51
|
Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol 2017; 138:525-561. [PMID: 28129857 DOI: 10.1016/bs.mcb.2016.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcoma is a type of cancer affecting connective, supportive, or soft tissue of mesenchymal origin. Despite rare incidence in adults (<1%), over 15% of pediatric cancers are sarcoma. Sadly, both adults and children with relapsed or metastatic disease have devastatingly high rates of mortality. Current treatment options for sarcoma include surgery, radiation, and/or chemotherapy; however, significant limitations exist with respect to the efficacy of these strategies. Strong impetus has been placed on the development of novel therapies and preclinical models for uncovering mechanisms involved in the development, progression, and therapy resistance of sarcoma. Over the past 15 years, the zebrafish has emerged as a powerful genetic model of human cancer. High genetic conservation when combined with a unique susceptibility to develop sarcoma has made the zebrafish an effective tool for studying these diseases. Transgenic and gene-activation strategies have been employed to develop zebrafish models of rhabdomyosarcoma, malignant peripheral nerve sheath tumors, Ewing's sarcoma, chordoma, hemangiosarcoma, and liposarcoma. These models all display remarkable molecular and histopathological conservation with their human cancer counterparts and have offered excellent platforms for understanding disease progression in vivo. Short tumor latency and the amenability of zebrafish for ex vivo manipulation, live imaging studies, and tumor cell transplantation have allowed for efficient study of sarcoma initiation, growth, self-renewal, and maintenance. When coupled with facile chemical genetic approaches, zebrafish models of sarcoma have provided a strong translational tool to uncover novel drug pathways and new therapeutic strategies.
Collapse
Affiliation(s)
- M N Hayes
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - D M Langenau
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
52
|
Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:227-232. [PMID: 27923712 DOI: 10.1016/j.bbagrm.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) have been found to play important roles in tumorigenesis, apoptosis, metastasis, and drug resistance in cancer. Among a number of miRs, miR-1 was shown to be predominantly downregulated in almost all examined human cancers. As a tumor suppressor miR involved in post-transcriptional regulation of crucial tumor associated gene expression, miR-1 represents a promising target for anticancer therapy. Re-expression of miR-1 can suppress cancer cell proliferation, promote apoptosis, and reverse drug resistance in cancers both in vitro and in vivo. Recently, the regulatory mechanisms of miR-1 expression have been studied in various cancers in different model systems. In this review, we summarize the mechanisms of miR-1 expression through epigenetic, transcriptional, and post-transcriptional regulation. These regulatory mechanisms of miR-1 expression could help us to understand the functions of altered miR-1 expression and provide valuable insights for further investigations into miR-1 based cancer therapy.
Collapse
Affiliation(s)
- Chao Han
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Zhenfeng Duan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
53
|
Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathol 2016; 132:149-51. [PMID: 27067307 DOI: 10.1007/s00401-016-1574-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
54
|
Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, Turlais F, Ye H, Leite AP, Smith JA, Leithner A, Möller P, Brüderlein S, Guppy N, Amary F, Tirabosco R, Strauss SJ, Pillay N, Flanagan AM. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. J Pathol 2016; 239:320-34. [PMID: 27102572 PMCID: PMC4922416 DOI: 10.1002/path.4729] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/11/2016] [Accepted: 04/10/2016] [Indexed: 12/24/2022]
Abstract
Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Susanne Scheipl
- University College London Cancer Institute, London, UK
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | - Michelle Barnard
- University College London Cancer Institute, London, UK
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
- CRUK-MedImmune Alliance Laboratory, Cambridge, UK
| | - Lucia Cottone
- University College London Cancer Institute, London, UK
| | | | - David H Drewry
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - William J Zuercher
- GlaxoSmithKline, Research Triangle Park, NC, USA
- SGC-UNC, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Fabrice Turlais
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ana P Leite
- University College London Cancer Institute, London, UK
| | - James A Smith
- Cancer Research Technology Discovery Laboratories, Cambridge, UK
| | - Andreas Leithner
- Department of Orthopaedics and Orthopaedic Surgery, Medical University of Graz, Austria
| | | | | | - Naomi Guppy
- University College London Advanced Diagnostics, London, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Nischalan Pillay
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Adrienne M Flanagan
- University College London Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
- University College London Advanced Diagnostics, London, UK
| |
Collapse
|
55
|
Wang AC, Owen JH, Abuzeid WM, Hervey-Jumper SL, He X, Gurrea M, Lin M, Altshuler DB, Keep RF, Prince ME, Carey TE, Fan X, McKean EL, Sullivan SE. STAT3 Inhibition as a Therapeutic Strategy for Chordoma. J Neurol Surg B Skull Base 2016; 77:510-520. [PMID: 27857879 DOI: 10.1055/s-0036-1584198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
Objective Signal transducer and activator of transcription (STAT) proteins regulate key cellular fate decisions including proliferation and apoptosis. STAT3 overexpression induces tumor growth in multiple neoplasms. STAT3 is constitutively activated in chordoma, a tumor with a high recurrence rate despite maximal surgical and radiation treatment. We hypothesized that a novel small molecule inhibitor of STAT3 (FLLL32) would induce significant cytotoxicity in sacral and clival chordoma cells. Methods Sacral (UCh1) and clival (UM-CHOR-1) chordoma cell lines were grown in culture (the latter derived from primary tumor explants). FLLL32 dosing parameters were optimized using cell viability assays. Antitumor potential of FLLL32 was assessed using clonal proliferation assays. Potential mechanisms underlying observed cytotoxicity were examined using immunofluorescence assays. Results FLLL32 induced significant cytotoxicity in UCh1 and UM-CHOR-1 chordoma cells, essentially eliminating all viable cells, correlating with observed downregulation in activated, phosphorylated STAT3 upon administration of FLLL32. Mechanisms underlying the observed cytotoxicity included increased apoptosis and reduced cellular proliferation through inhibition of mitosis. Conclusion As a monotherapy, FLLL32 induces potent tumor kill in vitro in chordoma cell lines derived from skull base and sacrum. This effect is mediated through inhibition of STAT3 phosphorylation, increased susceptibility to apoptosis, and suppression of cell proliferation.
Collapse
Affiliation(s)
- Anthony C Wang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, United States
| | - John H Owen
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Waleed M Abuzeid
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Xiaobing He
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Mikel Gurrea
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Meijuan Lin
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - David B Altshuler
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Mark E Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas E Carey
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Xing Fan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Erin L McKean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States
| | - Stephen E Sullivan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
56
|
Wang L, Zehir A, Nafa K, Zhou N, Berger MF, Casanova J, Sadowska J, Lu C, Allis CD, Gounder M, Chandhanayingyong C, Ladanyi M, Boland PJ, Hameed M. Genomic aberrations frequently alter chromatin regulatory genes in chordoma. Genes Chromosomes Cancer 2016; 55:591-600. [PMID: 27072194 DOI: 10.1002/gcc.22362] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Khedoudja Nafa
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nengyi Zhou
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacklyn Casanova
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justyna Sadowska
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Chao Lu
- Department of Laboratory of Chromatin Biology and Epigenetics, the Rockefeller University, New York, NY
| | - C David Allis
- Department of Laboratory of Chromatin Biology and Epigenetics, the Rockefeller University, New York, NY
| | - Mrinal Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Patrick J Boland
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
57
|
Aleksic T, Browning L, Woodward M, Phillips R, Page S, Henderson S, Athanasou N, Ansorge O, Whitwell D, Pratap S, Hassan AB, Middleton MR, Macaulay VM. Durable Response of Spinal Chordoma to Combined Inhibition of IGF-1R and EGFR. Front Oncol 2016; 6:98. [PMID: 27200287 PMCID: PMC4852191 DOI: 10.3389/fonc.2016.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Chordomas are rare primary malignant bone tumors arising from embryonal notochord remnants of the axial skeleton. Chordomas commonly recur following surgery and radiotherapy, and there is no effective systemic therapy. Previous studies implicated receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R), in chordoma biology. We report an adult female patient who presented in 2003 with spinal chordoma, treated with surgery and radiotherapy. She underwent further surgery for recurrent chordoma in 2008, with subsequent progression in pelvic deposits. In June 2009, she was recruited onto the Phase I OSI-906-103 trial of EGFR inhibitor erlotinib with linsitinib, a novel inhibitor of IGF-1R/insulin receptor (INSR). Treatment with 100 mg QD erlotinib and 50 mg QD linsitinib was well-tolerated, and after 18 months a partial response was achieved by RECIST criteria. From 43 months, a protocol modification allowed intra-patient linsitinib dose escalation to 50 mg BID. The patient remained stable on trial treatment for a total of 5 years, discontinuing treatment in August 2014. She subsequently experienced further disease progression for which she underwent pelvic surgery in April 2015. Analysis of DNA extracted from 2008 (pre-trial) tissue showed that the tumor harbored wild-type EGFR, and a PIK3CA mutation was detected in plasma, but not tumor DNA. The 2015 (post-trial) tumor harbored a mutation of uncertain significance in ATM, with no detectable mutations in other components of a 50 gene panel, including EGFR, PIK3CA, and TP53. By immunohistochemistry, the tumor was positive for brachyury, the molecular hallmark of chordoma, and showed weak–moderate membrane and cytoplasmic EGFR. IGF-1R was detected in the plasma membrane and cytoplasm and was expressed more strongly in recurrent tumor than the primary. We also noted heterogeneous nuclear IGF-1R, which has been linked with sensitivity to IGF-1R inhibition. Similar variation in IGF-1R expression and subcellular localization was noted in 15 further cases of chordoma. In summary, this exceptionally durable response suggests that there may be merit in evaluating combined IGF-1R/INSR and EGFR inhibition in patients with chordomas that recur following failure of local treatment.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, Old Road Campus Research Building , Oxford , UK
| | - Lisa Browning
- Department of Cellular Pathology, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Martha Woodward
- Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Rachel Phillips
- Department of Radiology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Suzanne Page
- BRC Oxford Molecular Diagnostic Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Shirley Henderson
- BRC Oxford Molecular Diagnostic Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Nicholas Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Nuffield Orthopaedic Centre , Oxford , UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital , Oxford , UK
| | - Duncan Whitwell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Nuffield Orthopaedic Centre , Oxford , UK
| | - Sarah Pratap
- Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - A Bassim Hassan
- Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Mark R Middleton
- Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Valentine M Macaulay
- Department of Oncology, Old Road Campus Research Building, Oxford, UK; Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
58
|
Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget 2016; 6:11139-49. [PMID: 25871477 PMCID: PMC4484445 DOI: 10.18632/oncotarget.3576] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/21/2015] [Indexed: 12/31/2022] Open
Abstract
Chordomas are primary malignant tumors of the notochord that are resistant to conventional chemotherapy. Expression of programmed cell death ligand 1 (PD-L1), prevalence of tumor-infiltrating lymphocytes (TILs), and their clinical relevance in chordoma remain unknown. We evaluated PD-L1 expression in three chordoma cell lines and nine chordoma tissue samples by western blot. Immunohistochemical staining was performed on a chordoma tissue microarray (TMA) that contained 78 tissue specimens. We also correlated the expression of PD-L1 and TILs with clinical outcomes. PD-L1 protein expression was demonstrated to be induced by IFN-γ in both UCH1 and UCH2 cell lines. Across nine human chordoma tissue samples, PD-L1 protein was differentially expressed. 94.9% of chordoma samples showed positive PD-L1 expression in the TMA. The expression score of PD-L1 for metastatic chordoma tumors was significant higher as compared with non-metastatic chordoma tumors. Expression of PD-L1 protein significantly correlates with the presence of elevated TILs, which correlates with metastasis. In summary, our study showed high levels of PD-L1 are expressed in chordoma, which is correlated with the prevalence of TILs. The current study suggests targeting PD-L1 may be a novel immunotherapeutic strategy for chordoma clinical trials.
Collapse
|
59
|
Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med 2016; 8:344-52. [PMID: 26493697 DOI: 10.1007/s12178-015-9311-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chordoma is a rare low-grade primary malignant skeletal tumor, which is presumed to derive from notochord remnants. The pathogenesis of chordoma has not been fully elucidated. However, recent advances in the molecular biology studies have identified brachyury underlying the initiation and progression of chordoma cells. More efforts have been made on accumulating evidence of the notochordal origin of chordoma, discovering signaling pathways and identifying crucial targets in chordomagenesis. In this review, we summarize the most recent research findings and focus on the pathophysiology and molecular mechanisms of chordoma.
Collapse
Affiliation(s)
- Xin Sun
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA
| | - Francis Hornicek
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA
| | - Joseph H Schwab
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
60
|
Metastatic Chordoma: A Diagnostic Challenge on Fine Needle Aspiration. Case Rep Pathol 2016; 2016:2187290. [PMID: 26881166 PMCID: PMC4735921 DOI: 10.1155/2016/2187290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/24/2015] [Indexed: 11/17/2022] Open
Abstract
Chordomas are primary low grade malignant tumors of bone that usually arise within both ends of axial skeleton. The Notochord is a midline, ectoderm-derived structure that defines the phylum of chordates. Chordomas may pose difficult diagnostic challenges when encountered in secondary locations, such as lungs or other parenchymatous organs. We report the cytologic findings of a metastatic chordoma sampled through CT-scan guided fine needle aspiration (FNA) of lower lobe lung nodule in a 54-year-old man diagnosed with recurrent chordoma involving the lumber spine and paraspinal region.
Collapse
|
61
|
Zou MX, Peng AB, Lv GH, Wang XB, Li J, She XL, Jiang Y. Expression of programmed death-1 ligand (PD-L1) in tumor-infiltrating lymphocytes is associated with favorable spinal chordoma prognosis. Am J Transl Res 2016; 8:3274-87. [PMID: 27508049 PMCID: PMC4969465 DOI: pmid/27508049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022]
Abstract
Aberrant expression of programmed death-1 (PD-1) receptor/PD-1 ligand (PD-L1) proteins alters human immunoresponse and promotes tumor development and progression. We assessed the expression status of PD-1 and PD-L1 in spinal chordoma tissue specimens and their association with clinicopathological characteristics of patients. Formalin-fixed paraffin-embedded tumor samples from 54 patients with spinal chordoma were collected for immunohistochemical analysis of PD-1 and PD-L1 expression. The association of the expression levels of PD-1 and PD-L1 with clinicopathological variables and survival data were statistically analyzed. Lymphocyte infiltrates were present in all 54 patient samples. Of 54 samples, 37 (68.5%) had both positive PD-1 and PD-L1 expression in tumor cell membrane. Moreover, 38 (70.4%) and 12 (22.2%) had positive PD-1 and PD-L1 expression in tumor-infiltrating lymphocytes (TILs), respectively. Tumors with positive PD-L1 expression were significantly associated with advanced stages of chordoma (p = 0.041) and TIL infiltration (p = 0.005), and had a borderline association with tumor grade (p = 0.051). However, positive tumor PD-L1 expression was not significantly associated with local recurrence-free survival (LRFS) or overall survival (OS). PD-1 expression in TILs was associated with poor LRFS (χ(2) = 10.051, p = 0.002, log-rank test). Multivariate analysis showed that PD-L1 expression only in TILs was an independent predictor for LRFS (HR = 0.298, 95% CI: 0.098-0.907, p = 0.033), and OS (HR = 0.188, 95% CI: 0.051-0.687, p = 0.011) in spinal chordoma patients. In conclusion, PD-L1 expression in TILs was an independent predictor for both LRFS and OS in spinal chordoma patients. Our findings suggest that the PD-1/PD-L1 pathway may be a novel therapeutic target for the immunotherapy of chordoma.
Collapse
Affiliation(s)
- Ming-Xiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - An-Bo Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - Xiao-Ling She
- Department of Pathology, The Second Xiangya Hospital, Central South University Changsha 410011, China
| | - Yi Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University Changsha 410011, China
| |
Collapse
|
62
|
Gulluoglu S, Turksoy O, Kuskucu A, Ture U, Bayrak OF. The molecular aspects of chordoma. Neurosurg Rev 2015; 39:185-96; discussion 196. [PMID: 26363792 DOI: 10.1007/s10143-015-0663-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/30/2015] [Accepted: 06/27/2015] [Indexed: 12/18/2022]
Abstract
Chordomas are one of the rarest bone tumors, and they originate from remnants of embryonic notochord along the spine, more frequently at the skull base and sacrum. Although they are relatively slow growing and low grade, chordomas are highly recurrent, aggressive, locally invasive, and prone to metastasize to the lungs, bone, and the liver. Chordomas highly and generally show a dual epithelial-mesenchymal differentiation. These tumors resist chemotherapy and radiotherapy; therefore, radical surgery and high-dose radiation are the most used treatments, although there is no standard way to treat the disease. The molecular biology process behind the initiation and progression of a chordoma needs to be revealed for a better understanding of the disease and to develop more effective therapies. Efforts to discover the mysteries of these molecular aspects have delineated several molecular and genetic alterations in this tumor. Here, we review and describe the emerging insights into the molecular landscape of chordomas.
Collapse
Affiliation(s)
- Sukru Gulluoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.,Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Ozlem Turksoy
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Ugur Ture
- Department of Neurosurgery, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey.
| |
Collapse
|
63
|
Wang KE, Wu Z, Tian K, Wang L, Hao S, Zhang L, Zhang J. Familial chordoma: A case report and review of the literature. Oncol Lett 2015; 10:2937-2940. [PMID: 26722267 DOI: 10.3892/ol.2015.3687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 08/17/2015] [Indexed: 01/14/2023] Open
Abstract
Familial skull base chordoma is a rare tumor derived from the remnants of the embryonic notochord. The present study describes the clinical presentation of 4 cases of skull base chordomas in a family. A 15-year-old female received staged surgeries and was pathologically confirmed with a diagnosis of skull base chordoma. Among the patient's family, 2 members had previously undergone surgery and were pathologically confirmed with chordomas; 1 family member had also received radiation therapy. Furthermore, the patient's cousin, an 18-year-old male, was confirmed to have this condition by epipharyngoscopy. All confirmed cases within the family remained alive with the condition. A literature review of familial chordoma was undertaken and 8 chordoma pedigrees were found. Familial chordoma was rare, with an estimated rate of 0.4% in all chordomas. The skull base was the predominant location for familial chordoma. Compared with sporadic chordoma, familial chordomas were diagnosed at a younger age. The brachyury gene was strongly associated with familial chordomas, however, the exact pathogenesis and genetics mechanisms remains unclear.
Collapse
Affiliation(s)
- K E Wang
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Zhen Wu
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Kaibing Tian
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Liang Wang
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Shuyu Hao
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Liwei Zhang
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Junting Zhang
- Division of Skull Base and Brainstem Tumors, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| |
Collapse
|
64
|
Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif 2015; 48:497-502. [PMID: 26256106 DOI: 10.1111/cpr.12204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Chordoma is a rare type of malignant bone tumour arising from remnant notochord and prognosis of patients with it remains poor as its molecular and genetic mechanisms are not well understood. Increasing evidence has demonstrated that epigenetic mechanisms (DNA methylation, histone modification and nucleosome remodelling), play a crucial role in the pathogenesis of many diseases. Aberrant epigenetic patterns are present in patients with chordoma, indicating a potential role for epigenetic mechanisms inthis malignancy. Furthermore, epigenetic alterations may provide novel biomarkers for diagnosis and prognosis as well as therapeutic targets for treatment. In this review, we discuss relevant epigenetic findings associated with chordoma, and their potential application for diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|
65
|
von Witzleben A, Goerttler LT, Marienfeld R, Barth H, Lechel A, Mellert K, Böhm M, Kornmann M, Mayer-Steinacker R, von Baer A, Schultheiss M, Flanagan AM, Möller P, Brüderlein S, Barth TF. Preclinical Characterization of Novel Chordoma Cell Systems and Their Targeting by Pharmocological Inhibitors of the CDK4/6 Cell-Cycle Pathway. Cancer Res 2015; 75:3823-31. [DOI: 10.1158/0008-5472.can-14-3270] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/31/2015] [Indexed: 11/16/2022]
|
66
|
Kanamori H, Kitamura Y, Kimura T, Yoshida K, Sasaki H. Genetic characterization of skull base chondrosarcomas. J Neurosurg 2015; 123:1036-41. [PMID: 26162041 DOI: 10.3171/2014.12.jns142059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although chondrosarcomas rarely arise in the skull base, chondrosarcomas and chordomas are the 2 major malignant bone neoplasms occurring at this location. The distinction of these 2 tumors is important, but this distinction is occasionally problematic because of radiological and histological overlap. Unlike chordoma and extracranial chondrosarcoma, no case series presenting a whole-genome analysis of skull base chondrosarcomas (SBCSs) has been reported. The goal of this study is to clarify the genetic characteristics of SBCSs and contrast them with those of chordomas. METHODS The authors analyzed 7 SBCS specimens for chromosomal copy number alterations (CNAs) using comparative genomic hybridization (CGH). They also examined IDH1 and IDH2 mutations and brachyury expression. RESULTS In CGH analyses, the authors detected CNAs in 6 of the 7 cases, including chromosomal gains of 8q21.1, 19, 2q22-q32, 5qcen-q14, 8q21-q22, and 15qcen-q14. Mutation of IDH1 was found with a high frequency (5 of 7 cases, 71.4%), of which R132S was most frequently mutated. No IDH2 mutations were found, and immunohistochemical staining for brachyury was negative in all cases. CONCLUSIONS To the best of the authors' knowledge, this is the first whole-genome study of an SBSC case series. Their findings suggest that these tumors are molecularly consistent with a subset of conventional central chondrosarcomas and different from skull base chordomas.
Collapse
|
67
|
Wang K, Tian K, Wang L, Wu Z, Ren C, Hao S, Feng J, Li J, Wan H, Jia G, Zhang L, Zhang J. Brachyury: A sensitive marker, but not a prognostic factor, for skull base chordomas. Mol Med Rep 2015; 12:4298-4304. [PMID: 26099340 PMCID: PMC4526090 DOI: 10.3892/mmr.2015.3976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/29/2015] [Indexed: 01/22/2023] Open
Abstract
Patients with skull base chordomas have a poor prognosis, and the role of the protein expression of brachyury in chordomas remains to be fully elucidated. The present study used immunohistochemistry to analyze 57 cases of skull base chordoma, and analyzed the clinical data of the patients. The results demonstrated that the protein expression of brachyury was negative in 8.8% (5/57) of the cases. The weak/positive, positive and strong/positive rates were 5.3% (3/57), 21.1% (12/57) and 64.9% (37/57), respectively. The association between the expression of brachyury and recurrence was not statistically significant. Kaplan‑Meier analysis revealed that the degree of surgery, rather than the expression of brachyury, was associated with tumor recurrence (P=0.001). In conclusion, the results of the present study demonstrated that the expression of Brachyury offers a sensitive marker, but not a risk factor, for skull base chordomas, and radical surgery is recommended.
Collapse
Affiliation(s)
- Ke Wang
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Kaibing Tian
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Liang Wang
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Zhen Wu
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Cong Ren
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Shuyu Hao
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Jie Feng
- Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Junhua Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Hong Wan
- Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Guijun Jia
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Junting Zhang
- Department of Neurosurgery, Skull Base and Brainstem Tumor Division, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| |
Collapse
|
68
|
Di Maio S, Yip S, Al Zhrani GA, Alotaibi FE, Al Turki A, Kong E, Rostomily RC. Novel targeted therapies in chordoma: an update. Ther Clin Risk Manag 2015; 11:873-83. [PMID: 26097380 PMCID: PMC4451853 DOI: 10.2147/tcrm.s50526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches.
Collapse
Affiliation(s)
- Salvatore Di Maio
- Division of Neurosurgery, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gmaan A Al Zhrani
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Fahad E Alotaibi
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Abdulrahman Al Turki
- National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia ; Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Esther Kong
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Robert C Rostomily
- Department of Neurological Surgery, University of Washington, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
69
|
Scheil-Bertram S. [Novel molecular aspects of chordomas]. DER PATHOLOGE 2014; 35 Suppl 2:237-41. [PMID: 25394972 DOI: 10.1007/s00292-014-1986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chordomas are rare and slowly growing malignant bone tumors which mostly occur in adults. These bone tumors are characterized by epithelial and mesenchymal aspects. It is suggested that they arise from remnants of the notochord because they are found along the axial skeleton (e.g. clival, spinal and sacrococcygeal locations). It appears that cytogenetic aberrations are not randomly found in this tumor group. Loss of chromosomal material (e.g. 1p, 3p, 10q, 13q and 14q) is more frequently found than gain of material (e.g. 7q, especially 7q33). Several studies demonstrated brachyury expression (T; 6q27) as a possible candidate gene in the oncogenesis of chordomas (e.g. knock down in the chordoma cell line U-CH1). So far therapy consists of complete resection and irradiation, e.g. with carbon ions. Targeting therapy is not yet established in routine protocols but phase II studies with tyrosine kinase inhibitors have shown partial response of tumors and, in some studies stabilization of the disease has been described.
Collapse
Affiliation(s)
- S Scheil-Bertram
- Institut für Pathologie und Zytologie, Dr. Horst Schmidt Klinik GmbH, Ludwig-Erhard-Str. 100, 65199, Wiesbaden, Deutschland,
| |
Collapse
|
70
|
Yakkioui Y, van Overbeeke JJ, Santegoeds R, van Engeland M, Temel Y. Chordoma: the entity. Biochim Biophys Acta Rev Cancer 2014; 1846:655-69. [PMID: 25193090 DOI: 10.1016/j.bbcan.2014.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/08/2023]
Abstract
Chordomas are malignant tumors of the axial skeleton, characterized by their locally invasive and slow but aggressive growth. These neoplasms are presumed to be derived from notochordal remnants with a molecular alteration preceding their malignant transformation. As these tumors are most frequently observed on the skull base and sacrum, patients suffering from a chordoma present with debilitating neurological disease, and have an overall 5-year survival rate of 65%. Surgical resection with adjuvant radiotherapy is the first-choice treatment modality in these patients, since chordomas are resistant to conventional chemotherapy. Even so, management of chordomas can be challenging, as chordoma patients often present with recurrent disease. Recent advances in the understanding of the molecular events that contribute to the development of chordomas are promising; the most novel finding being the identification of brachyury in the disease process. Here we present an overview of the current paradigms and summarize relevant research findings.
Collapse
Affiliation(s)
- Youssef Yakkioui
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Jacobus J van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Remco Santegoeds
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Manon van Engeland
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
71
|
Choy E, MacConaill LE, Cote GM, Le LP, Shen JK, Nielsen GP, Iafrate AJ, Garraway LA, Hornicek FJ, Duan Z. Genotyping cancer-associated genes in chordoma identifies mutations in oncogenes and areas of chromosomal loss involving CDKN2A, PTEN, and SMARCB1. PLoS One 2014; 9:e101283. [PMID: 24983247 PMCID: PMC4077728 DOI: 10.1371/journal.pone.0101283] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 06/04/2014] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms underlying chordoma pathogenesis are unknown. We therefore sought to identify novel mutations to better understand chordoma biology and to potentially identify therapeutic targets. Given the relatively high costs of whole genome sequencing, we performed a focused genetic analysis using matrix-assisted laser desorption/ionization-time of flight mass spectrometer (Sequenom iPLEX genotyping). We tested 865 hotspot mutations in 111 oncogenes and selected tumor suppressor genes (OncoMap v. 3.0) of 45 human chordoma tumor samples. Of the analyzed samples, seven were identified with at least one mutation. Six of these were from fresh frozen samples, and one was from a paraffin embedded sample. These observations were validated using an independent platform using homogeneous mass extend MALDI-TOF (Sequenom hME Genotyping). These genetic alterations include: ALK (A877S), CTNNB1 (T41A), NRAS (Q61R), PIK3CA (E545K), PTEN (R130), CDKN2A (R58*), and SMARCB1 (R40*). This study reports on the largest comprehensive mutational analysis of chordomas performed to date. To focus on mutations that have the greatest chance of clinical relevance, we tested only oncogenes and tumor suppressor genes that have been previously implicated in the tumorigenesis of more common malignancies. We identified rare genetic changes that may have functional significance to the underlying biology and potential therapeutics for chordomas. Mutations in CDKN2A and PTEN occurred in areas of chromosomal copy loss. When this data is paired with the studies showing 18 of 21 chordoma samples displaying copy loss at the locus for CDKN2A, 17 of 21 chordoma samples displaying copy loss at PTEN, and 3 of 4 chordoma samples displaying deletion at the SMARCB1 locus, we can infer that a loss of heterozygosity at these three loci may play a significant role in chordoma pathogenesis.
Collapse
Affiliation(s)
- Edwin Choy
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| | - Laura E. MacConaill
- Center for Cancer Genome Discovery and Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gregory M. Cote
- Division of Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Long P. Le
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jacson K. Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Gunnlaugur P. Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anthony J. Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Levi A. Garraway
- Center for Cancer Genome Discovery and Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
72
|
Marucci G, Morandi L, Mazzatenta D, Frank G, Pasquini E, Foschini MP. MGMT promoter methylation status in clival chordoma. J Neurooncol 2014; 118:271-276. [PMID: 24771251 DOI: 10.1007/s11060-014-1445-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/13/2014] [Indexed: 01/01/2023]
Abstract
Chordomas are rare, slow-growing neoplasms, characterized by locally aggressive growth patterns and high local recurrence rates. To the best of our knowledge, the MGMT promoter methylation status has not been studied in a population of patients with chordomas to determine if a biologic rationale exists to support the use of temozolomide. We here show for the first time that methylation of MGMT promoter is present in a significant portion or recurring clival chordomas; on the contrary in clival chordomas without recurrence MGMT promoter was always unmethylated (p = 0.0317). Although these observations need to be confirmed in a larger study population, our results (1) indicate that methylation of MGMT promoter is present in a significant portion of recurring chordomas, and (2) prompt further investigation into the potential role of temozolomide as an adjuvant treatment of these tumors.
Collapse
Affiliation(s)
- Gianluca Marucci
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology "M. Malpighi", Bellaria Hospital, Via Altura 3, 40139, Bologna, Italy.
| | - Luca Morandi
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology "M. Malpighi", Bellaria Hospital, Via Altura 3, 40139, Bologna, Italy
| | - Diego Mazzatenta
- Center of Surgery of Pituitary Tumors and Endoscopic Skullbase, IRCCS Istituto delle scienze neurologiche, Bologna, Italy
| | - Giorgio Frank
- Center of Surgery of Pituitary Tumors and Endoscopic Skullbase, IRCCS Istituto delle scienze neurologiche, Bologna, Italy
| | - Ernesto Pasquini
- Center of Surgery of Pituitary Tumors and Endoscopic Skullbase, IRCCS Istituto delle scienze neurologiche, Bologna, Italy
| | - Maria Pia Foschini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Section of Pathology "M. Malpighi", Bellaria Hospital, Via Altura 3, 40139, Bologna, Italy
| |
Collapse
|
73
|
Stacy RC, Bernardo LA, Nielsen GP. Absence of chromosomal abnormalities in herniated orbital fat. Histopathology 2014; 65:273-7. [DOI: 10.1111/his.12404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Rebecca C Stacy
- Massachusetts Eye and Ear Infirmary; Harvard Medical School; Boston MA USA
- Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | | | | |
Collapse
|
74
|
Zhang Y, Schiff D, Park D, Abounader R. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One 2014; 9:e91546. [PMID: 24621885 PMCID: PMC3951453 DOI: 10.1371/journal.pone.0091546] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Chordomas are rare malignant tumors that originate from the notochord remnants and occur in the skull base, spine and sacrum. Due to a very limited understanding of the molecular pathogenesis of chordoma, there are no adjuvant and molecular therapies besides surgical resection and radiation therapy. microRNAs (miRNAs) are small noncoding regulatory RNA molecules with critical roles in cancer. The role of miRNAs in chordomas is mostly unknown. We uncover microRNA-608 (miR-608) and microRNA-34a (miR-34a) as novel tumor suppressive microRNAs that regulate malignancy in chordoma. We find that miR-608 and miR-34a expressions are downregulated in human chordoma cell lines and primary cells at least partially via alteration of their genes' copy numbers. We identify the commonly deregulated oncogenes EGFR and Bcl-xL as direct targets of miR-608 and the receptor tyrosine kinase MET as direct target of miR-34a. We show that EGFR and MET activations promote chordoma cell proliferation and invasion and that pharmacological inhibition of EGFR and MET inhibits chordoma cell proliferation and survival. We demonstrate that restoration of miR-608 and miR-34a inhibits cell proliferation and invasion and induces apoptosis in chordoma cells. We find that miR-34a inversely correlates with MET expression and miR-608 inversely correlates with EGFR expression in chordoma cells. These findings demonstrate for the first time that miR-608 and miR-34a regulate chordoma malignancy by regulating EGFR, MET and Bcl-xL.
Collapse
Affiliation(s)
- Ying Zhang
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (YZ); (RA)
| | - David Schiff
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Deric Park
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roger Abounader
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
- Cancer Center, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (YZ); (RA)
| |
Collapse
|
75
|
Cai H, Kumar N, Bagheri HC, von Mering C, Robinson MD, Baudis M. Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 2014; 15:82. [PMID: 24476156 PMCID: PMC3909908 DOI: 10.1186/1471-2164-15-82] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/10/2014] [Indexed: 01/22/2023] Open
Abstract
Background Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising during a single genome-shattering event. This could provide an alternative paradigm in cancer development, replacing the gradual accumulation of genomic changes with a “one-off” catastrophic event. However, the term has been used with varying operational definitions, with the minimal consensus being a large number of locally clustered copy number aberrations. The mechanisms underlying these chromothripsis-like patterns (CTLP) and their specific impact on tumorigenesis are still poorly understood. Results Here, we identified CTLP in 918 cancer samples, from a dataset of more than 22,000 oncogenomic arrays covering 132 cancer types. Fragmentation hotspots were found to be located on chromosome 8, 11, 12 and 17. Among the various cancer types, soft-tissue tumors exhibited particularly high CTLP frequencies. Genomic context analysis revealed that CTLP rearrangements frequently occurred in genomes that additionally harbored multiple copy number aberrations (CNAs). An investigation into the affected chromosomal regions showed a large proportion of arm-level pulverization and telomere related events, which would be compatible to a number of underlying mechanisms. We also report evidence that these genomic events may be correlated with patient age, stage and survival rate. Conclusions Through a large-scale analysis of oncogenomic array data sets, this study characterized features associated with genomic aberrations patterns, compatible to the spectrum of “chromothripsis”-definitions as previously used. While quantifying clustered genomic copy number aberrations in cancer samples, our data indicates an underlying biological heterogeneity behind these chromothripsis-like patterns, beyond a well defined “chromthripsis” phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
76
|
Scheil-Bertram S, Kappler R, von Baer A, Hartwig E, Sarkar M, Serra M, Brüderlein S, Westhoff B, Melzner I, Bassaly B, Herms J, Hugo HH, Schulte M, Möller P. Molecular profiling of chordoma. Int J Oncol 2014; 44:1041-55. [PMID: 24452533 PMCID: PMC3977807 DOI: 10.3892/ijo.2014.2268] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/03/2013] [Indexed: 01/02/2023] Open
Abstract
The molecular basis of chordoma is still poorly understood, particularly with respect to differentially expressed genes involved in the primary origin of chordoma. In this study, therefore, we compared the transcriptional expression profile of one sacral chordoma recurrence, two chordoma cell lines (U-CH1 and U-CH2) and one chondrosarcoma cell line (U-CS2) with vertebral disc using a high-density oligonucleotide array. The expression of 65 genes whose mRNA levels differed significantly (p<0.001; ≥6-fold change) between chordoma and control (vertebral disc) was identified. Genes with increased expression in chordoma compared to control and chondrosarcoma were most frequently located on chromosomes 2 (11%), 5 (8%), 1 and 7 (each 6%), whereas interphase cytogenetics of 33 chordomas demonstrated gains of chromosomal material most prevalent on 7q (42%), 12q (21%), 17q (21%), 20q (27%) and 22q (21%). The microarray data were confirmed for selected genes by quantitative polymerase chain reaction analysis. As in other studies, we showed the expression of brachyury. We demonstrate the expression of new potential candidates for chordoma tumorigenesis, such as CD24, ECRG4, RARRES2, IGFBP2, RAP1, HAI2, RAB38, osteopontin, GalNAc-T3, VAMP8 and others. Thus, we identified and validated a set of interesting candidate genes whose differential expression likely plays a role in chordoma.
Collapse
Affiliation(s)
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Alexandra von Baer
- Department of Orthopedic Trauma, Hand and Reconstructive Surgery, University Hospitals of Ulm, Germany
| | - Erich Hartwig
- Department of Trauma, Hand and Reconstructive Surgery, Ev. Diakonissenanstalt, Karlsruhe, Germany
| | - Michael Sarkar
- Department of Trauma and Reconstructive Surgery, Karl-Olga-Krankenhaus, Stuttgart, Germany
| | - Massimo Serra
- Laboratory of Experimental Oncology, Orthopedic Rizzoli Institute, Bologna, Italy
| | | | | | - Ingo Melzner
- Institute of Pathology, University Hospitals of Ulm, Germany
| | | | - Jochen Herms
- Department of Translational Brain Research, DZNE (German Center for Neurodegenerative Diseases) and Ludwig-Maximilian University of Munich, Munich, Germany
| | | | - Michael Schulte
- Department of Trauma and Orthopedic Surgery, Diakoniekrankenhaus, Rotenburg (Wümme), Germany
| | - Peter Möller
- Institute of Pathology, University Hospitals of Ulm, Germany
| |
Collapse
|
77
|
Burger A, Vasilyev A, Tomar R, Selig MK, Nielsen GP, Peterson RT, Drummond IA, Haber DA. A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12. Dis Model Mech 2013; 7:907-13. [PMID: 24311731 PMCID: PMC4073279 DOI: 10.1242/dmm.013128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer.
Collapse
Affiliation(s)
- Alexa Burger
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aleksandr Vasilyev
- Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA. Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, NY 11568, USA
| | - Ritu Tomar
- Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Martin K Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Randall T Peterson
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA. Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Iain A Drummond
- Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel A Haber
- Cancer Center, Massachusetts General Hospital, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
78
|
The brachyury Gly177Asp SNP is not associated with a risk of skull base chordoma in the Chinese population. Int J Mol Sci 2013; 14:21258-65. [PMID: 24232574 PMCID: PMC3856003 DOI: 10.3390/ijms141121258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/25/2013] [Accepted: 10/15/2013] [Indexed: 01/17/2023] Open
Abstract
A recent chordoma cancer genotyping study reveals that the rs2305089, a single nucleotide polymorphism (SNP) located in brachyury gene and a key gene in the development of notochord, is significantly associated with chordoma risk. The brachyury gene is believed to be one of the key genes involved in the pathogenesis of chordoma, a rare primary bone tumor originating along the spinal column or at the base of the skull. The association between the brachyury Gly177Asp single nucleotide polymorphism (SNP) and the risk of skull base chordoma in Chinese populations is currently unknown. We investigated the genotype distribution of this SNP in 65 skull-base chordoma cases and 120 healthy subjects. Comparisons of the genotype distributions and allele frequencies did not reveal any significant difference between the groups. Our data suggest that the brachyury Gly177Asp SNP is not involved in the risks of skull-base chordoma, at least in the Chinese population.
Collapse
|
79
|
Kitamura Y, Sasaki H, Kimura T, Miwa T, Takahashi S, Kawase T, Yoshida K. Molecular and clinical risk factors for recurrence of skull base chordomas: gain on chromosome 2p, expression of brachyury, and lack of irradiation negatively correlate with patient prognosis. J Neuropathol Exp Neurol 2013; 72:816-23. [PMID: 23965741 DOI: 10.1097/nen.0b013e3182a065d0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chordomas are invasive tumors that develop from notochordal remnants and frequently occur in the skull base. The T gene and its product (brachyury) have recently been suggested to play an important role in chordoma progression. To date, few studies have investigated the relationship between the molecular/genetic characteristics of chordoma and patient prognosis. We analyzed 37 skull base chordomas for chromosomal copy number aberrations using comparative genomic hybridization, brachyury expression by immunohistochemistry, and T gene copy number by fluorescence in situ hybridization. The results of these molecular analyses and clinical parameters were compared with the patients' clinical courses. Univariate analyses using the log-rank test demonstrated that losses on chromosome 1p and gains on 1q and 2p were negatively correlated with progression-free survival, as were factors such as female sex, partial tumor removal, lack of postoperative irradiation, and high MIB-1 index. Expression of brachyury and copy number gain of the T gene were also significantly associated with shorter progression-free survival. Multivariate analysis using the Cox hazards model showed that lack of irradiation, gain on chromosome 2p, and expression of brachyury were independently associated with a poor prognosis. Our results suggest that brachyury-negative chordomas arebiologically distinct from brachyury-positive chordomas and that T/brachyury might be an appropriate molecular therapeutic target for chordoma.
Collapse
Affiliation(s)
- Yohei Kitamura
- Departments of Neurosurgery, and Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
80
|
Zhang L, Guo S, Schwab JH, Nielsen GP, Choy E, Ye S, Zhang Z, Mankin H, Hornicek FJ, Duan Z. Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma. PLoS One 2013; 8:e75851. [PMID: 24086644 PMCID: PMC3781148 DOI: 10.1371/journal.pone.0075851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022] Open
Abstract
Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.
Collapse
Affiliation(s)
- Linlin Zhang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shang Guo
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Orthopaedics, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Joseph H. Schwab
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - G. Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shunan Ye
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zhan Zhang
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Henry Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
81
|
Kitamura Y, Sasaki H, Kimura T, Miwa T, Takahashi S, Kawase T, Yoshida K. Molecular and Clinical Risk Factors for Recurrence of Skull Base Chordomas: Gain on Chromosome 2p, Expression of Brachyury, and Lack of Irradiation Negatively Correlate With Patient Prognosis. J Neuropathol Exp Neurol 2013. [DOI: 10.1093/jnen/72.9.814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
82
|
Di Maio S, Kong E, Yip S, Rostomily R. Converging paths to progress for skull base chordoma: Review of current therapy and future molecular targets. Surg Neurol Int 2013; 4:72. [PMID: 23776758 PMCID: PMC3683175 DOI: 10.4103/2152-7806.112822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chordomas of the skull base are rare locally aggressive neoplasms with a predilection for encapsulating critical neurovascular structures, bony destruction and irregular growth patterns, and from which patients succumb to recurrence and treatment failures. METHODS A review of the medical literature is performed, using standard search engines and identifying articles related to skull base chordomas, surgery, radiation therapy, chemotherapy, molecular genetics, and prospective trials. RESULTS A synthesis of the literature is presented, including sections on pathology, treatment, molecular genetics, challenges, and future directions. CONCLUSION Beyond an understanding of the current treatment paradigms for skull base chordomas, the reader gains insight into the collaborative approach applied to orphan diseases, of which chordomas is a prime exemplar.
Collapse
Affiliation(s)
- Salvatore Di Maio
- Division of Neurosurgery, McGill University, Jewish General Hospital, Montreal, QC, Canada
| | | | | | | |
Collapse
|
83
|
Chordoma characterization of significant changes of the DNA methylation pattern. PLoS One 2013; 8:e56609. [PMID: 23533570 PMCID: PMC3606365 DOI: 10.1371/journal.pone.0056609] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/15/2013] [Indexed: 02/07/2023] Open
Abstract
Chordomas are rare mesenchymal tumors occurring exclusively in the midline from clivus to sacrum. Early tumor detection is extremely important as these tumors are resistant to chemotherapy and irradiation. Despite continuous research efforts surgical excision remains the main treatment option. Because of the often challenging anatomic location early detection is important to enable complete tumor resection and to reduce the high incidence of local recurrences. The aim of this study was to explore whether DNA methylation, a well known epigenetic marker, may play a role in chordoma development and if hypermethylation of specific CpG islands may serve as potential biomarkers correlated with SNP analyses in chordoma. The study was performed on tumor samples from ten chordoma patients. We found significant genomic instability by Affymetrix 6.0. It was interesting to see that all chordomas showed a loss of 3q26.32 (PIK 3CA) and 3q27.3 (BCL6) thus underlining the potential importance of the PI3K pathway in chordoma development. By using the AITCpG360 methylation assay we elucidated 20 genes which were hyper/hypomethylated compared to normal blood. The most promising candidates were nine hyper/hypomethylated genes C3, XIST, TACSTD2, FMR1, HIC1, RARB, DLEC1, KL, and RASSF1. In summary, we have shown that chordomas are characterized by a significant genomic instability and furthermore we demonstrated a characteristic DNA methylation pattern. These findings add new insights into chordoma development, diagnosis and potential new treatment options.
Collapse
|
84
|
High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis. Neoplasia 2013; 14:788-98. [PMID: 23019410 DOI: 10.1593/neo.12526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023] Open
Abstract
Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.
Collapse
|
85
|
Szuhai K, Hogendoorn PCW. 'The chicken or the egg?' dilemma strikes back for the controlling mechanism in chordoma(#). J Pathol 2013; 228:261-5. [PMID: 22952146 DOI: 10.1002/path.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chordoma is a rare malignant tumour of bone showing notochordal differentiation with characteristic expression of the transcription factor brachyury (T). Next to giving insight into its differentiation spectrum, the expression of T can be used as an adjunct diagnostic tool. The expression of brachyury in chordoma is necessary to maintain cell proliferation in chordoma cell lines, indicating that in chordoma it might be a master regulator of oncogenesis. Identification and mapping of the full gene regulatory network in a recent work in The Journal of Pathology by Nelson and colleagues not only shed light on involved pathways but also indicated pathways for targeted therapy, including brachyury itself.
Collapse
Affiliation(s)
- Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2330 RC, Leiden, The Netherlands
| | | |
Collapse
|
86
|
Abstract
Alterations in the copy number of the cancer genome are frequently observed in brain tumors especially gliomas. Some pertinent examples include amplification of the EGFR locus in chromosome 7p and loss of the PTEN locus in 10q in glioblastoma. Meningiomas are often associated with loss of the NF2 locus in 22q. Array CGH or aCGH probes provide a reliable, consistent, and economical method of profiling genome-wide copy number alterations (CNAs) of cancer specimens at fairly robust resolution. This has allowed for the systematic assessment of brain tumors for recurrent genomic CNAs. In addition, recent technical advancements have increased the robustness of this technique to accommodate DNA derived from formalin-fixed paraffin-embedded (FFPE) tissue. Lastly, novel technologies such as next-generation sequencing and multiplex digital gene counting technology such as NanoString will expand the -repertoire of techniques for assessing CNAs in brain tumors.
Collapse
Affiliation(s)
- Gayatry Mohapatra
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
87
|
Pillay N, Plagnol V, Tarpey PS, Lobo SB, Presneau N, Szuhai K, Halai D, Berisha F, Cannon SR, Mead S, Kasperaviciute D, Palmen J, Talmud PJ, Kindblom LG, Amary MF, Tirabosco R, Flanagan AM. A common single-nucleotide variant in T is strongly associated with chordoma. Nat Genet 2012; 44:1185-7. [PMID: 23064415 DOI: 10.1038/ng.2419] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022]
Abstract
Chordoma is a rare malignant bone tumor that expresses the transcription factor T. We conducted an association study of 40 individuals with chordoma and 358 ancestry-matched controls, with replication in an independent cohort. Whole-exome and Sanger sequencing of T exons showed strong association of the common nonsynonymous SNP rs2305089 with chordoma risk (allelic odds ratio (OR) = 6.1, 95% confidence interval (CI) = 3.1-12.1; P = 4.4 × 10(-9)), a finding that is exceptional in cancers with a non-Mendelian mode of inheritance.
Collapse
|
88
|
Karamchandani J, Wu MY, Das S, Vogel H, Muller P, Cusimano M, Montanera W, Kovacs K. Highly proliferative sellar chordoma with unusually rapid recurrence. Neuropathology 2012; 33:424-30. [PMID: 23082799 DOI: 10.1111/j.1440-1789.2012.01360.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/02/2023]
Abstract
Chordomas are tumors of notochordal differentiation of low to intermediate grade malignancy. These tumors are typically slow growing, with an indolent but progressive clinical course. We present a case of a highly proliferative chordoma arising in a 73-year-old woman with unusually rapid clinical growth and aggressive histologic and immunohistochemical features. This patient had an unusually brief preclinical course and within 1 month of developing headaches presented to medical attention with diplopia. The resected chordoma showed uncommonly elevated mitotic activity, without the histologic hallmarks of de-differentiation. This proliferative activity correlated with elevated Ki67 staining (60%), B-cell leukemia/lymphoma1 (BCL1) expression (100%), and topoisomerase IIα staining (>95%). E-cadherin expression was also lost throughout the majority of the tumor. Other markers of epithelial mesenchymal transition (EMT) including vimentin, N-cadherin, Slug and Twist, were also strongly expressed in this aggressive tumor. The sellar component of the tumor recurred within a 2-month interval. The evaluation of the additional biomarkers, including makers of EMT studied in this, case may allow for identification of aggressive chordomas in which the tempo of disease is significantly more rapid than in typical cases of chordoma.
Collapse
Affiliation(s)
- Jason Karamchandani
- Department of Pathology and Laboratory Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Bydon M, Papadimitriou K, Witham T, Wolinsky JP, Bydon A, Sciubba D, Gokaslan Z. Novel therapeutic targets in chordoma. Expert Opin Ther Targets 2012; 16:1139-43. [PMID: 22860993 DOI: 10.1517/14728222.2012.714772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chordomas are malignant bone tumors arising from notochordal remnants. They most commonly occur at the sacrum, skull base, and spine. The gold standard treatment for these tumors is a combination of en-bloc resection and radiation therapy. AREAS COVERED Recent genomic studies have identified duplication of the gene brachyury as a major susceptibility mutation in familial chordomas. Studies on sporadic chordomas have identified several tumor markers, using microRNAs and Comparative Genome Hybridization. In this article, we highlight current advances in research on the molecular characterization of chordomas. EXPERT OPINION Scientific advances have allowed for the identification of numerous tumor markers involved in chordoma pathogenesis. In the future, chordoma cell lines will be produced that silence or over-express these tumor markers. As we increase our understanding of the mechanism of chordoma tumor proliferation, we can expect the development of targeted drug therapies.
Collapse
Affiliation(s)
- Mohamad Bydon
- The Johns Hopkins Hospital, Department of Neurological Surgery, 600 N Wolfe St, Meyer 7-109, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|