are currently being widely utilized in multiple research efforts, ranging from the study of oral biology, mucosal immunity, and carcinogenesis to stem cell biology and tissue engineering. This chapter describes step-by-step protocols for the successful isolation and culture of human oral epithelial cells and fibroblasts, and techniques for their use in two-dimensional and three-dimensional culture systems. The described methods will enable to generate reconstituted tissues that resemble epithelial like structures in vitro, which can recapitulate some of the key features of the oral epithelium in vivo.
Collapse
|
71
|
Giudice FS, Pinto DS, Nör JE, Squarize CH, Castilho RM. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One 2013; 8:e58672. [PMID: 23527004 PMCID: PMC3603970 DOI: 10.1371/journal.pone.0058672] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
The genome is organized and packed into the nucleus through interactions with core histone proteins. Emerging evidence suggests that tumors are highly responsive to epigenetic alterations that induce chromatin-based events and dynamically influence tumor behavior. We examined chromatin organization in head and neck squamous cell carcinoma (HNSCC) using acetylation levels of histone 3 as a marker of chromatin compaction. Compared to control oral keratinocytes, we found that HNSCC cells are hypoacetylated and that microenvironmental cues (e.g., microvasculature endothelial cells) induce tumor acetylation. Furthermore, we found that chemical inhibition of histone deacetylases (HDAC) reduces the number of cancer stem cells (CSC) and inhibits clonogenic sphere formation. Paradoxically, inhibition of HDAC also induced epithelial-mesenchymal transition (EMT) in HNSCC cells, accumulation of BMI-1, an oncogene associated with tumor aggressiveness, and expression of the vimentin mesenchymal marker. Importantly, we observed co-expression of vimentin and acetylated histone 3 at the invasion front of human HNSCC tumor tissues. Collectively, these findings suggest that environmental cues, such as endothelial cell-secreted factors, modulate tumor plasticity by limiting the population of CSC and inducing EMT. Therefore, inhibition of HDAC may constitute a novel strategy to disrupt the population of CSC in head and neck tumors to create a homogeneous population of cancer cells with biologically defined signatures and predictable behavior.
Collapse
Affiliation(s)
- Fernanda S. Giudice
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Decio S. Pinto
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
72
|
Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 2013; 19:421-8. [PMID: 23475202 PMCID: PMC3780964 DOI: 10.1038/nm.3118] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
We report that K5.Smad7 mice, which express Smad7 transgene by a keratin-5 promoter, were resistant to radiation-induced oral mucositis, a painful oral ulceration. In addition to NF-κB activation known to contribute to oral mucositis, we found activated TGF-β signaling in oral mucositis. Smad7 dampened both pathways to attenuate inflammation, growth inhibition and apoptosis. Additionally, Smad7 promoted oral epithelial migration to close the wound. Further analyses revealed that TGF-β signaling Smads and their co-repressor CtBP1 transcriptionally repressed Rac1, and Smad7 abrogated this repression. Knocking down Rac1 in mouse keratinocytes abrogated Smad7-induced migration. Topically applying Smad7 protein with a cell permeable Tat-tag (Tat-Smad7) to oral mucosa showed preventive and therapeutic effects on radiation-induced oral mucositis in mice. Thus, we have identified novel molecular mechanisms involved in oral mucositis pathogenesis and our data suggest an alternative therapeutic strategy to block multiple pathological processes of oral mucositis.
Collapse
|
73
|
Hoeben A, Martin D, Clement PM, Cools J, Gutkind JS. Role of GRB2-associated binder 1 in epidermal growth factor receptor-induced signaling in head and neck squamous cell carcinoma. Int J Cancer 2013; 132:1042-50. [PMID: 22865653 PMCID: PMC3498529 DOI: 10.1002/ijc.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 06/20/2012] [Indexed: 11/05/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of head and neck squamous cell carcinoma (HNSCC). Despite the high expression of EGFR in HNSCC, EGFR inhibitors have only limited success as monotherapy. The Grb2-associated binder (GAB) family of adaptor proteins acts as docking/scaffolding molecules downstream of tyrosine kinase receptors. We hypothesized that GAB1 may amplify EGFR-induced signaling in HNSCCs and therefore could play a role in the reduced sensitivity of HNSCC to EGFR inhibitors. We used representative human HNSCC cell lines overexpressing wild type EGFR, and expressing GAB1 but not GAB2. We demonstrated that baseline Akt and MAPK signaling were reduced in HNSCC cells in which GAB1 expression was reduced. Furthermore, the maximal EGF-induced activation of the Akt and MAPK pathway was reduced and delayed, and the duration of the EGF-induced activation of these pathways was reduced in cells with GAB1 knock-down. In agreement with this, HNSCC cells in which GAB1 levels were reduced showed an increased sensitivity to the EGFR inhibitor gefitinib. Our work demonstrates that GAB1 plays an important role as part of the mechanism of by which EGFR induces induced activation of the MAPK and AKT pathway. Our results identify GAB1 as an amplifier of the EGFR-initiated signaling, which may also interfere with EGFR degradation. These findings support the emerging notion that reducing GAB1 function may sensitize HNSCC to EGFR inhibitors, hence representing a new therapeutic target HNSCC treatment in combination with EGFR targeting agents.
Collapse
Affiliation(s)
- A Hoeben
- General Medical Oncology, University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | | | |
Collapse
|
74
|
Abstract
Precise orchestration of actin polymer into filaments with distinct characteristics of stability, bundling, and branching underpins cell migration. A key regulator of actin filament specialization is the tropomyosin family of actin-associating proteins. This multi-isoform family of proteins assemble into polymers that lie in the major groove of polymerized actin filaments, which in turn determine the association of molecules that control actin filament organization. This suggests that tropomyosins may be important regulators of actin function during physiological processes dependent on cell migration, such as wound healing. We have therefore analyzed the requirement for tropomyosin isoform expression in a mouse model of cutaneous wound healing. We find that mice in which the 9D exon from the TPM3/γTm tropomyosin gene is deleted (γ9D -/-) exhibit a more rapid wound-healing response 7 days after wounding compared with wild-type mice. Accelerated wound healing was not associated with increased cell proliferation, matrix remodeling, or epidermal abnormalities, but with increased cell migration. Rac GTPase activity and paxillin phosphorylation are elevated in cells from γ9D -/- mice, suggesting the activation of paxillin/Rac signaling. Collectively, our data reveal that tropomyosin isoform expression has an important role in temporal regulation of cell migration during wound healing.
Collapse
|
75
|
|
76
|
Pedersen E, Wang Z, Stanley A, Peyrollier K, Rösner LM, Werfel T, Quondamatteo F, Brakebusch C. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1. J Cell Sci 2012; 125:5379-90. [PMID: 22956547 DOI: 10.1242/jcs.107011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Crosstalk between keratinocytes and immune cells is crucial for the immunological barrier function of the skin, and aberrant crosstalk contributes to inflammatory skin diseases. Using mice with a keratinocyte-restricted deletion of the RAC1 gene we found that RAC1 in keratinocytes plays an important role in modulating the interferon (IFN) response in skin. These RAC1 mutant mice showed increased sensitivity in an irritant contact dermatitis model, abnormal keratinocyte differentiation, and increased expression of immune response genes including the IFN signal transducer STAT1. Loss of RAC1 in keratinocytes decreased actin polymerization in vivo and in vitro and caused Arp2/3-dependent expression of STAT1, increased interferon sensitivity and upregulation of aberrant keratinocyte differentiation markers. This can be inhibited by the AP-1 inhibitor tanshinone IIA. Loss of RAC1 makes keratinocytes hypersensitive to inflammatory stimuli both in vitro and in vivo, suggesting a major role for RAC1 in regulating the crosstalk between the epidermis and the immune system.
Collapse
Affiliation(s)
- Esben Pedersen
- Biomedical Institute, BRIC, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, Zain RB, Abraham MT, Dey DK, Gutkind JS, Rusling JF. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal Chem 2012; 84:6249-55. [PMID: 22697359 PMCID: PMC3418660 DOI: 10.1021/ac301392g] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiplexed biomarker protein detection holds unrealized promise for clinical cancer diagnostics due to lack of suitable measurement devices and lack of rigorously validated protein panels. Here we report an ultrasensitive electrochemical microfluidic array optimized to measure a four-protein panel of biomarker proteins, and we validate the protein panel for accurate oral cancer diagnostics. Unprecedented ultralow detection into the 5-50 fg·mL(-1) range was achieved for simultaneous measurement of proteins interleukin 6 (IL-6), IL-8, vascular endothelial growth factor (VEGF), and VEGF-C in diluted serum. The immunoarray achieves high sensitivity in 50 min assays by using off-line protein capture by magnetic beads carrying 400,000 enzyme labels and ~100,000 antibodies. After capture of the proteins and washing to inhibit nonspecific binding, the beads are magnetically separated and injected into the array for selective capture by antibodies on eight nanostructured sensors. Good correlations with enzyme-linked immunosorbent assays (ELISA) for protein determinations in conditioned cancer cell media confirmed the accuracy of this approach. Normalized means of the four protein levels in 78 oral cancer patient serum samples and 49 controls gave clinical sensitivity of 89% and specificity of 98% for oral cancer detection, demonstrating high diagnostic utility. The low-cost, easily fabricated immunoarray provides a rapid serum test for diagnosis and personalized therapy of oral cancer. The device is readily adaptable to clinical diagnostics of other cancers.
Collapse
Affiliation(s)
- Ruchika Malhotra
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | | | - Bernard S. Munge
- Department of Chemistry, Salve Regina University, Newport, Rhode Island
| | - Sok Ching Cheong
- Oral Cancer Research Team, Cancer Research Initiatives Foundation (CARIF), Selangor, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur
| | - Rosnah B. Zain
- Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya, 50603 Kuala Lumpur
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur
| | - Mannil T. Abraham
- Department of Oral and Maxillofacial Surgery, Hospital Tengku Ampuan Rahimah, Klang, Malaysia
| | - Dipak K. Dey
- Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut
- Institute of Material Science, University of Connecticut, Connecticut
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
78
|
Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol 2012; 48:1068-75. [PMID: 22766510 DOI: 10.1016/j.oraloncology.2012.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 02/05/2023]
Abstract
Similar to actors changing costumes during a performance, cancer cells undergo many rapid changes during the process of tumor metastasis, including epithelial-mesenchymal transition (EMT), acquisition of cancer stem cells (CSCs) properties, and mesenchymal-epithelial transition (MET). Such changes allow the tumor to compete with the normal microenvironment to overcome anti-tumorigenic pressures. Then, once tissue homeostasis is lost, the altered microenvironment, like that accompanying inflammation, can itself become a potent tumor promoter. This review will discuss the changes that cancer cells undergo in converting from EMT to CSCs in an inflammation microenvironment, to understand the mechanisms behind invasion and metastasis and provide insights into prevention of metastasis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14, Sec 3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China
| | | | | | | |
Collapse
|
79
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Sobral LM, Uyemura SA, Tajara EH, Silvio Gutkind J, Curti C. SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification. Oral Oncol 2012; 48:1106-13. [PMID: 22739068 DOI: 10.1016/j.oraloncology.2012.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/27/2012] [Accepted: 05/09/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages. MATERIALS AND METHODS SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively. RESULTS SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death. CONCLUSION SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-930 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Vitale-Cross L, Molinolo AA, Martin D, Younis RH, Maruyama T, Patel V, Chen W, Schneider A, Gutkind JS. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev Res (Phila) 2012; 5:562-73. [PMID: 22467081 DOI: 10.1158/1940-6207.capr-11-0502] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. The recent identification of the mTOR complex 1 (mTORC1) signaling pathway as a highly prevalent molecular signature underlying HNSCC pathogenesis has provided the foundation to search for novel therapeutic approaches to prevent and treat HNSCC. Here, we asked whether metformin, the most widely used medication for the treatment of type II diabetes, which acts in part by stimulating the AMP-activated protein kinase (AMPK) signaling pathway thereby reducing mTORC1 activity, may lower the risk of HNSCC development. Indeed, we show that metformin reduces the growth of HNSCC cells and diminishes their mTORC1 activity by both AMPK-dependent and -independent mechanisms. We also optimized an oral-specific carcinogenesis mouse model that results in the accumulation of multiple oral premalignant lesions at the end of the carcinogen exposure, some of which then spontaneously progress into HNSCC. Using this mouse model, we observed that metformin specifically inhibits mTORC1 in the basal proliferating epithelial layer of oral premalignant lesions. Remarkably, metformin prevented the development of HNSCC by reducing significantly the size and number of carcinogen-induced oral tumoral lesions and by preventing their spontaneous conversion to squamous cell carcinomas. Collectively, our data underscore the potential clinical benefits of using metformin as a targeted chemopreventive agent in the control of HNSCC development and progression.
Collapse
Affiliation(s)
- Lynn Vitale-Cross
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Molinolo AA, Marsh C, El Dinali M, Gangane N, Jennison K, Hewitt S, Patel V, Seiwert TY, Gutkind JS. mTOR as a molecular target in HPV-associated oral and cervical squamous carcinomas. Clin Cancer Res 2012; 18:2558-68. [PMID: 22409888 DOI: 10.1158/1078-0432.ccr-11-2824] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The incidence of head and neck squamous cell carcinomas (HNSCC) associated with human papillomavirus (HPV) infection has increased over the past decades in the United States. We aimed at examining the global impact of HPV-associated HNSCC and whether the established key role of mTOR activation in HNSCC is also observed in HPV(+) HNSCC lesions, thereby providing novel treatment options for HPV-associated HNSCC patients. EXPERIMENTAL DESIGN An international HNSCC tissue microarray (TMA) was used to analyze the expression of p16(INK4A), a surrogate for HPV infection, and Akt-mTOR pathway activation. Results were confirmed in a large collection of HPV(-) and HPV(+) HNSCC cases and in a cervical cancer (CCSCC) TMA. Observations were validated in HNSCC and CCSCC-derived cell lines, which were xenografted into immunodeficient mice for tumorigenesis assays. RESULTS Approximately 20% of all HNSCC lesions could be classified as HPV(+), irrespective of their country of origin. mTOR pathway activation was observed in most HPV(+) HNSCC and CCSCC lesions and cell lines. The preclinical efficacy of mTOR inhibition by rapamycin and RAD001 was explored in HPV(+) HNSCC and CCSCC tumor xenografts. Both mTOR inhibitors effectively decreased mTOR activity in vivo and caused a remarkable decrease in tumor burden. These results emphasize the emerging global impact of HPV-related HNSCCs and indicate that the activation of the mTOR pathway is a widespread event in both HPV(-) and HPV-associated HNSCC and CCSCC lesions. CONCLUSIONS The emerging results may provide a rationale for the clinical evaluation of mTOR inhibitors as a molecular targeted approach for the treatment of HPV-associated malignancies.
Collapse
Affiliation(s)
- Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Behrendt K, Klatte J, Pofahl R, Bloch W, Smyth N, Tscharntke M, Krieg T, Paus R, Niessen C, Niemann C, Brakebusch C, Haase I. A function for Rac1 in the terminal differentiation and pigmentation of hair. J Cell Sci 2012; 125:896-905. [PMID: 22275433 DOI: 10.1242/jcs.091868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss. The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal. Rescue mice showed a grey, dull hair coat, whereas that of wild-type and L61Rac1-transgenic mice was black and shiny. Hair analysis in rescue mice revealed altered structures of the hair shaft and the cuticle and disturbed organization of medulla cells and pigment distribution. Disorganization of medulla cells correlates with the absence of cortical, keratin-filled spikes that normally protrude from the cortex into the medulla. The desmosomal cadherin Dsc2, which normally decorates these protrusions, was found to be reduced or absent in the hair of rescue mice. Our study demonstrates regulatory functions for Rac1 in the formation of hair structure and pigmentation and thereby identifies, for the first time, a role for Rac1 in terminal differentiation.
Collapse
Affiliation(s)
- Kristina Behrendt
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Iglesias-Bartolome R, Gutkind JS. Signaling circuitries controlling stem cell fate: to be or not to be. Curr Opin Cell Biol 2011; 23:716-23. [PMID: 21880478 PMCID: PMC3391582 DOI: 10.1016/j.ceb.2011.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/03/2011] [Accepted: 08/05/2011] [Indexed: 12/31/2022]
Abstract
The integration of extrinsic and intrinsic signals is required to preserve the self-renewal and tissue regenerative capacity of adult stem cells, while protecting them from malignant conversion or loss of proliferative potential by death, differentiation or senescence. Here we review emerging signaling circuitries regulating stem cell fate, with emphasis on epithelial stem cells. Wnt, mTOR, GPCRs, Notch, Rho GTPases, YAP and DNA and histone methylases are some of the mechanisms that allow stem cells to balance their regenerative potential and the initiation of terminal differentiation programs, guaranteeing appropriate tissue homeostasis. Understanding the signaling circuitries regulating stem cell fate decisions might provide important insights into cancer initiation and numerous human pathologies that involve the progressive loss of tissue-specific adult stem cells.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
84
|
Scheller EL, Baldwin CM, Kuo S, D'Silva NJ, Feinberg SE, Krebsbach PH, Edwards PC. Bisphosphonates inhibit expression of p63 by oral keratinocytes. J Dent Res 2011; 90:894-9. [PMID: 21551338 DOI: 10.1177/0022034511407918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Osteonecrosis of the jaw (ONJ), a side-effect of bisphosphonate therapy, is characterized by exposed bone that fails to heal within eight weeks. Healing time of oral epithelial wounds is decreased in the presence of amino-bisphosphonates; however, the mechanism remains unknown. We examined human tissue from individuals with ONJ and non-bisphosphonate-treated control individuals to identify changes in oral epithelium and connective tissue. Oral and intravenous bisphosphonate-treated ONJ sites had reduced numbers of basal epithelial progenitor cells, as demonstrated by a 13.8±1.1% and 31.9±5.8% reduction of p63 expression, respectively. No significant differences in proliferation rates, vessel density, or macrophage number were noted. In vitro treatment of clonal and primary oral keratinocytes with zoledronic acid (ZA) inhibited p63, and expression was rescued by the addition of mevalonate pathway intermediates. In addition, both ZA treatment and p63 shRNA knock-down impaired formation of 3D Ex Vivo Produced Oral Mucosa Equivalents (EVPOME) and closure of an in vitro scratch assay. Analysis of our data suggests that bisphosphonate treatment may delay oral epithelial healing by interfering with p63-positive progenitor cells in the basal layer of the oral epithelium in a mevalonate-pathway-dependent manner. This delay in healing may increase the likelihood of osteonecrosis developing in already-compromised bone.
Collapse
Affiliation(s)
- E L Scheller
- Department of Periodontics and Oral Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Patel V, Iglesias-Bartolome R, Siegele B, Marsh CA, Leelahavanichkul K, Molinolo AA, Gutkind JS. Cellular Systems for Studying Human Oral Squamous Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:27-38. [DOI: 10.1007/978-1-4614-0254-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
86
|
Abstract
Recently in Nature Cell Biology,Connelly et al. (2010) identified biomechanical sensing mechanisms that link the physical shape of the stem cell microenvironment to epithelial stem cell fate decisions. Ultimately, the integration of extrinsic and intrinsic signals controls stem cell self-renewal or differentiation.
Collapse
|