51
|
Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam Lotfi A. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017; 12:8769-8778. [PMID: 29263667 PMCID: PMC5732559 DOI: 10.2147/ijn.s149774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Brucellosis is a group of closely associated zoonotic bacterial illnesses caused by members of the genus Brucella. B. melitensis Omp31 is a promising candidate for a subunit vaccine against brucellosis. This study surveyed the immunogenicity of Omp31 alone and with incomplete Freund’s adjuvant (Omp31-IFA) and N-trimethyl chitosan (TMC/Omp31) nanoparticles (NPs), as well as the effect of Omp31 immunization route on immunological responses and protection. After expression and purification, the recombinant Omp31 (rOmp31) was loaded onto TMC NPs by ionic gelation. The particle size, loading efficiency and in vitro release of the NPs were examined. Omp31-IFA was administered intraperitoneally, while TMC/Omp31 NPs were administered orally and intraperitoneally. According to the antibody subclasses and cytokine profile, intraperitoneal immunization by Omp31-IFA and TMC/Omp31 NPs induced T helper 1 (Th1) and Th1–Th2 immune responses, respectively. On the other hand, oral immunization with TMC/Omp31 NPs elicited a mixed Th1–Th17 immune response. Data obtained from the cell proliferation assay showed that vaccination with Omp31 stimulated a vigorous antigen-specific cell proliferative response, which could be further increased after oral immunization with TMC/Omp31 NPs. Vaccinated groups of mice when challenged with B. melitensis 16M were found to be significantly protected in the orally administered group in comparison with the intraperitoneally immunized mice. Results of this study indicated that the reason for high protection after oral vaccination can be via elicited Th17 response.
Collapse
Affiliation(s)
- Morteza Abkar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz
| | | | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
52
|
Pasquevich MY, Dreon MS, Qiu JW, Mu H, Heras H. Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins. Sci Rep 2017; 7:15848. [PMID: 29158565 PMCID: PMC5696525 DOI: 10.1038/s41598-017-16185-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.
Collapse
Affiliation(s)
- María Yanina Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina.,Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina.,Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, P.R. China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET CCT-La Plata, La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina.
| |
Collapse
|
53
|
Pujol M, Castillo F, Alvarez C, Rojas C, Borie C, Ferreira A, Vernal R. Variability in the response of canine and human dendritic cells stimulated with Brucella canis. Vet Res 2017; 48:72. [PMID: 29096717 PMCID: PMC5667440 DOI: 10.1186/s13567-017-0476-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/16/2017] [Indexed: 01/30/2023] Open
Abstract
Brucella canis is a small intracellular Gram-negative bacterium whose primary host is the dog, but it also can cause mild human brucellosis. One of the main causes of an inefficient immune response against other species of Brucella is their interaction with dendritic cells (DCs), which affects antigen presentation and impairs the development of an effective Th1 immune response. This study analysed the cytokine pattern production, by RT-qPCR and ELISA, in human and canine DCs against whole B. canis or its purified LPS. Human and canine DCs produced different patterns of cytokines after stimulation with B. canis. In particular, while human DCs produced a Th1-pattern of cytokines (IL-1β, IL-12, and TNF-α), canine cells produced both Th1 and Th17-related cytokines (IL-6, IL-12, IL-17, and IFN-γ). Thus, differences in susceptibility and pathogenicity between these two hosts could be explained, at least partly, by the distinct cytokine patterns observed in this study, where we propose that human DCs induce an effective Th1 immune response to control the infection, while canine DCs lead to a less effective immune response, with the activation of Th17-related response ineffective to control the B. canis infection.
Collapse
Affiliation(s)
- Myriam Pujol
- Doctoral Program in Agronomy Forestry and Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile.,Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Francisca Castillo
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Camila Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Consuelo Borie
- Laboratory of Veterinary Bacteriology, Department of Animal Preventive Medicine, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile. .,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
54
|
Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2017; 55:151-158. [PMID: 28919551 DOI: 10.1016/j.meegid.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
Brucella melitensis is an intracellular pathogen resides in the professional and non-professional phagocytes of the host, causing zoonotic disease brucellosis. The stealthy nature of the Brucella makes it's highly pathogenic, and it is hard to eliminate the bacteria completely from the infected host. Hitherto, no licensed vaccines are available for human brucellosis. In this study, we identified potential antigens for vaccine development from non-classically secreted proteins through reverse vaccinology approach. Based on the systemic screening of non-classically secreted proteins of B. melitensis 16M, we identified nine proteins as potential vaccine candidates. Among these, Omp31 and Omp22 are known immunogens, and its role in the virulence of Brucella is known. Roles of other proteins in the pathogenesis are yet to be studied. From the nine proteins, we identified six novel antigenic epitopes that can elicit both B-cell and T-cell immune responses. Among the nine proteins, the epitopes were predicted from Omp31 immunogenic protein precursor, Omp22 protein precursor, extracellular serine protease, hypothetical membrane-associated protein, iron-regulated outer membrane protein FrpB. Further, we designed a multitope vaccine using Omp31 immunogenic protein precursor, Omp22 protein precursor, extra cellular serine protease, iron-regulated outer membrane protein FrpB, hypothetical membrane-associated protein, and LPS-assembly protein LptD and polysaccharide export protein identified in the previous study. Epitopes were joined using amino acid linkers such as EAAAK and GPGPG. Cholera toxin subunit B, the nontoxic part of cholera toxin, was used as an adjuvant and it was linked to the N-terminal of the multitope vaccine candidate. The designed vaccine candidate was modeled, validated and the physicochemical properties were analyzed. Results revealed that the vaccine candidate is soluble, stable, non-allergenic, antigenic and 87% of residues of the designed vaccine candidate is located in the favored region. In conclusion, the computational analysis showed that the newly designed multitope protein could be used to develop a promising vaccine for human brucellosis.
Collapse
Affiliation(s)
- Udayakumar S Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
55
|
Lalsiamthara J, Lee JH. Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge. Vet Microbiol 2017. [DOI: 10.1016/j.vetmic.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
56
|
Golshani M, Rafati S, Nejati-Moheimani M, Pourabdi S, Arsang A, Bouzari S. Protein/Protein, DNA/DNA and DNA/Protein based vaccination strategies using truncated Omp2b against Brucella infection in BALB/c Mice. Int J Med Microbiol 2017; 307:249-256. [DOI: 10.1016/j.ijmm.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022] Open
|
57
|
Risso GS, Carabajal MV, Bruno LA, Ibañez AE, Coria LM, Pasquevich KA, Lee SJ, McSorley SJ, Briones G, Cassataro J. U-Omp19 from Brucella abortus Is a Useful Adjuvant for Vaccine Formulations against Salmonella Infection in Mice. Front Immunol 2017; 8:171. [PMID: 28261222 PMCID: PMC5313482 DOI: 10.3389/fimmu.2017.00171] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
Most pathogens infect through mucosal surfaces, and parenteral immunization typically fails to induce effective immune responses at these sites. Development of oral-administered vaccines capable of inducing mucosal as well as systemic immunity while bypassing the issues of antigen degradation and immune tolerance could be crucial for the control of enteropathogens. This study demonstrates that U-Omp19, a bacterial protease inhibitor with immunostimulatory features, coadministered with Salmonella antigens by the oral route, enhances mucosal and systemic immune responses in mice. U-Omp19 was able to increase antigen-specific production of IFN-γ and IL-17 and mucosal (IgA) antibody response. Finally, oral vaccination with U-Omp19 plus Salmonella antigens conferred protection against virulent challenge with Salmonella Typhimurium, with a significant reduction in bacterial loads. These findings prove the efficacy of this novel adjuvant in the Salmonella infection model and support the potential of U-Omp19 as a suitable adjuvant in oral vaccine formulations against mucosal pathogens requiring T helper (Th)1-Th17 protective immune responses.
Collapse
Affiliation(s)
- Gabriela S Risso
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Marianela V Carabajal
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Laura A Bruno
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Andrés E Ibañez
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Lorena M Coria
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Seung-Joo Lee
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Stephen J McSorley
- Center for Comparative Medicine (CCM), Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas "Rodolfo Ugalde"-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
58
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and Advancement of Brucellosis Vaccinology. PLoS One 2016; 11:e0166582. [PMID: 27846274 PMCID: PMC5112997 DOI: 10.1371/journal.pone.0166582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background/Objectives In spite of all the research effort for developing new vaccines against brucellosis, it remains unclear whether these new vaccine technologies will in fact become widely used. The goal of this study was to perform a meta-analysis to identify parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advancing concerning type of vaccine, improvement of protection on animal models over time, and factors that may affect protection in the mouse model. Methods A total of 117 publications that met the criteria were selected for inclusion in this study, with a total of 782 individual experiments analyzed. Results Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38) vaccines provided protection indexes lower than 2. When all categories of experimental vaccines are analyzed together, the trend line clearly demonstrates that there was no improvement of the protection indexes over the past 30 years, with a low negative and non significant linear coefficient. A meta-regression model was developed including all vaccine categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the protection index as a dependent variable and the other parameters (mouse strain, route of vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as independent variables. Some of these variables influenced the expected protection index of experimental vaccines against Brucella spp. in the mouse model. Conclusion In spite of the large number of publication over the past 30 years, our results indicate that there is not clear trend to improve the protective potential of these experimental vaccines.
Collapse
Affiliation(s)
- Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A. Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
59
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Coria LM, Ibañez AE, Tkach M, Sabbione F, Bruno L, Carabajal MV, Berguer PM, Barrionuevo P, Schillaci R, Trevani AS, Giambartolomei GH, Pasquevich KA, Cassataro J. A Brucella spp. Protease Inhibitor Limits Antigen Lysosomal Proteolysis, Increases Cross-Presentation, and Enhances CD8+ T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:4014-29. [PMID: 27084100 DOI: 10.4049/jimmunol.1501188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
In this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs. Codelivery of U-Omp19 with the Ag can reduce intracellular Ag digestion and increases Ag half-life in dendritic cells (DCs). U-Omp19 retains the Ag in Lamp-2(+) compartments after its internalization and promotes a sustained expression of MHC class I/peptide complexes in the cell surface of DCs. Consequently, U-Omp19 enhances Ag cross-presentation by DCs to CD8(+) T cells. U-Omp19 s.c. delivery induces the recruitment of CD11c(+)CD8α(+) DCs and monocytes to lymph nodes whereas it partially limits in vivo Ag proteolysis inside DCs. Accordingly, this protein is able to induce CD8(+) T cell responses in vivo against codelivered Ag. Antitumor responses were elicited after U-Omp19 coadministration, increasing survival of mice in a murine melanoma challenge model. Collectively, these results indicate that a cysteine protease inhibitor from bacterial origin could be a suitable component of vaccine formulations against tumors.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina
| | - Andrés E Ibañez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina
| | - Mercedes Tkach
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1428 Buenos Aires, Argentina
| | - Florencia Sabbione
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Academia Nacional de Medicina, 1425 Buenos Aires, Argentina
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina
| | - Marianela V Carabajal
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina
| | - Paula M Berguer
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1405 Buenos Aires, Argentina; and
| | - Paula Barrionuevo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Academia Nacional de Medicina, 1425 Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1428 Buenos Aires, Argentina
| | - Analía S Trevani
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Academia Nacional de Medicina, 1425 Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Laboratorio de Inmunogenética, Hospital de Clínicas "José de San Martín," Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad de Buenos Aires, 1120 Buenos Aires, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, 1650 Buenos Aires, Argentina;
| |
Collapse
|
61
|
Tadepalli G, Singh AK, Balakrishna K, Murali HS, Batra HV. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19 + rP39) against B. abortus 544 and B. melitensis 16M infection in murine model. Mol Immunol 2016; 71:34-41. [DOI: 10.1016/j.molimm.2016.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 01/18/2023]
|
62
|
Nasal vaccination stimulates CD8(+) T cells for potent protection against mucosal Brucella melitensis challenge. Immunol Cell Biol 2016; 94:496-508. [PMID: 26752510 PMCID: PMC4879022 DOI: 10.1038/icb.2016.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Brucellosis remains a significant zoonotic threat worldwide. Humans and animals acquire infection via their oropharynx and upper respiratory tract following oral or aerosol exposure. After mucosal infection, brucellosis develops into a systemic disease. Mucosal vaccination could offer a viable alternative to conventional injection practices to deter disease. Using a nasal vaccination approach, the ΔznuA B. melitensis was found to confer potent protection against pulmonary Brucella challenge, and reduce colonization of spleens and lungs by more than 2500-fold, with more than 50% of vaccinated mice showing no detectable brucellae. Furthermore, tenfold more brucellae-specific, IFN-γ-producing CD8+ T cells than CD4+ T cells were induced in the spleen and respiratory lymph nodes. Evaluation of pulmonary and splenic CD8+ T cells from mice vaccinated with ΔznuA B. melitensis revealed that these expressed an activated effector memory (CD44hiCD62LloCCR7lo) T cells producing elevated levels of IFN-γ, TNF-α, perforin, and granzyme B. To assess the relative importance of these increased numbers of CD8+ T cells, CD8−/− mice were challenged with virulent B. melitensis, and they showed markedly increased bacterial loads in organs in contrast to similarly challenged CD4−/− mice. Only ΔznuA B. melitensis- and Rev-1-vaccinated CD4−/− and wild-type mice, not CD8−/− mice, were completely protected against Brucella challenge. Determination of cytokines responsible for conferring protection showed the relative importance of IFN-γ, but not IL-17. Unlike wild-type mice, IL-17 was greatly induced in IFN-γ−/− mice, but IL-17 could not substitute for IFN-γ’s protection, although an increase in brucellae dissemination was observed upon in vivo IL-17 neutralization. These results show that nasal ΔznuA B. melitensis vaccination represents an attractive means to stimulate systemic and mucosal immune protection via CD8+ T cell engagement.
Collapse
|
63
|
Coria LM, Ibañez AE, Pasquevich KA, Cobiello PLG, Frank FM, Giambartolomei GH, Cassataro J. Brucella abortus Omp19 recombinant protein subcutaneously co-delivered with an antigen enhances antigen-specific T helper 1 memory responses and induces protection against parasite challenge. Vaccine 2015; 34:430-437. [PMID: 26707377 DOI: 10.1016/j.vaccine.2015.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/27/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023]
Abstract
The discovery of effective adjuvants for many vaccines especially those with limited commercial appeal, such as vaccines to poverty-related diseases, is required. In this work, we demonstrated that subcutaneous co-administration of mice with the outer membrane protein U-Omp19 from Brucella spp. plus OVA as antigen (Ag) increases Ag-specific T cell proliferation and T helper (Th) 1 immune responses in vitro and in vivo. U-Omp19 treated dendritic cells promote IFN-γ production by specific CD4(+) T cells and increases T cell proliferation. U-Omp19 co-administration induces the production of Ag specific effector memory T cell populations (CD4(+) CD44(high) CD62L(low) T cells). Finally, subcutaneous co-administration of U-Omp19 with Trypanosoma cruzi Ags confers protection against virulent parasite challenge, reducing parasitemia and weight loss while increasing mice survival. These results indicate that the bacterial protein U-Omp19 when delivered subcutaneously could be a suitable component of vaccine formulations against infectious diseases requiring Th1 immune responses.
Collapse
Affiliation(s)
- Lorena M Coria
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), CONICET, Buenos Aires, Argentina
| | - Andrés E Ibañez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), CONICET, Buenos Aires, Argentina
| | - Karina A Pasquevich
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), CONICET, Buenos Aires, Argentina
| | - Paula L González Cobiello
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Fernanda M Frank
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Laboratorio de Inmunogenética, Hospital de Clínicas "José de San Martín", CONICET-UBA, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), CONICET, Buenos Aires, Argentina.
| |
Collapse
|
64
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
65
|
Ibañez AE, Coria LM, Carabajal MV, Delpino MV, Risso GS, Cobiello PG, Rinaldi J, Barrionuevo P, Bruno L, Frank F, Klinke S, Goldbaum FA, Briones G, Giambartolomei GH, Pasquevich KA, Cassataro J. A bacterial protease inhibitor protects antigens delivered in oral vaccines from digestion while triggering specific mucosal immune responses. J Control Release 2015; 220:18-28. [PMID: 26456256 DOI: 10.1016/j.jconrel.2015.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/06/2015] [Indexed: 01/18/2023]
Abstract
We report here that a bacterial protease inhibitor from Brucella spp. called U-Omp19 behaves as an ideal constituent for a vaccine formulation against infectious diseases. When co-administered orally with an antigen (Ag), U-Omp19: i) can bypass the harsh environment of the gastrointestinal tract by inhibiting stomach and intestine proteases and consequently increases the half-life of the co-administered Ag at immune inductive sites: Peyer's patches and mesenteric lymph nodes while ii) it induces the recruitment and activation of antigen presenting cells (APCs) and increases the amount of intracellular Ag inside APCs. Therefore, mucosal as well as systemic Ag-specific immune responses, antibodies, Th1, Th17 and CD8(+) T cells are enhanced when U-Omp19 is co-administered with the Ag orally. Finally, this bacterial protease inhibitor in an oral vaccine formulation confers mucosal protection and reduces parasite loads after oral challenge with virulent Toxoplasma gondii.
Collapse
Affiliation(s)
- Andrés Esteban Ibañez
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Lorena Mirta Coria
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Marianela Verónica Carabajal
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA) Laboratorio de Inmunogenética, Hospital de Clínicas "José de San Martín", Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Gabriela Sofía Risso
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Paula Gonzalez Cobiello
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Laura Bruno
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Fernanda Frank
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA) Laboratorio de Inmunogenética, Hospital de Clínicas "José de San Martín", Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Karina Alejandra Pasquevich
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas-"Dr. Rodolfo A. Ugalde" Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) CONICET, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
66
|
Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 2015; 33:5532-5538. [DOI: 10.1016/j.vaccine.2015.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
|
67
|
Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun 2015; 39:217-28. [DOI: 10.1007/s11259-015-9645-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/08/2015] [Indexed: 11/26/2022]
|
68
|
Dorneles EMS, Lima GK, Teixeira-Carvalho A, Araújo MSS, Martins-Filho OA, Sriranganathan N, Al Qublan H, Heinemann MB, Lage AP. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51. PLoS One 2015; 10:e0136696. [PMID: 26352261 PMCID: PMC4564183 DOI: 10.1371/journal.pone.0136696] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus S19 and RB51 strains have been successfully used to control bovine brucellosis worldwide; however, currently, most of our understanding of the protective immune response induced by vaccination comes from studies in mice. The aim of this study was to characterize and compare the immune responses induced in cattle prime-immunized with B. abortus S19 or RB51 and revaccinated with RB51. Female calves, aged 4 to 8 months, were vaccinated with either vaccine S19 (0.6-1.2 x 1011 CFU) or RB51 (1.3 x 1010 CFU) on day 0, and revaccinated with RB51 (1.3 x 1010 CFU) on day 365 of the experiment. Characterization of the immune response was performed using serum and peripheral blood mononuclear cells. Blood samples were collected on days 0, 28, 210, 365, 393 and 575 post-immunization. Results showed that S19 and RB51 vaccination induced an immune response characterized by proliferation of CD4+ and CD8+ T-cells; IFN-ɣ and IL-17A production by CD4+ T-cells; cytotoxic CD8+ T-cells; IL-6 secretion; CD4+ and CD8+ memory cells; antibodies of IgG1 class; and expression of the phenotypes of activation in T-cells. However, the immune response stimulated by S19 compared to RB51 showed higher persistency of IFN-ɣ and CD4+ memory cells, induction of CD21+ memory cells and higher secretion of IL-6. After RB51 revaccination, the immune response was chiefly characterized by increase in IFN-ɣ expression, proliferation of antigen-specific CD4+ and CD8+ T-cells, cytotoxic CD8+ T-cells and decrease of IL-6 production in both groups. Nevertheless, a different polarization of the immune response, CD4+- or CD8+-dominant, was observed after the booster with RB51 for S19 and RB51 prime-vaccinated animals, respectively. Our results indicate that after prime vaccination both vaccine strains induce a strong and complex Th1 immune response, although after RB51 revaccination the differences between immune profiles induced by prime-vaccination become accentuated.
Collapse
Affiliation(s)
- Elaine M. S. Dorneles
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Graciela K. Lima
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio S. S. Araújo
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo A. Martins-Filho
- Laboratório de Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Nammalwar Sriranganathan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hamzeh Al Qublan
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Marcos B. Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrey P. Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
69
|
Dorneles EMS, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res 2015; 46:76. [PMID: 26155935 PMCID: PMC4495609 DOI: 10.1186/s13567-015-0199-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/05/2015] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus vaccines play a central role in bovine brucellosis control/eradication programs and have been successfully used worldwide for decades. Strain 19 and RB51 are the approved B. abortus vaccines strains most commonly used to protect cattle against infection and abortion. However, due to some drawbacks shown by these vaccines much effort has been undertaken for the development of new vaccines, safer and more effective, that could also be used in other susceptible species of animals. In this paper, we present a review of the main aspects of the vaccines that have been used in the brucellosis control over the years and the current research advances in the development of new B. abortus vaccines.
Collapse
Affiliation(s)
- Elaine M S Dorneles
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Andrey P Lage
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Laboratório de Bacteriologia Aplicada, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
70
|
de Souza Filho JA, de Paulo Martins V, Campos PC, Alves-Silva J, Santos NV, de Oliveira FS, Menezes GB, Azevedo V, Cravero SL, Oliveira SC. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice. Infect Immun 2015; 83:1458-64. [PMID: 25644010 PMCID: PMC4363440 DOI: 10.1128/iai.02790-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/25/2015] [Indexed: 01/10/2023] Open
Abstract
Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies.
Collapse
Affiliation(s)
- Job Alves de Souza Filho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Priscila Carneiro Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Alves-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia V Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Souza de Oliveira
- Departamento de Bioquímica, Universidade Federal de Juiz de Fora Gerais, Governador Valadares, MG, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
71
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|
72
|
TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro. Cell Mol Immunol 2014; 11:477-94. [PMID: 24769793 DOI: 10.1038/cmi.2014.28] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.
Collapse
|
73
|
Gallorini S, Taccone M, Bonci A, Nardelli F, Casini D, Bonificio A, Kommareddy S, Bertholet S, O'Hagan DT, Baudner BC. Sublingual immunization with a subunit influenza vaccine elicits comparable systemic immune response as intramuscular immunization, but also induces local IgA and TH17 responses. Vaccine 2014; 32:2382-8. [PMID: 24434044 DOI: 10.1016/j.vaccine.2013.12.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/04/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Influenza is a vaccine-preventable disease that remains a major health problem world-wide. Needle and syringe are still the primary delivery devices, and injection of liquid vaccine into the muscle is still the primary route of immunization. Vaccines could be more convenient and effective if they were delivered by the mucosal route. Elicitation of systemic and mucosal innate and adaptive immune responses, such as pathogen neutralizing antibodies (including mucosal IgA at the site of pathogen entry) and CD4(+) T-helper cells (especially the Th17 subset), have a critical role in vaccine-mediated protection. In the current study, a sublingual subunit influenza vaccine formulated with or without mucosal adjuvant was evaluated for systemic and mucosal immunogenicity and compared to intranasal and intramuscular vaccination. Sublingual administration of adjuvanted influenza vaccine elicited comparable antibody titers to those elicited by intramuscular immunization with conventional influenza vaccine. Furthermore, influenza-specific Th17 cells or neutralizing mucosal IgA were detected exclusively after mucosal immunization.
Collapse
Affiliation(s)
| | | | | | | | | | - Amanda Bonificio
- Vaccines Research, Novartis Vaccines, Cambridge, Massachusetts, United States
| | - Sushma Kommareddy
- Vaccines Research, Novartis Vaccines, Cambridge, Massachusetts, United States
| | | | - Derek T O'Hagan
- Vaccines Research, Novartis Vaccines, Cambridge, Massachusetts, United States
| | | |
Collapse
|
74
|
Oliveira SC, Giambartolomei GH, Cassataro J. Confronting the barriers to develop novel vaccines against brucellosis. Expert Rev Vaccines 2014; 10:1291-305. [DOI: 10.1586/erv.11.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
75
|
Comparison of cytokine immune responses to Brucella abortus and Yersinia enterocolitica serotype O:9 infections in BALB/c mice. Infect Immun 2013; 81:4392-8. [PMID: 24042115 DOI: 10.1128/iai.00856-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus and Yersinia enterocolitica serotype O:9 serologically cross-react in the immune response with the host; therefore, our aim was to compare the immune responses to these two pathogens. We selected typical B. abortus and Y. enterocolitica O:9 strains to study the cytokine immune response and the histopathological changes in livers and spleens of BALB/c mice. The data showed the cytokine responses to the two strains of pathogens were different, where the average levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-α) were higher with B. abortus infections than with Y. enterocolitica O:9 infections, especially for IFN-γ, while the IL-10 level was lower and the levels of IL-1β, IL-4, IL-5, and IL-6 were similar. The histopathological effects in the livers and spleens of the BALB/c mice with B. abortus and Y. enterocolitica O:9 infections were similar; however, the pathological changes in the liver were greater with B. abortus infections, while damage in the spleen was greater with Y. enterocolitica O:9 infections. These observations show that different cytokine responses and histopathological changes occur with B. abortus and Y. enterocolitica O:9 infections.
Collapse
|
76
|
Fabrik I, Härtlova A, Rehulka P, Stulik J. Serving the new masters - dendritic cells as hosts for stealth intracellular bacteria. Cell Microbiol 2013; 15:1473-83. [PMID: 23795643 DOI: 10.1111/cmi.12160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) serve as the primers of adaptive immunity, which is indispensable for the control of the majority of infections. Interestingly, some pathogenic intracellular bacteria can subvert DC function and gain the advantage of an ineffective host immune reaction. This scenario appears to be the case particularly with so-called stealth pathogens, which are the causative agents of several under-diagnosed chronic diseases. However, there is no consensus how less explored stealth bacteria like Coxiella, Brucella and Francisella cross-talk with DCs. Therefore, the aim of this review was to explore the issue and to summarize the current knowledge regarding the interaction of above mentioned pathogens with DCs as crucial hosts from an infection strategy view. Evidence indicates that infected DCs are not sufficiently activated, do not undergo maturation and do not produce expected proinflammatory cytokines. In some cases, the infected DCs even display immunosuppressive behaviour that may be directly linked to the induction of tolerogenicity favouring pathogen survival and persistence.
Collapse
Affiliation(s)
- Ivo Fabrik
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
77
|
Surendran N, Sriranganathan N, Boyle SM, Hiltbold EM, Tenpenny N, Walker M, Zimmerman K, Werre S, Witonsky SG. Protection to respiratory challenge of Brucella abortus strain 2308 in the lung. Vaccine 2013; 31:4103-10. [PMID: 23845817 DOI: 10.1016/j.vaccine.2013.06.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Brucella is amongst the top 5 causes of zoonotic disease worldwide. Infection is through ingestion, inhalation or contact exposure. Brucella is characterized as a class B pathogen by Centers of Disease Control and Prevention (CDC). Currently, there are no efficacious vaccines available in people. Currently available USDA approved vaccines for animals include B. abortus strain RB51 and B. melitensis Rev1. Protection is mediated by a strong innate and CD4 Th1, CD8 Tc1 immune response. If protective vaccines can be developed, disease in people and animals can be controlled. While strain RB51 protects in cattle, and against intraperitoneal challenge in mice, it does not protect against respiratory challenge. Therefore, we assessed the efficacy of strain RB51 combined with different TLR agonists, and O-side chain from LPS, to enhance protection against respiratory challenge with strain 2308. We hypothesized that TLR agonists and O-side chain would enhance protection. Strains RB51 with TLR2 agonist, RB51 with TLR4 agonist and strain 19 provided significant protection in the lung. Protection using strain RB51 with TLR agonists was associated with increased IgG2a and IgG1 in the (bronchoalveolar lavage) BAL and serum, and increased IgA (serum). Splenocytes from strain RB51 with TLR2 vaccinated mice up-regulated antigen specific interferon-gamma and TNF-alpha production. Vaccination and challenge resulted in significant increases in activated dendritic cells (DCs), and increased CD4 and CD8 cells in the BAL. Overall, this study demonstrates the ability of TLR agonists 2 and 4 to up-regulate strain RB51 mediated protection in the lung to respiratory challenge against strain 2308.
Collapse
Affiliation(s)
- Naveen Surendran
- Department of Large Animal Clinical Sciences, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
A history of the development of Brucella vaccines. BIOMED RESEARCH INTERNATIONAL 2013; 2013:743509. [PMID: 23862154 PMCID: PMC3686056 DOI: 10.1155/2013/743509] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/09/2013] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.
Collapse
|
79
|
Gomez G, Adams LG, Rice-Ficht A, Ficht TA. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front Cell Infect Microbiol 2013; 3:17. [PMID: 23720712 PMCID: PMC3655278 DOI: 10.3389/fcimb.2013.00017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/26/2013] [Indexed: 01/18/2023] Open
Abstract
Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
80
|
Gomez G, Pei J, Mwangi W, Adams LG, Rice-Ficht A, Ficht TA. Immunogenic and invasive properties of Brucella melitensis 16M outer membrane protein vaccine candidates identified via a reverse vaccinology approach. PLoS One 2013; 8:e59751. [PMID: 23533646 PMCID: PMC3606113 DOI: 10.1371/journal.pone.0059751] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/18/2013] [Indexed: 01/18/2023] Open
Abstract
Brucella is the etiologic agent of brucellosis, one of the most common and widely distributed zoonotic diseases. Its highly infectious nature, the insidious, systemic, chronic, debilitating aspects of the disease and the lack of an approved vaccine for human use in the United States are features that make Brucella a viable threat to public health. One of the main impediments to vaccine development is identification of suitable antigens. In order to identify antigens that could potentially be used in a vaccine formulation, we describe a multi-step antigen selection approach. We initially used an algorithm (Vaxign) to predict ORF encoding outer membrane proteins with antigenic determinants. Differential gene expression during acute infection and published evidence for a role in virulence were used as criteria for down-selection of the candidate antigens that resulted from in silico prediction. This approach resulted in the identification of nine Brucella melitensis outer membrane proteins, 5 of which were recombinantly expressed and used for validation. Omp22 and Hia had the highest in silico scores for adhesin probability and also conferred invasive capacity to E. coli overexpressing recombinant proteins. With the exception of FlgK in the goat, all proteins reacted to pooled sera from exposed goats, mice, and humans. BtuB, Hia and FlgK stimulated a mixed Th1-Th2 response in splenocytes from immunized mice while BtuB and Hia elicited NO release from splenocytes of S19 immunized mice. The results support the applicability of the current approach to the identification of antigens with immunogenic and invasive properties. Studies to assess immunogenicity and protective efficacy of individual proteins in the mouse are currently underway.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | |
Collapse
|
81
|
Interleukin-17A genetic variants can confer resistance to brucellosis in Iranian population. Cytokine 2013; 61:297-303. [DOI: 10.1016/j.cyto.2012.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 10/06/2012] [Accepted: 10/12/2012] [Indexed: 01/24/2023]
|
82
|
Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun 2012; 80:4271-80. [PMID: 23006848 DOI: 10.1128/iai.00761-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.
Collapse
|
83
|
Overview of plant-made vaccine antigens against malaria. J Biomed Biotechnol 2012; 2012:206918. [PMID: 22911156 PMCID: PMC3403509 DOI: 10.1155/2012/206918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022] Open
Abstract
This paper is an overview of vaccine antigens against malaria produced in plants. Plant-based expression systems represent an interesting production platform due to their reduced manufacturing costs and high scalability. At present, different Plasmodium antigens and expression strategies have been optimized in plants. Furthermore, malaria antigens are one of the few examples of eukaryotic proteins with vaccine value expressed in plants, making plant-derived malaria antigens an interesting model to analyze. Up to now, malaria antigen expression in plants has allowed the complete synthesis of these vaccine antigens, which have been able to induce an active immune response in mice. Therefore, plant production platforms offer wonderful prospects for improving the access to malaria vaccines.
Collapse
|
84
|
Martins RDC, Irache JM, Gamazo C. Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines 2012; 11:87-95. [PMID: 22149711 DOI: 10.1586/erv.11.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovine brucellosis is a very contagious zoonotic disease distributed worldwide and constitutes a very important zoosanitary and economic problem. The control of the disease includes animal vaccination and slaughter of infected flocks. However, the commercially available vaccine in most countries is based on the attenuated strain Brucella melitensis Rev 1, which presents important safety drawbacks. This review is focused on the most recent and promising acellular vaccine proposals.
Collapse
Affiliation(s)
- Raquel Da Costa Martins
- Department of Pharmaceutics and Pharmaceutical Technology, University of Navarra, C/Irunlarrea, 1 31008-Pamplona, Spain
| | | | | |
Collapse
|
85
|
Al-Mariri A, Mahmoud NH, Hammoud R. Efficacy evaluation of live Escherichia coli expression Brucella P39 protein combined with CpG oligodeoxynucleotides vaccine against Brucella melitensis 16M, in BALB/c mice. Biologicals 2012; 40:140-5. [PMID: 22296786 DOI: 10.1016/j.biologicals.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022] Open
Abstract
Brucella is gram-negative bacteria responsible for brucellosis in a wide variety of animals and humans. BALB/c mice were immunized with live Escherichia coli expression the p39 gene of Brucella melitensis, a gene coding for the periplasmic binding protein. Mice were injected with either E. coli BL21 (DE3) pEt15b or E. coli BL21 (DE3) pEt15b-p39 alone or adjuvanted with either CpG oligodeoxynucleotides (CpG ODN) or non-CpG ODN. E. coli BL21 (DE3) pEt15b-p39 with CpG ODN or with non-CpG ODN mice groups showed a significant IFN-γ production and T-cell proliferation as a reaction to P39 antigen. In addition, antibody responses (IgG, IgG1 and IgG2a), were only found in these two mice groups. A higher level of protection against B. melitensis 16M were observed in mice immunized with E. coli BL21 (DE3) pEt15b-p39 and CpG ODN comparing with those immunized with E. coli BL21 (DE3) pEt15b-p39 alone or with non-CpG ODN. No protection against B. melitensis 16M was observed in mice immunized with E. coli BL21 (DE3) pEt15b alone or with the adjuvant. Rev.1 protection at 4 and 8 weeks post-challenge was more effective than that observed with E. coli BL21 (DE3) pEt15b-p39 and CpG ODN.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission, P.O. Box 6091, Damascus, Syria.
| | | | | |
Collapse
|
86
|
Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Dev Immunol 2011; 2012:352493. [PMID: 22242036 PMCID: PMC3254011 DOI: 10.1155/2012/352493] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/29/2011] [Accepted: 09/12/2011] [Indexed: 01/18/2023]
Abstract
The outer membrane vesicles (OMVs) from smooth B. melitensis 16 M and a derived rough mutant, VTRM1 strain, were purified and characterized with respect to protein content and induction of immune responses in mice. Proteomic analysis showed 29 proteins present in OMVs from B. melitensis 16 M; some of them are well-known Brucella immunogens such as SOD, GroES, Omp31, Omp25, Omp19, bp26, and Omp16. OMVs from a rough VTRM1 induced significantly higher expression of IL-12, TNFα, and IFNγ genes in bone marrow dendritic cells than OMVs from smooth strain 16 M. Relative to saline control group, mice immunized intramuscularly with rough and smooth OMVs were protected from challenge with virulent strain B. melitensis 16 M just as well as the group immunized with live strain B. melitensis Rev1 (P < 0.005). Additionally, the levels of serum IgG2a increased in mice vaccinated with OMVs from rough strain VTRM1 consistent with the induction of cell-mediated immunity.
Collapse
|
87
|
Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses. Infect Immun 2011; 79:4165-74. [PMID: 21768283 DOI: 10.1128/iai.05080-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Zoonotic transmission of brucellosis often results from exposure to Brucella-infected livestock, feral animals, or wildlife or frequently via consumption of unpasteurized milk products or raw meat. Since natural infection of humans often occurs by the oral route, mucosal vaccination may offer a means to confer protection for both mucosal and systemic tissues. Significant efforts have focused on developing a live brucellosis vaccine, and deletion of the znuA gene involved in zinc transport has been found to attenuate Brucella abortus. A similar mutation has been adapted for Brucella melitensis and tested to determine whether oral administration of ΔznuA B. melitensis can confer protection against nasal B. melitensis challenge. A single oral vaccination with ΔznuA B. melitensis rapidly cleared from mice within 2 weeks and effectively protected mice upon nasal challenge with wild-type B. melitensis 16M. In 83% of the vaccinated mice, no detectable brucellae were found in their spleens, unlike with phosphate-buffered saline (PBS)-dosed mice, and vaccination also enhanced the clearance of brucellae from the lungs. Moreover, vaccinated gamma interferon-deficient (IFN-γ(-/-)) mice also showed protection in both spleens and lungs, albeit protection that was not as effective as in immunocompetent mice. Although IFN-γ, interleukin 17 (IL-17), and IL-22 were stimulated by these live vaccines, only RB51-mediated protection was codependent upon IL-17 in BALB/c mice. These data suggest that oral immunization with the live, attenuated ΔznuA B. melitensis vaccine provides an attractive strategy to protect against inhalational infection with virulent B. melitensis.
Collapse
|