51
|
Mao QY, Wang Y, Bian L, Xu M, Liang Z. EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert Rev Vaccines 2016; 15:599-606. [PMID: 26732723 DOI: 10.1586/14760584.2016.1138862] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
On December 3rd 2015, the China Food and Drug Administration (CFDA) approved the first inactivated Enterovirus 71 (EV71) whole virus vaccine for preventing severe hand, foot and mouth disease (HFMD). As one of the few preventive vaccines for children's infectious diseases generated by the developing countries in recent years, EV71 vaccine is a blessing to children's health in China and worldwide. However, there are still a few challenges facing the worldwide use of EV71 vaccine, including the applicability against various EV71 pandemic strains in other countries, international requirements on vaccine production and quality control, standardization and harmonization on different pathogen monitoring and detecting methods, etc. In addition, the affordability of EV71 vaccine in other countries is a factor to be considered in HFMD prevention. Therefore, with EV71 vaccine commercially available, there is still a long way to go before reaching effective protection against severe HFMD after EV71 vaccines enter the market. In this paper, the bottlenecks and prospects for the wide use of EV71 vaccine after its approval are evaluated.
Collapse
Affiliation(s)
- Qun-ying Mao
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Yiping Wang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Lianlian Bian
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Miao Xu
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| | - Zhenglun Liang
- a Institute for Biological Products Control, National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
52
|
Lin SY, Chiu HY, Chiang BL, Hu YC. Development of EV71 virus-like particle purification processes. Vaccine 2015; 33:5966-73. [DOI: 10.1016/j.vaccine.2015.04.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
|
53
|
Cell-laden Polymeric Microspheres for Biomedical Applications. Trends Biotechnol 2015; 33:653-666. [DOI: 10.1016/j.tibtech.2015.09.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/10/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
|
54
|
Jacinto M, Soares R, Azevedo A, Chu V, Tover A, Conde J, Aires-Barros M. Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
55
|
Jiang L, Fan R, Sun S, Fan P, Su W, Zhou Y, Gao F, Xu F, Kong W, Jiang C. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015; 33:6596-603. [PMID: 26529072 DOI: 10.1016/j.vaccine.2015.10.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/13/2015] [Accepted: 10/24/2015] [Indexed: 12/16/2022]
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16), as the main agents causing hand, foot and mouth disease (HFMD), have become a serious public health concern in the Asia-Pacific region. Recently, various neutralizing B cell epitopes of EV71 were identified as targets for promising vaccine candidates. Structural studies of Picornaviridae indicated that potent immunodominant epitopes typically lie in the hypervariable loop of capsid surfaces. However, cross-neutralizing antibodies and cross-protection between EV71 and CVA16 have not been observed. Therefore, we speculated that divergent sequences of the two viruses are key epitopes for inducing protective neutralizing responses. In this study, we selected 10 divergent epitope candidates based on alignment of the EV71 and CVA16 P1 amino acid sequences using the Multalin interface page, and these epitopes are conserved among all subgenotypes of EV71. Simultaneously, by utilizing the norovirus P particle as a novel vaccine delivery carrier, we identified the 71-6 epitope (amino acid 176-190 of VP3) as a conformational neutralizing epitope against EV71 in an in vitro micro-neutralization assay as well as an in vivo protection assay in mice. Altogether, these results indicated that the incorporation of the 71-6 epitope into the norovirus P domain can provide a promising candidate for an effective synthetic peptide-based vaccine against EV71.
Collapse
Affiliation(s)
- Liping Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Rongjun Fan
- Harbin Center for Disease Control and Prevention, Harbin 150056, PR China
| | - Shiyang Sun
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Peihu Fan
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China
| | - Weiheng Su
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yan Zhou
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Feng Gao
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Fei Xu
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Wei Kong
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China
| | - Chunlai Jiang
- School of Life Sciences, Jilin University, Changchun, PR China; National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, PR China; Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, Jilin University, Changchun, PR China.
| |
Collapse
|
56
|
Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. J Virol 2015; 89:12084-95. [PMID: 26401034 DOI: 10.1128/jvi.02189-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs. IMPORTANCE Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.
Collapse
|
57
|
Zhao D, Sun B, Jiang H, Sun S, Kong F, Ma Y, Jiang L, Bai L, Chen X, Yang P, Liu C, Xu Y, Su W, Kong W, Xu F, Jiang C. Enterovirus71 virus-like particles produced from insect cells and purified by multistep chromatography elicit strong humoral immune responses in mice. J Appl Microbiol 2015; 119:1196-205. [DOI: 10.1111/jam.12922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/14/2023]
Affiliation(s)
- D. Zhao
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
| | - B. Sun
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology & Engineering; Ministry of Education; Jilin University; Changchun China
| | - H. Jiang
- The China-Japan Fellowship Hospital of Jilin University; Changchun China
| | - S. Sun
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
| | - F.T. Kong
- Ann Arbor Pioneer High School; Ann Arbor MI USA
| | - Y. Ma
- Changchun BCHT Biotechnology Company; Changchun China
| | - L. Jiang
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
| | - L. Bai
- Changchun BCHT Biotechnology Company; Changchun China
| | - X. Chen
- Changchun BCHT Biotechnology Company; Changchun China
| | - P. Yang
- Changchun BCHT Biotechnology Company; Changchun China
| | - C. Liu
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
| | - Y. Xu
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
| | - W. Su
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology & Engineering; Ministry of Education; Jilin University; Changchun China
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - W. Kong
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology & Engineering; Ministry of Education; Jilin University; Changchun China
| | - F. Xu
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology & Engineering; Ministry of Education; Jilin University; Changchun China
| | - C. Jiang
- School of Life Sciences; Jilin University; Changchun China
- National Engineering Laboratory for AIDS Vaccine; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology & Engineering; Ministry of Education; Jilin University; Changchun China
| |
Collapse
|
58
|
Wu CY, Lin YW, Kuo CH, Liu WH, Tai HF, Pan CH, Chen YT, Hsiao PW, Chan CH, Chang CC, Liu CC, Chow YH, Chen JR. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse. PLoS One 2015; 10:e0136420. [PMID: 26287531 PMCID: PMC4543551 DOI: 10.1371/journal.pone.0136420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system.
Collapse
Affiliation(s)
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | | | | | | | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | - Chung-Cheng Liu
- Adimmune Corporation, Taichung, Taiwan
- Enimmune Corporation, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
59
|
Lin SY, Yeh CT, Li WH, Yu CP, Lin WC, Yang JY, Wu HL, Hu YC. Enhanced enterovirus 71 virus-like particle yield from a new baculovirus design. Biotechnol Bioeng 2015; 112:2005-15. [PMID: 25997678 PMCID: PMC7161748 DOI: 10.1002/bit.25625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/22/2023]
Abstract
Enterovirus 71 (EV71) is responsible for the outbreaks of hand‐foot‐and‐mouth disease in the Asia‐Pacific region. To produce the virus‐like particle (VLP) vaccine, we previously constructed recombinant baculoviruses to co‐express EV71 P1 polypeptide and 3CD protease using the Bac‐to‐Bac® vector system. The recombinant baculoviruses resulted in P1 cleavage by 3CD and subsequent VLP assembly in infected insect cells, but caused either low VLP yield or excessive VLP degradation. To tackle the problems, here we explored various expression cassette designs and flashBAC GOLD™ vector system which was deficient in v‐cath and chiA genes. We found that the recombinant baculovirus constructed using the flashBAC GOLD™ system was insufficient to improve the EV71 VLP yield. Nonetheless, BacF‐P1‐C3CD, a recombinant baculovirus constructed using the flashBAC GOLDTM system to express P1 under the polh promoter and 3CD under the CMV promoter, dramatically improved the VLP yield while alleviating the VLP degradation. Infection of High FiveTM cells with BacF‐P1‐C3CD enhanced the total and extracellular VLP yield to ≈268 and ≈171 mg/L, respectively, which enabled the release of abundant VLP into the supernatant and simplified the downstream purification. Intramuscular immunization of mice with 5 μg purified VLP induced cross‐protective humoral responses and conferred protection against lethal virus challenge. Given the significantly improved extracellular VLP yield (≈171 mg/L) and the potent immunogenicity conferred by 5 μg VLP, one liter High FiveTM culture produced ≈12,000 doses of purified vaccine, thus rendering the EV71 VLP vaccine economically viable and able to compete with inactivated virus vaccines. Biotechnol. Bioeng. 2015;112: 2005–2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shih-Yeh Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Tsui Yeh
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wan-Hua Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Ping Yu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jyh-Yuan Yang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
60
|
Zhang X, Sun C, Xiao X, Pang L, Shen S, Zhang J, Cen S, Yang BB, Huang Y, Sheng W, Zeng Y. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16. Jpn J Infect Dis 2015; 69:66-74. [PMID: 26073737 DOI: 10.7883/yoken.jjid.2015.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Life Science and Bioengineering, Beijing University of Technology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Monoclonal neutralizing antibodies against EV71 screened from mice immunized with yeast-produced virus-like particles. Virol Sin 2015; 30:208-13. [PMID: 26040893 DOI: 10.1007/s12250-015-3573-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022] Open
Abstract
Periodic outbreaks of hand, foot and mouth disease (HFMD) occur in children under 5 years old, and can cause death in some cases. The C4 strain of enterovirus 71 (EV71) is the main pathogen that causes HFMD in China. Although no drugs against EV71 are available, some studies have shown that candidate vaccines or viral capsid proteins can produce anti-EV71 immunity. In this study, female BABL/c mice (6-8 weeks old) were immunized with virus-like particles (VLPs) of EV71 produced in yeast to screen for anti-EV71 antibodies. Two hybridomas that could produce neutralizing antibodies against EV71 were obtained. Both neutralizing mAbs (D4 and G12) were confirmed to bind the VP1 capsid protein of EV71, and could protect >95% cells from 100 TCID50 EV71 infection at 25 µg/mL solution (lowest concentration). Those two neutralizing mAbs identified in the study may be promising candidates in development for mAbs to treat EV71 infection, and utilized as suitable reagents for use in diagnostic tests and biological studies.
Collapse
|
62
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
63
|
Tsou YL, Lin YW, Shao HY, Yu SL, Wu SR, Lin HY, Liu CC, Huang C, Chong P, Chow YH. Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis 2015; 9:e0003692. [PMID: 25855976 PMCID: PMC4391779 DOI: 10.1371/journal.pntd.0003692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/10/2015] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth disease (HFMD). There is not currently a vaccine available against HFMD, even though a newly developed formalin-inactivated EV71 (FI-EV71) vaccine has been tested in clinical trial and has shown efficacy against EV71. We have designed and genetically engineered a recombinant adenovirus Ad-EVVLP with the EV71 P1 and 3CD genes inserted into the E1/E3-deleted adenoviral genome. Ad-EVVLP were produced in HEK-293A cells. In addition to Ad-EVVLP particles, virus-like particles (VLPs) formed from the physical association of EV71 capsid proteins, VP0, VP1, and VP3 expressed from P1 gene products. They were digested by 3CD protease and confirmed to be produced by Ad-EVVLP-producing cells, as determined using transmission electron microscopy and western blotting. Mouse immunogenicity studies showed that Ad-EVVLP-immunized antisera neutralized the EV71 B4 and C2 genotypes. Activation of VLP-specific CD4+ and CD8+/IFN-γ T cells associated with Th1/Th2-balanced IFN-ɣ, IL-17, IL-4, and IL-13 was induced; in contrast, FI-EV71 induced only Th2-mediated neutralizing antibody against EV71 and low VLP-specific CD4+ and CD8+ T cell responses. The antiviral immunity against EV71 was clearly demonstrated in mice vaccinated with Ad-EVVLP in a hSCARB2 transgenic (hSCARB2-Tg) mouse challenge model. Ad-EVVLP-vaccinated mice were 100% protected and demonstrated reduced viral load in both the CNS and muscle tissues. Ad-EVVLP successfully induced anti-CVA16 immunities. Although antisera had no neutralizing activity against CVA16, the 3C-specific CD4+ and CD8+/IFN-γ T cells were identified, which could mediate protection against CVA16 challenge. FI-EV71 did not induce 3C-mediated immunity and had no efficacy against the CVA16 challenge. These results suggest that Ad-EVVLP can enhance neutralizing antibody and protective cellular immune responses to prevent EV71 infection and cellular immune responses against CV infection.
Collapse
Affiliation(s)
- Yueh-Liang Tsou
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Yun Shao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Hsiao-Yu Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Chyi Liu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Chieh Huang
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pele Chong
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
64
|
Leong SY, Ong BKT, Chu JJH. The role of Misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 2015; 11:e1004686. [PMID: 25747578 PMCID: PMC4352056 DOI: 10.1371/journal.ppat.1004686] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/16/2015] [Indexed: 11/18/2022] Open
Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young children, and occasional occurrences of neurological complications can be fatal. In this study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library was performed to identify potential antiviral agents against EV71 replication. Among the hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its strong inhibitory profile and novelty. In the investigation of the stage at which MINK is involved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to cause virus inhibition despite bypassing the normal entry pathway, suggesting its involvement at the post-entry stage. We have also shown that viral RNA and protein expression level was significantly reduced upon MINK silencing, suggesting its involvement in viral protein synthesis which feeds into viral RNA replication process. Through proteomic analysis and infection inhibition assay, we found that the activation of MINK was triggered by early replication events, instead of the binding and entry of the virus. Proteomic analysis on the activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phosphorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Luciferase reporter assay further revealed that the translation efficiency of the EV71 internal ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Further investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1 upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then positively regulates the translation of viral RNA transcripts. These novel findings hence suggest that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and may provide a potential target for the development of specific antiviral strategies against EV71 infection.
Collapse
Affiliation(s)
- Shi Yun Leong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Kit Teck Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
65
|
Lyu K, Wang GC, He YL, Han JF, Ye Q, Qin CF, Chen R. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design. J Biol Chem 2014; 290:3198-208. [PMID: 25492868 DOI: 10.1074/jbc.m114.624536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD.
Collapse
Affiliation(s)
- Ke Lyu
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang-Chuan Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China, and Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Ya-Ling He
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China, and
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China, and
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China, and
| | - Rong Chen
- From the Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
66
|
The enterovirus 71 procapsid binds neutralizing antibodies and rescues virus infection in vitro. J Virol 2014; 89:1900-8. [PMID: 25428877 DOI: 10.1128/jvi.03098-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) is responsible for seasonal outbreaks of hand, foot, and mouth disease in the Asia-Pacific region. The virus has the capability to cause severe disease and death, especially in young children. Although several vaccines are currently in clinical trials, no vaccines or therapeutics have been approved for use. Previous structural studies have revealed that two antigenically distinct capsid forms are produced in EV71-infected cells: an expanded empty capsid, sometimes called a procapsid, and the infectious virus. Specifically, an immunodominant epitope of EV71 that maps to the virus canyon is structurally different in the procapsid and virus. This structure-function study shows that the procapsid can sequester antibodies, thus enhancing EV71 infection in vitro. The results presented here suggest that, due to conformational differences between the EV71 procapsid and virus, the presence of the procapsid in natural virus infections should be considered in the future design of vaccines or therapeutics. IMPORTANCE In a picornavirus infection, both an infectious and a noninfectious empty capsid, sometimes referred to as a procapsid, are produced. It was novel to discover that the procapsid form of EV71 was expanded and antigenically distinct from the infectious virus. Previously, it had been supposed that this empty capsid was an off-pathway dead end or at best served for storage of pentameric subunits, which was later shown to be unlikely. It remains unexplained why picornaviruses evolutionarily conserve the wasteful production of so much noninfectious capsid. Here, we demonstrate that the EV71 procapsid has different antigenic properties than the infectious virus. Thus, the procapsid has the capacity to sequester neutralizing antibody and protect the virus, promoting or restoring a successful infection in vitro. This important observation should be considered in the future design and development of vaccines and therapeutics.
Collapse
|
67
|
Liu CC, Chow YH, Chong P, Klein M. Prospect and challenges for the development of multivalent vaccines against hand, foot and mouth diseases. Vaccine 2014; 32:6177-82. [PMID: 25218294 DOI: 10.1016/j.vaccine.2014.08.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71), an emerging neurotropic virus and coxsackieviruses (CV) are the major causative agents of hand, foot and mouth diseases (HFMD). These viruses have become a serious public health threat in the Asia Pacific region. Formalin-inactivated EV71 (FI-EV71) vaccines have been developed, evaluated in human clinical trials and were found to elicit full protection against EV71. Their failure to prevent CVA16 infections could compromise the acceptability of monovalent EV71 vaccines. Bivalent FI-EV71/FI-CVA16 vaccines have been found to elicit strong neutralizing antibody responses against both viruses in animal models but did not protect against CVA6 and CVA10 viral infections in cell culture neutralization assay. In this review, we discuss the critical bottlenecks in the development of multivalent HFMD vaccines, including the selection of vaccine strains, animal models to assess vaccine potency, the definition of end-points for efficacy trials, and the need for improved manufacturing processes to produce affordable vaccines.
Collapse
Affiliation(s)
- Chia-Chyi Liu
- Vaccine R&D Center, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Yen-Hung Chow
- Vaccine R&D Center, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Pele Chong
- Vaccine R&D Center, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan; Graduate Institute of Immunology, China Medical University, Taichung, Taiwan.
| | | |
Collapse
|
68
|
Hsiao HB, Chou AH, Lin SI, Lien SP, Liu CC, Chong P, Chen CY, Tao MH, Liu SJ. Delivery of human EV71 receptors by adeno-associated virus increases EV71 infection-induced local inflammation in adult mice. BIOMED RESEARCH INTERNATIONAL 2014; 2014:878139. [PMID: 25243194 PMCID: PMC4163470 DOI: 10.1155/2014/878139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 11/17/2022]
Abstract
Enterovirus71 (EV71) is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD). However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV) vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1) or a scavenger receptor class-B member-2 (hSCARB2) into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.
Collapse
Affiliation(s)
- Hung-Bo Hsiao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ai-Hsiang Chou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Su-I Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shu-Pei Lien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| | - Chih-Yeh Chen
- Institutes of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Microbiology, National Taiwan University, Taipei 10051, Taiwan
| | - Mi-Hua Tao
- Institutes of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
69
|
Yamayoshi S, Fujii K, Koike S. Receptors for enterovirus 71. Emerg Microbes Infect 2014; 3:e53. [PMID: 26038749 PMCID: PMC4126179 DOI: 10.1038/emi.2014.49] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/05/2014] [Accepted: 05/05/2014] [Indexed: 11/10/2022]
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays critical roles in attachment, viral entry and uncoating, and it can facilitate efficient EV71 infection. The three-dimensional structures of the mature EV71 virion, procapsid and empty capsid, as well as the exofacial domain of SCARB2, have been elucidated. This structural information has greatly increased our understanding of the early steps of EV71 infection. Furthermore, SCARB2 plays essential roles in the development of EV71 neurological disease in vivo. Adult mice are not susceptible to infection by EV71, but transgenic mice that express human SCARB2 become susceptible to EV71 infection and develop similar neurological diseases to those found in humans. This mouse model facilitates the in vivo investigation of many issues related to EV71. PSGL-1, sialylated glycan, heparan sulfate and Anx2 are attachment receptors, which enhance viral infection by retaining the virus on the cell surface. These molecules also contribute to viral infection in vitro either by interacting with SCARB2 or independently of SCARB2. However, the cooperative effects of these receptors, and their contribution to EV71 pathogenicity in vivo, remain to be elucidated.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo , Tokyo 108-8639, Japan
| | - Ken Fujii
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science , Tokyo 156-8506, Japan
| |
Collapse
|
70
|
Chia MY, Chung WY, Chiang PS, Chien YS, Ho MS, Lee MS. Monitoring antigenic variations of enterovirus 71: implications for virus surveillance and vaccine development. PLoS Negl Trop Dis 2014; 8:e3044. [PMID: 25058733 PMCID: PMC4109910 DOI: 10.1371/journal.pntd.0003044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 06/11/2014] [Indexed: 01/18/2023] Open
Abstract
Enterovirus 71 (EV71) causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A ∼ C) including 11 genotypes (A, B1 ∼ B5, and C1 ∼ C5). Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧ 8-fold difference) and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧ 8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.
Collapse
Affiliation(s)
- Min-Yuan Chia
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pai-Shan Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yeh-Sheng Chien
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Mei-Shang Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
71
|
Immunogenicity studies of bivalent inactivated virions of EV71/CVA16 formulated with submicron emulsion systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:670506. [PMID: 25006583 PMCID: PMC4071850 DOI: 10.1155/2014/670506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
Abstract
We assessed two strategies for preparing candidate vaccines against hand, foot, and mouth disease (HFMD) caused mainly by infections of enterovirus (EV) 71 and coxsackievirus (CV) A16. We firstly design and optimize the potency of adjuvant combinations of emulsion-based delivery systems, using EV71 candidate vaccine as a model. We then perform immunogenicity studies in mice of EV71/CVA16 antigen combinations formulated with PELC/CpG. A single dose of inactivated EV71 virion (0.2 μg) emulsified in submicron particles was found (i) to induce potent antigen-specific neutralizing antibody responses and (ii) consistently to elicit broad antibody responses against EV71 neutralization epitopes. A single dose immunogenicity study of bivalent activated EV71/CVA16 virion formulated with either Alum or PELC/CpG adjuvant showed that CVA16 antigen failed to elicit CVA16 neutralizing antibody responses and did not affect EV71-specific neutralizing antibody responses. A boosting dose of emulsified EV71/CVA16 bivalent vaccine candidate was found to be necessary to achieve high seroconversion of CVA16-specific neutralizing antibody responses. The current results are important for the design and development of prophylactic vaccines against HFMD and other emerging infectious diseases.
Collapse
|
72
|
Kattur Venkatachalam AR, Szyporta M, Kiener TK, Balraj P, Kwang J. Concentration and purification of enterovirus 71 using a weak anion-exchange monolithic column. Virol J 2014; 11:99. [PMID: 24884895 PMCID: PMC4042139 DOI: 10.1186/1743-422x-11-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV-71) is a neurotropic virus causing Hand, Foot and Mouth Disease (HFMD) in infants and children under the age of five. It is a major concern for public health issues across Asia-Pacific region. The most effective way to control the disease caused by EV-71 is by vaccination thus a novel vaccine is urgently needed. Inactivated EV-71 induces a strong, virus-neutralizing antibody response in animal models, protecting them against a lethal EV-71 challenge and it has been shown to elicit cross-neutralizing antibodies in human trials. Hence, the large-scale production of purified EV-71 is required for vaccine development, diagnosis and clinical trials. METHODS CIM® Monolith columns are single-piece columns made up of poly(glycidyl methacrylate co-ethylene dimethacrylate) as support matrix. They are designed as porous channels rather than beads with different chemistries for different requirements. As monolithic columns have a high binding capacity, flow rate and resolution, a CIM® DEAE-8f tube monolithic column was selected for purification in this study. The EV-71 infected Rhabdomyosarcoma (RD) cell supernatant was concentrated using 8% PEG 8000 in the presence of 400 mM sodium chloride. The concentrated virus was purified by weak anion exchange column using 50 mM HEPES + 1 M sodium chloride as elution buffer. RESULTS Highly pure viral particles were obtained at a concentration of 350 mM sodium chloride as confirmed by SDS-PAGE and electron microscopy. Presence of viral proteins VP1, VP2 and VP3 was validated by western blotting. The overall process achieved a recovery of 55%. CONCLUSIONS EV-71 viral particles of up to 95% purity can be recovered by a single step ion-exchange chromatography using CIM-DEAE monolithic columns and 1 M sodium chloride as elution buffer. Moreover, this method is scalable to purify several litres of virus-containing supernatant, using industrial monolithic columns with a capacity of up to 8 L such as CIM® cGMP tube monolithic columns.
Collapse
Affiliation(s)
- Ashok Raj Kattur Venkatachalam
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Milene Szyporta
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Tanja Kristin Kiener
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Premanand Balraj
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
73
|
Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, Tien P. Cell surface vimentin is an attachment receptor for enterovirus 71. J Virol 2014; 88:5816-33. [PMID: 24623428 PMCID: PMC4019121 DOI: 10.1128/jvi.03826-13] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/05/2014] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) is a highly transmissible pathogenic agent that causes severe central nervous system diseases in infected infants and young children. Here, we reported that EV71 VP1 protein could bind to vimentin intermediate filaments expressed on the host cell surface. Soluble vimentin or an antibody against vimentin could inhibit the binding of EV71 to host cells. Accompanied with the reduction of vimentin expression on the cell surface, the binding of EV71 to cells was remarkably decreased. Further evidence showed that the N terminus of vimentin is responsible for the interaction between EV71 and vimentin. These results indicated that vimentin on the host cell surface may serve as an attachment site that mediated the initial binding and subsequently increased the infectivity of EV71. IMPORTANCE This study delivers important findings on the roles of vimentin filaments in relation to EV71 infection and provides information that not only improves our understanding of EV71 pathogenesis but also presents us with potentially new strategies for the treatment of diseases caused by EV71 infections.
Collapse
Affiliation(s)
- Ning Du
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haolong Cong
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongchao Tian
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Anhui University, Anhui, People's Republic of China
| | - Hua Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenliang Zhang
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lei Song
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Po Tien
- Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
74
|
Cai Y, Ku Z, Liu Q, Leng Q, Huang Z. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine 2014; 32:2406-12. [PMID: 24657161 DOI: 10.1016/j.vaccine.2014.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/25/2014] [Accepted: 03/07/2014] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two major causative agents of hand, foot and mouth disease (HFMD), which is an infectious disease frequently occurring in children. A bivalent vaccine against both EV71 and CA16 is highly desirable. In the present study, we compare monovalent inactivated EV71, monovalent inactivated CA16, and a combination vaccine candidate comprising of both inactivated EV71 and CA16, for their immunogenicity and in vivo protective efficacy. The two monovalent vaccines were found to elicit serum antibodies that potently neutralized the homologous virus but had no or weak neutralization activity against the heterologous one; in contrast, the bivalent vaccine immunized sera efficiently neutralized both EV71 and CA16. More importantly, passive immunization with the bivalent vaccine protected mice against either EV71 or CA16 lethal infections, whereas the monovalent vaccines only prevented the homologous but not the heterologous challenges. Together, our results demonstrate that the experimental bivalent vaccine comprising of inactivated EV71 and CA16 induces a balanced protective immunity against both EV71 and CA16, and thus provide proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.
Collapse
Affiliation(s)
- Yicun Cai
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhiqiang Ku
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qingwei Liu
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qibin Leng
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhong Huang
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
75
|
Zhu F, Xu W, Xia J, Liang Z, Liu Y, Zhang X, Tan X, Wang L, Mao Q, Wu J, Hu Y, Ji T, Song L, Liang Q, Zhang B, Gao Q, Li J, Wang S, Hu Y, Gu S, Zhang J, Yao G, Gu J, Wang X, Zhou Y, Chen C, Zhang M, Cao M, Wang J, Wang H, Wang N. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N Engl J Med 2014; 370:818-28. [PMID: 24571754 DOI: 10.1056/nejmoa1304923] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease or herpangina worldwide. This phase 3 trial was designed to evaluate the efficacy, safety, and immunogenicity of an EV71 vaccine. METHODS We conducted a randomized, double-blind, placebo-controlled, multicenter trial in which 10,007 healthy infants and young children (6 to 35 months of age) were randomly assigned in a 1:1 ratio to receive two intramuscular doses of either EV71 vaccine or placebo, 28 days apart. The surveillance period was 12 months. The primary end point was the occurrence of EV71-associated hand, foot, and mouth disease or herpangina. RESULTS During the 12-month surveillance period, EV71-associated disease was identified in 0.3% of vaccine recipients (13 of 5041 children) and 2.1% of placebo recipients (106 of 5028 children) in the intention-to-treat cohort. The vaccine efficacy against EV71-associated hand, foot, and mouth disease or herpangina was 94.8% (95% confidence interval [CI], 87.2 to 97.9; P<0.001) in this cohort. Vaccine efficacies against EV71-associated hospitalization (0 cases vs. 24 cases) and hand, foot, and mouth disease with neurologic complications (0 cases vs. 8 cases) were both 100% (95% CI, 83.7 to 100 and 42.6 to 100, respectively). Serious adverse events occurred in 111 of 5044 children in the vaccine group (2.2%) and 131 of 5033 children in the placebo group (2.6%). In the immunogenicity subgroup (1291 children), an anti-EV71 immune response was elicited by the two-dose vaccine series in 98.8% of participants at day 56. An anti-EV71 neutralizing antibody titer of 1:16 was associated with protection against EV71-associated hand, foot, and mouth disease or herpangina. CONCLUSIONS The EV71 vaccine provided protection against EV71-associated hand, foot, and mouth disease or herpangina in infants and young children. (Funded by Sinovac Biotech; ClinicalTrials.gov number, NCT01507857.).
Collapse
Affiliation(s)
- Fengcai Zhu
- From the Jiangsu Provincial Center for Disease Control and Prevention, Nanjing (F.Z., X.Z., Yuemei Hu, Q.L., J.L., S.W., H.W.); National Institutes for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (W.X., X.T., T.J., B.Z.), National Institutes for Food and Drug Control (Z.L., Q.M., J. Wang), and Sinovac Biotech (Y.L., J. Wu, L.S., Q.G., Yuansheng Hu, N.W.), Beijing; the Fourth Military Medical University, Xi'an (J.X., L.W.); Sheyang County Center for Disease Control and Prevention, Yancheng City (S.G., J.G., C.C.); Ganyu County Center for Disease Control and Prevention, No. 98, Lianyungang City (J.Z., X.W., M.Z.); and Taixing County Center for Disease Control and Prevention, No. 224, Taizhou City (G.Y., Y.Z., M.C.) - all in China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers. PLoS One 2013; 8:e79783. [PMID: 24278177 PMCID: PMC3836818 DOI: 10.1371/journal.pone.0079783] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 09/20/2013] [Indexed: 11/29/2022] Open
Abstract
Background Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac) at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16. Methods Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses. Results The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had <8 pre-vaccination neutralization titers (Nt) against the B4 vaccine strain. After the first EV71vac immunization, 95% of vaccinees have >4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants) against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8) against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16. Conclusion EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials. Trial Registration ClinicalTrials.gov __NCT01268787
Collapse
|
77
|
Hwa SH, Lee YA, Brewoo JN, Partidos CD, Osorio JE, Santangelo JD. Preclinical evaluation of the immunogenicity and safety of an inactivated enterovirus 71 candidate vaccine. PLoS Negl Trop Dis 2013; 7:e2538. [PMID: 24244774 PMCID: PMC3820736 DOI: 10.1371/journal.pntd.0002538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/30/2013] [Indexed: 02/06/2023] Open
Abstract
Human enterovirus 71 (EV71) is a significant cause of morbidity and mortality from Hand, Foot and Mouth Disease (HFMD) and neurological complications, particularly in young children in the Asia-Pacific region. There are no vaccines or antiviral therapies currently available for prevention or treatment of HFMD caused by EV71. Therefore, the development of therapeutic and preventive strategies against HFMD is of growing importance. We report the immunogenic and safety profile of inactivated, purified EV71 preparations formulated with aluminum hydroxide adjuvant in preclinical studies in mice and rabbits. In mice, the candidate vaccine formulations elicited high neutralizing antibody responses. A toxicology study of the vaccine formulations planned for human use performed in rabbits showed no vaccine-related pathological changes and all animals remained healthy. Based on these preclinical studies, Phase 1 clinical testing of the EV71 inactivated vaccine was initiated.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Inviragen (Singapore) Pte. Ltd., Singapore, Singapore
| | - Yock Ann Lee
- Inviragen (Singapore) Pte. Ltd., Singapore, Singapore
| | | | | | - Jorge E. Osorio
- Inviragen Inc., Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | | |
Collapse
|
78
|
Lin CW, Chang CY, Chen WL, Lin SC, Liao CC, Chang JY, Liu CC, Hu AYC, Lu TC, Chou AH, Wu SC, Chong P, Huang MH. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV. Hum Vaccin Immunother 2013; 9:2378-85. [PMID: 23838466 PMCID: PMC3981847 DOI: 10.4161/hv.25639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/19/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time.
Collapse
Affiliation(s)
- Chih-Wei Lin
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Ching-Yun Chang
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Wei-Lin Chen
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Shih-Chang Lin
- Institute of Biotechnology; National Tsing Hua University; Hsinchu, Taiwan
| | - Chien-Chun Liao
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Jui-Yuan Chang
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Tsung-Chun Lu
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Ai-Hsiang Chou
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology; National Tsing Hua University; Hsinchu, Taiwan
| | - Pele Chong
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
- Institute of Biotechnology; National Tsing Hua University; Hsinchu, Taiwan
- Graduate Institute of Immunology; China Medical University; Taichung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology; National Health Research Institutes; Zhunan, Taiwan
| |
Collapse
|
79
|
Chimeric virus-like particle vaccines displaying conserved enterovirus 71 epitopes elicit protective neutralizing antibodies in mice through divergent mechanisms. J Virol 2013; 88:72-81. [PMID: 24131712 DOI: 10.1128/jvi.01848-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand, food, and mouth disease, which frequently occurs in young children. Since there are 11 subgenotypes (A, B1 to B5, and C1 to C5) within EV71, an EV71 vaccine capable of protecting against all of these subgenotypes is desirable. We report here the vaccine potential and protective mechanism of two chimeric virus-like particles (VLPs) presenting conserved neutralizing epitopes of EV71. We show that fusions of hepatitis B core antigen (HBc) with the SP55 or SP70 epitope of EV71, designated HBcSP55 and HBcSP70, respectively, can be rapidly generated and self-assembled into VLPs with the epitopes displayed on the surface. Immunization with the chimeric VLPs induced carrier- and epitope-specific antibody responses in mice. Anti-HBcSP55 and anti-HBcSP70 sera, but not anti-HBc sera, were able to neutralize in vitro multiple genotypes and strains of EV71. Importantly, passive immunization with anti-HBcSP55 or anti-HBcSP70 sera protected neonatal mice against lethal EV71 infections. Interestingly, anti-HBcSP70 sera could inhibit EV71 attachment to susceptible cells, whereas anti-HBcSP55 sera could not. However, both antisera were able to neutralize EV71 infection in vitro at the postattachment stage. The divergent mechanism of neutralization and protection conferred by anti-SP70 and anti-SP55 sera is in part attributed to their respective ability to bind authentic viral particles. Collectively, our study not only demonstrates that chimeric VLPs displaying the SP55 and SP70 epitopes are promising candidates for a broad-spectrum EV71 vaccine but also reveals distinct mechanisms of neutralization by the SP55- and SP70-targeted antibodies.
Collapse
|
80
|
Wang C, You A, Tian X, Zhao M, Chen Y, Lin T, Zheng J, Xiao M, Zhang Y, Kuang L, Zhou Z, Zhu B. Analysis and solution of false-positives when testing CVA16 sera using an antibody assay against the EV71 virus. Virus Res 2013; 176:33-6. [DOI: 10.1016/j.virusres.2013.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
|
81
|
Liang ZL, Mao QY, Wang YP, Zhu FC, Li JX, Yao X, Gao F, Wu X, Xu M, Wang JZ. Progress on the research and development of inactivated EV71 whole-virus vaccines. Hum Vaccin Immunother 2013; 9:1701-5. [PMID: 23744508 PMCID: PMC3906269 DOI: 10.4161/hv.24949] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022] Open
Abstract
The prevalence of diseases caused by EV71 infection has become a serious public health problem in the Western Pacific region. Due to a lack of effective treatment options, controlling EV71 epidemics has mainly focused on the research and development (R&D) of EV71 vaccines. Thus far, five organizations have completed pre-clinical studies focused on the development of inactivated EV71 whole-virus vaccines, including vaccine strain screening, process optimization, safety and immunogenicity evaluation, and are in different stages of clinical trials. Among these organizations, three companies in Mainland China [Beijing Vigoo Biological Co., Ltd. (Vigoo), Sinovac Biotech Ltd. (Sinovac) and Institute of Medical Biology, Chinese Academy of Medical Science (CAMS)] have recently completed Phase III trials for the vaccines they developed. In addition, the other two vaccines, developed by National Health Research Institutes (NHRI) of Taiwan and Inviragen Pte., Ltd (Inviragen), of Singapore, have also completed Phase I clinical trials. Published clinical trial results indicate that the inactivated EV71 vaccines have good safety and immunogenicity in the target population (infants) and confer a relatively high rate of protection against EV71 infection-related diseases. The results of clinical trials suggest a promising future for the clinical use of EV71 vaccines. Here, we review and highlight the recent progress on the R&D of inactivated EV71 whole-virus vaccines.
Collapse
Affiliation(s)
- Zheng-Lun Liang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Yi-Ping Wang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention; Nanjing, P.R. China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention; Nanjing, P.R. China
| | - Xin Yao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Fan Gao
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Xing Wu
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Miao Xu
- National Institutes for Food and Drug Control; Beijing, P.R. China
| | - Jun-Zhi Wang
- National Institutes for Food and Drug Control; Beijing, P.R. China
| |
Collapse
|
82
|
Wu X, Mao Q, Yao X, Chen P, Chen X, Shao J, Gao F, Yu X, Zhu F, Li R, Li W, Liang Z, Wang J, Lu F. Development and evaluation of a pseudovirus-luciferase assay for rapid and quantitative detection of neutralizing antibodies against enterovirus 71. PLoS One 2013; 8:e64116. [PMID: 23755115 PMCID: PMC3673970 DOI: 10.1371/journal.pone.0064116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/09/2013] [Indexed: 11/21/2022] Open
Abstract
The level of neutralizing antibodies (NtAb) induced by vaccine inoculation is an important endpoint to evaluate the efficacy of EV71 vaccine. In order to evaluate the efficacy of EV71 vaccine, here, we reported the development of a novel pseudovirus system expression firefly luciferase (PVLA) for the quantitative measurement of NtAb. We first evaluated and validated the sensitivity and specificity of the PVLA method. A total of 326 serum samples from an epidemiological survey and 144 serum specimens from 3 clinical trials of EV71 vaccines were used, and the level of each specimen's neutralizing antibodies (NtAb) was measured in parallel using both the conventional CPE-based and PVLA-based assay. Against the standard neutralization assay based on the inhibition of the cytopathic effect (CPE), the sensitivity and specificity of the PVLA method are 98% and 96%, respectively. Then, we tested the potential interference of NtAb against hepatitis A virus, Polio-I, Polio-II, and Polio-III standard antisera (WHO) and goat anti-G10/CA16 serum, the PVLA based assay showed no cross-reactivity with NtAb against other specific sera. Importantly, unlike CPE based method, no live replication-competent EV71 is used during the measurement. Taken together, PVLA is a rapid and specific assay with higher sensitivity and accuracy. It could serve as a valuable tool in assessing the efficacy of EV71 vaccines in clinical trials and disease surveillance in epidemiology studies.
Collapse
MESH Headings
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Cell Line, Tumor
- Child, Preschool
- Clinical Trials as Topic
- Enterovirus A, Human/immunology
- Enterovirus A, Human/physiology
- Female
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Hand, Foot and Mouth Disease/virology
- Humans
- Infant
- Luciferases, Firefly/biosynthesis
- Male
- Neutralization Tests
- Reproducibility of Results
- Sensitivity and Specificity
- Vaccination
- Viral Vaccines/immunology
- Virus Internalization
Collapse
Affiliation(s)
- Xing Wu
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Qunying Mao
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Xin Yao
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Pan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
| | - Jie Shao
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Fan Gao
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Xiang Yu
- Hualan Biological Engineering Inc. , Henan, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Rongcheng Li
- The Center for Disease Control and Prevention of the Guangxi Zhuang Automomous Region, Nanning, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China
| | - Zhenglun Liang
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
- * E-mail: (FML); (ZLL)
| | - Junzhi Wang
- Department of Hepatitis Vaccine, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, Peking University Health Science Center, Beijing, China
- * E-mail: (FML); (ZLL)
| |
Collapse
|
83
|
Li HY, Han JF, Qin CF, Chen R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine 2013; 31:3281-7. [PMID: 23726823 DOI: 10.1016/j.vaccine.2013.05.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/01/2013] [Accepted: 05/08/2013] [Indexed: 01/30/2023]
Abstract
Human Enterovirus 71 (EV71) is recognized as the leading causative agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region in recent years. There are still no approved antiviral drugs or vaccines against EV71 infection yet. In this study, we have developed an advanced platform for production of the virus-like particles (VLPs) for EV71 in Saccharomyces Cerevisiae by co-expressing P1 and 3CD genes of EV71. These VLPs exhibited similar morphology and protein composition as EV71 empty particles produced from EV71-infected cells. Immunization with VLPs in mice elicited robust neutralization antibodies against EV71 and potent cellular immune response. In vivo challenge experiments showed that the immune sera induced by VLP conferred protection in neonate mice against lethal EV71 challenge. Together, our study indicated that VLP from yeast is another potential vaccine candidate against EV71 infection.
Collapse
Affiliation(s)
- Hao-Yang Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | | | | | | |
Collapse
|
84
|
Abstract
Enterovirus 71 (EV71) is an important emerging human pathogen with a global distribution and presents a disease pattern resembling poliomyelitis with seasonal epidemics that include cases of severe neurological complications, such as acute flaccid paralysis. EV71 is a member of the Picornaviridae family, which consists of icosahedral, nonenveloped, single-stranded RNA viruses. Here we report structures derived from X-ray crystallography and cryoelectron microscopy (cryo-EM) for the 1095 strain of EV71, including a putative precursor in virus assembly, the procapsid, and the mature virus capsid. The cryo-EM map of the procapsid provides new structural information on portions of the capsid proteins VP0 and VP1 that are disordered in the higher-resolution crystal structures. Our structures solved from virus particles in solution are largely in agreement with those from prior X-ray crystallographic studies; however, we observe small but significant structural differences for the 1095 procapsid compared to a structure solved in a previous study (X. Wang, W. Peng, J. Ren, Z. Hu, J. Xu, Z. Lou, X. Li, W. Yin, X. Shen, C. Porta, T. S. Walter, G. Evans, D. Axford, R. Owen, D. J. Rowlands, J. Wang, D. I. Stuart, E. E. Fry, and Z. Rao, Nat. Struct. Mol. Biol. 19:424-429, 2012) for a different strain of EV71. For both EV71 strains, the procapsid is significantly larger in diameter than the mature capsid, unlike in any other picornavirus. Nonetheless, our results demonstrate that picornavirus capsid expansion is possible without RNA encapsidation and that picornavirus assembly may involve an inward radial collapse of the procapsid to yield the native virion.
Collapse
|
85
|
Cheng A, Fung CP, Liu CC, Lin YT, Tsai HY, Chang SC, Chou AH, Chang JY, Jiang RH, Hsieh YC, Su IJ, Chong PCS, Hsieh SM. A Phase I, randomized, open-label study to evaluate the safety and immunogenicity of an enterovirus 71 vaccine. Vaccine 2013; 31:2471-6. [DOI: 10.1016/j.vaccine.2013.03.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/26/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
86
|
Shingler KL, Yoder JL, Carnegie MS, Ashley RE, Makhov AM, Conway JF, Hafenstein S. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog 2013; 9:e1003240. [PMID: 23555253 PMCID: PMC3605244 DOI: 10.1371/journal.ppat.1003240] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/28/2013] [Indexed: 12/30/2022] Open
Abstract
Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered “A-particle”, which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ∼10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. In a picornavirus capsid structural integrity must not be compromised until a key mechanism triggers genome release into a permissive cell. It has long been established that the majority of members of the picornavirus family solve this dilemma with a two-step uncoating process initiated by receptor recognition. For human enteroviruses, binding of an entry receptor triggers a series of conformational changes, resulting in an “A-particle” that is primed for genome release. After endocytosis, an unknown trigger causes the A-particle to expel the viral genome, leaving behind an emptied capsid. This process can be mimicked in solution by heating mature virus. Though the capsid species for both of these steps have been isolated, the fine details of the uncoating process have yet to be elucidated. Cryo-electron microscopy reconstructions of the enterovirus 71 A-particle and empty capsid provide compelling structural evidence to suggest that the icosahedral two-fold axis opens a channel that acts as a gateway in the viral capsid, regulating the release of genomic material from the altered particle.
Collapse
Affiliation(s)
- Kristin L. Shingler
- Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jennifer L. Yoder
- Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Michael S. Carnegie
- Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Robert E. Ashley
- Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Alexander M. Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James F. Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Susan Hafenstein
- Department of Medicine, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
87
|
Cai Y, Liu Q, Huang X, Li D, Ku Z, Zhang Y, Huang Z. Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2013; 31:2215-21. [PMID: 23499596 DOI: 10.1016/j.vaccine.2013.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
Coxsackievirus A16 (CA16) is one of the main pathogens that cause hand, foot and mouth disease, which frequently occurs in young children. A small percentage of patients infected with CA16 may suffer from severe neurological complications that could also lead to death. Recent epidemiological data shows the increase in both the total number and the incidence rate of severe CA16-associated cases in China, indicating that CA16 should be targeted for vaccine development. In this article, we report the immunogenicity and protective efficacy of experimental inactivated CA16 vaccines in mice. We show that immunization with β-propiolactone-inactivated whole-virus vaccines derived from two CA16 clinical isolates were able to induce CA16-specific antibody and IFN-secreting T-cell responses in mice. The resulting anti-CA16 mouse sera neutralized both homologous and heterologous CA16 clinical isolates, as well as a mouse-adapted strain called CA16-MAV, which is capable of infecting 14-day-old mice. Passive transfer of anti-CA16 neutralizing sera partially protected neonatal mice from lethal challenge by a clinical isolate CA16-G08. More significantly, active immunization of mice with the inactivated vaccines conferred complete protection against lethal infection with CA16-MAV. Collectively, these results provide a solid foundation for further development of inactivated whole-virus CA16 vaccines for human use.
Collapse
Affiliation(s)
- Yicun Cai
- Key laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
88
|
Yamayoshi S, Ohka S, Fujii K, Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol 2013; 87:3335-47. [PMID: 23302872 PMCID: PMC3592140 DOI: 10.1128/jvi.02070-12] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
Human scavenger receptor class B, member 2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL1) have been identified to be the cellular receptors for enterovirus 71 (EV71). We compared the EV71 infection efficiencies of mouse L cells that expressed SCARB2 (L-SCARB2) and PSGL1 (L-PSGL1) and the abilities of SCARB2 and PSGL1 to bind to the virus. L-SCARB2 cells bound a reduced amount of EV71 compared to L-PSGL1 cells. However, EV71 could infect L-SCARB2 cells more efficiently than L-PSGL1 cells. The results suggested that the difference in the binding capacities of the two receptors was not the sole determinant of the infection efficiency and that SCARB2 plays an essential role after attaching to virions. Therefore, we examined the viral entry into L-SCARB2 cells and L-PSGL1 cells by immunofluorescence microscopy. In both cells, we detected internalized EV71 virions that colocalized with an early endosome marker. We then performed a sucrose density gradient centrifugation analysis to evaluate viral uncoating. After incubating the EV71 virion with L-SCARB2 cells or soluble SCARB2 under acidic conditions below pH 6.0, we observed that part of the native virion was converted into an empty capsid that lacked both genomic RNA and VP4 capsid proteins. The results suggested that the uncoating of EV71 requires both SCARB2 and an acidic environment and occurs after the internalization of the virus-receptor complex into endosomes. However, the empty capsid formation was not observed after incubation with L-PSGL1 cells or soluble PSGL1 under any of the tested pH conditions. These results indicated that SCARB2 is capable of viral binding, viral internalization, and viral uncoating and that the low infection efficiency of L-PSGL1 cells is due to the inability of PSGL1 to induce viral uncoating. The characterization of SCARB2 as an uncoating receptor greatly contributes to the understanding of the early steps of EV71 infection.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | |
Collapse
|
89
|
Ku Z, Ye X, Huang X, Cai Y, Liu Q, Li Y, Su Z, Huang Z. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps. PLoS One 2013; 8:e57601. [PMID: 23451250 PMCID: PMC3579802 DOI: 10.1371/journal.pone.0057601] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Enterovirus 71 (EV71) is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia–Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear. Methods/Findings In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs). Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC) located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment. Conclusions Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.
Collapse
Affiliation(s)
- Zhiqiang Ku
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
He F, Kiener TK, Lim XF, Tan Y, Raj KVA, Tang M, Chow VTK, Chen Q, Kwang J. Development of a sensitive and specific epitope-blocking ELISA for universal detection of antibodies to human enterovirus 71 strains. PLoS One 2013; 8:e55517. [PMID: 23383215 PMCID: PMC3561296 DOI: 10.1371/journal.pone.0055517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 12/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no efficient universal antibody test available to detect EV71 infections. METHODOLOGY/PRINCIPAL FINDING In the present study, an epitope-blocking ELISA was developed to detect specific antibodies to human EV71 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (Mab 1C6) that specifically binds to capsid proteins in whole EV71 viruses without any cross reaction to any EV71 capsid protein expressed alone. The sensitivity and specificity of the epitope-blocking ELISA for EV71 was evaluated and compared to microneutralization using immunized animal sera to multiple virus genotypes of EV71 and coxsackieviruses. Further, 200 serum sample from human individuals who were potentially infected with EV71 viruses were tested in both the blocking ELISA and microneutralization. Results indicated that antibodies to EV71 were readily detected in immunized animals or human sera by the epitope blocking ELISA whereas specimens with antibodies to other enteroviruses yielded negative results. This assay is not only simpler to perform but also shows higher sensitivity and specificity as compared to microneutralization. CONCLUSION The epitope-blocking ELISA based on a unique Mab 1C6 provided highly sensitive and 100% specific detection of antibodies to human EV71 viruses in human sera.
Collapse
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Xiao Fang Lim
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Yunrui Tan
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Manli Tang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Vincent T. K. Chow
- Department of Microbiology Faculty of Medicine, National University of Singapore, Singapore, Singapore
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, Singapore, Singapore
- Infectious Diseases, The Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Microbiology Faculty of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
91
|
Progress on the research and development of human enterovirus 71 (EV71) vaccines. Front Med 2012; 7:111-21. [PMID: 23247645 DOI: 10.1007/s11684-012-0237-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Enterovirus 71 (EV71) infections, which can cause severe complications, have become one of the serious public health issues in the Western Pacific region and China. To date, a number of pharmaceutical companies and institutes have initiated the research and development of EV71 vaccines as a countermeasure. As is the case with innovative vaccine development, there are several critical bottlenecks in EV71 vaccine development that must be overcome before the clinical trials, including the selection of vaccine strain, standardization of the procedure for quantifying neutralizing antibody (NTAb) and antigen, establishment and application of a reference standard and biological standards, development of animal models for the evaluation of protective efficacy, and identification of the target patient population. To tackle these technical obstacles, researchers in Mainland of China have conducted a series of studies concerning the screening of vaccine strains and the establishment of criteria, biological standards and detection methods, thereby advancing EV71 vaccine development. This review summarizes recent worldwide progress on the quality control and evaluation of EV71 vaccines.
Collapse
|
92
|
Chong P, Guo MS, Lin FHY, Hsiao KN, Weng SY, Chou AH, Wang JR, Hsieh SY, Su IJ, Liu CC. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS One 2012; 7:e49973. [PMID: 23226233 PMCID: PMC3511423 DOI: 10.1371/journal.pone.0049973] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/15/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available. PRINCIPAL FINDING In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >10(6) the tissue culture's infectious dose (TCID(50)) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10(-5) was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24-28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35-38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176-190. CONCLUSION These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Bioreactors
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Centrifugation, Density Gradient
- Chlorocebus aethiops
- Electrophoresis, Polyacrylamide Gel
- Enterovirus A, Human/growth & development
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Enterovirus A, Human/ultrastructure
- Epitopes/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Mice
- Microscopy, Electron, Transmission
- Neutralization Tests
- Rabbits
- Vero Cells
- Virion/growth & development
- Virion/immunology
- Virion/isolation & purification
- Virion/ultrastructure
Collapse
Affiliation(s)
- Pele Chong
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Meng-Shin Guo
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Fion Hsiao-Yu Lin
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Kuang-Nan Hsiao
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shu-Yang Weng
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ai-Hsiang Chou
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yang Hsieh
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Ih-Jen Su
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
93
|
Xie Q, Li X, Sanpha K, Ji J, Xi Q, Xue C, Ma J, Zhang Y. Pinon shell polysaccharide enhances immunity against H9N2 avian influenza virus in chickens. Poult Sci 2012; 91:2767-73. [DOI: 10.3382/ps.2012-02431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
94
|
Reactogenicity and immunogenicity of an enterovirus 71 vaccine in Chinese healthy children and infants. Pediatr Infect Dis J 2012; 31:1158-65. [PMID: 22926209 DOI: 10.1097/inf.0b013e31826eba74] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) is highly contagious and can cause severe complications. A safe and effective vaccine is needed. We assessed the reactogenicity and immunogenicity of an inactivated, alum-adjuvanted EV71 vaccine in this study. METHODS A randomized, double-blind, placebo-controlled clinical trial was undertaken in 360 healthy participants who were stratified into 2 age groups (6-12 and 13-60 months), and randomly allocated to receive placebo or the investigational vaccine containing 160 U, 320 U or 640 U antigen per dose by the ratio of 1:1:1:1 at days 0 and 28. Reactogenic data within 28 days after each vaccination were recorded. Blood samples were obtained on days 0, 28 and 56 for neutralizing antibody assay. RESULTS Overall, 193 participants reported at least 1 injection-site or systemic adverse reaction with 53.3% and 54.4% participants receiving the study vaccine and placebo, respectively. Most of the reactions were mild or moderate. Three serious adverse events were observed, but none was related to vaccination. In the participants with seronegative baseline, after 2 doses all the participants receiving EV71 vaccines were seropositive and the seroconversion rates were more than 98.1%. In the participants with seropositive baseline, 1 dose induced good seroconversion rates of more than 64.3% in participants receiving EV71 vaccines. CONCLUSIONS This study found that the inactivated EV71 vaccine was well tolerated and had good immunogenicity in healthy children and infants. A single dose induced typical booster response in the participants with a seropositive baseline, and 2 doses were needed for the immunologically naive participants.
Collapse
|
95
|
Meng T, Kiener TK, Kwang J. RNA polymerase I-driven reverse genetics system for enterovirus 71 and its implications for vaccine production. Virol J 2012; 9:238. [PMID: 23072515 PMCID: PMC3493273 DOI: 10.1186/1743-422x-9-238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 10/04/2012] [Indexed: 01/24/2023] Open
Abstract
Background Enterovirus 71 (EV71) is a virus that causes from mild hand, foot and mouth disease (HFMD) to severe neurological complications and deaths in infants and young children. Effective antiviral agents and vaccines against EV71 are not available. However, Vero cell-based chemically inactivated EV71 vaccines could be developed soon based on the success of inactivated polio vaccine. Like poliovirus, EV71 has a positive single-stranded RNA genome of about 7400 nucleotides which contains a single open reading frame (ORF) flanked by conserved and untranslated regions at both the 5′ and 3′ ends. Results The universal amplification of the full length genome of EV71 regardless of its genetic diversity, and the subsequent construction of a human RNA polymerase I-driven reverse genetics (RG) system to produce pure virus stocks in Vero cell within 10 days were described. The rescued viruses were characterized by DNA sequencing, cytopathic effect (CPE) and indirect fluorescent assay (IFA) in comparison with the wild-type viruses. Moreover, the rescued viruses grew to high titers and retained the same immunogenicity as the wild-type viruses. Conclusion We have established a simplified method to rescue RG EV71 virus from diverse clinical isolates with detailed genetic information and to prepare virus stocks in only 10 days. This method could accelerate EV71 vaccine development.
Collapse
Affiliation(s)
- Tao Meng
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Republic of Singapore
| | | | | |
Collapse
|
96
|
Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal antibodies. J Virol Methods 2012; 187:127-31. [PMID: 23046991 DOI: 10.1016/j.jviromet.2012.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 08/13/2012] [Accepted: 09/20/2012] [Indexed: 11/23/2022]
Abstract
Enterovirus 71 (EV71), a member of the Enterovirus genus of the Picornaviridae family, is one of the major causative agents of hand-foot-and-mouth disease (HFMD), which is prevalent in the Asia-Pacific region. In this article, a set of capsid subunit protein-specific antibodies was used to characterize the EV71 structural protein processing and to determine the composition and assembly of EV71 capsids. SDS-PAGE and Western blot analyses showed that the capsids of a purified EV71 preparation, which lacked viral infectivity, were composed of processed VP0, VP1 and VP3, all of which co-assembled into particles. Analyses of infectious EV71-containing cell lysate revealed the presence of VP2, in addition to VP0, VP1 and VP3, suggesting that the cleavage of VP0 into VP2 and VP4 is important for infectivity. Immunofluorescent staining with the three specific antibodies demonstrated that the capsid subunit proteins co-localized in the cytoplasm of cells infected with EV71. The results add new information on the processing, assembly and localization of EV71 capsid proteins, and demonstrate the usefulness of the capsid protein-specific antibodies for virological investigation and for development of vaccines and diagnostic reagents.
Collapse
|
97
|
Chong P, Hsieh SY, Liu CC, Chou AH, Chang JY, Wu SC, Liu SJ, Chow YH, Su IJ, Klein M. Production of EV71 vaccine candidates. Hum Vaccin Immunother 2012; 8:1775-83. [PMID: 22992566 PMCID: PMC3656065 DOI: 10.4161/hv.21739] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) is now recognized as an emerging neurotropic virus in Asia and with Coxsackie virus (CV) it is the other major causative agent of hand-foot-mouth diseases (HFMD). Effective medications and/or prophylactic vaccines against HFMD are urgently needed. From a scientific (the feasibility of bioprocess, immunological responses and potency in animal challenge model) and business development (cost of goods) points of view, we in this review address and discuss the pros and cons of different EV71 vaccine candidates that have been produced and evaluated in animal models. Epitope-based synthetic peptide vaccine candidates containing residues 211–225 of VP1 formulated with Freund’s adjuvant (CFA/IFA) elicited low EV71 virus neutralizing antibody responses, but were protective in the suckling mouse challenge model. Among recombinant EV71 subunits (rVP1, rVP2 and rVP3) expressed in E. coli, purified and formulated with CFA/IFA, only VP1 elicited mouse antibody responses with measurable EV71-specific virus neutralization titers. Immunization of mice with either a DNA plasmid containing VP1 gene or VP1 expressed in Salmonella typhimurium also generated neutralizing antibody responses and protected animals against a live EV71 challenge. Recombinant EV71 virus-like particles (rVLP) produced from baculovirus formulated either with CFA/IFA or alum elicited good virus neutralization titers in both mice and non-human primates, and were found to be protective in the suckling mouse EV71 challenge model. Synthetic peptides or recombinant EV71 subunit vaccines (rVP1 and rVLP) formulated in alum were found to be poorly immunogenic in rabbits. Only formalin-inactivated (FI) EV71 virions formulated in alum elicited cross-neutralizing antibodies against different EV71 genotypes in mice, rabbits and non-human primates but induced weak neutralizing responses against CAV16. From a regulatory, economic and market acceptability standpoint, FI-EV71 virion vaccines are the most promising candidates and are currently being evaluated in human clinical trials. We further describe and analyze some new bioprocesses technologies that have great potential applications in EV71 vaccine development. This review also demonstrates the opportunities and challenges that the Asian vaccine industry faces today.
Collapse
Affiliation(s)
- Pele Chong
- Vaccine R&D Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Immunological evaluation and comparison of different EV71 vaccine candidates. Clin Dev Immunol 2012; 2012:831282. [PMID: 23008736 PMCID: PMC3447357 DOI: 10.1155/2012/831282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 12/02/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot, and mouth diseases (HFMDs), and EV71 is now recognized as an emerging neurotropic virus in Asia. Effective medications and/or prophylactic vaccines against HFMD are not available. The current results from mouse immunogenicity studies using in-house standardized RD cell virus neutralization assays indicate that (1) VP1 peptide (residues 211–225) formulated with Freund's adjuvant (CFA/IFA) elicited low virus neutralizing antibody response (1/32 titer); (2) recombinant virus-like particles produced from baculovirus formulated with CFA/IFA could elicit good virus neutralization titer (1/160); (3) individual recombinant EV71 antigens (VP1, VP2, and VP3) formulated with CFA/IFA, only VP1 elicited antibody response with 1/128 virus neutralization titer; and (4) the formalin-inactivated EV71 formulated in alum elicited antibodies that cross-neutralized different EV71 genotypes (1/640), but failed to neutralize CVA16. In contrast, rabbits antisera could cross-neutralize strongly against different genotypes of EV71 but weakly against CVA16, with average titers 1/6400 and 1/32, respectively. The VP1 amino acid sequence dissimilarity between CVA16 and EV71 could partially explain why mouse antibodies failed to cross-neutralize CVA16. Therefore, the best formulation for producing cost-effective HFMD vaccine is a combination of formalin-inactivated EV71 and CAV16 virions.
Collapse
|
99
|
Tian X, Su X, Li X, Li H, Li T, Zhou Z, Zhong T, Zhou R. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PLoS One 2012; 7:e41381. [PMID: 22848478 PMCID: PMC3407240 DOI: 10.1371/journal.pone.0041381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 06/21/2012] [Indexed: 01/30/2023] Open
Abstract
Enterovirus 71 (EV71) is responsible for hand, foot and mouth disease with high mortality among children. Various neutralizing B cell epitopes of EV71 have been identified as potential vaccine candidates. Capsid-incorporation of antigens into adenovirus (Ad) has been developed for a novel vaccine approach. We constructed Ad3-based EV71 vaccine vectors by incorporating a neutralizing epitope SP70 containing 15 amino acids derived from capsid protein VP1 of EV71 within the different surface-exposed domains of the capsid protein hexon of Ad3EGFP, a recombinant adenovirus type 3 (Ad3) expressing enhanced green fluorescence protein. Thermostability and growth kinetic assays suggested that the SP70 epitope incorporation into hypervariable region (HVR1, HVR2, or HVR7) of the hexon did not affect Ad fitness. The SP70 epitopes were thought to be exposed on all hexon-modified intact virion surfaces. Repeated administration of BALB/c mice with the modified Ads resulted in boosting of the anti-SP70 humoral immune response. Importantly, the modified Ads immunization of mother mice conferred protection in vivo to neonatal mice against the lethal EV71 challenge, and the modified Ads-immunized mice serum also conferred passive protection against the lethal challenge in newborn mice. Compared with the recombinant GST-fused SP70 protein immunization, immunization with the Ads containing SP70 in HVR1 or HVR2 elicited higher SP70-specific IgG titers, higher neutralization titers, and conferred more effective protection to neonatal mice. Thus, this study provides valuable information for hexon-modified Ad3 vector development as a promising EV71 vaccine candidate and as an epitope-delivering vehicle for other pathogens.
Collapse
MESH Headings
- Adenoviridae
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/physiology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cell Line, Tumor
- Child
- Child, Preschool
- Chlorocebus aethiops
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus Infections/blood
- Enterovirus Infections/immunology
- Enterovirus Infections/prevention & control
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Humans
- Immunity, Humoral
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Infant
- Male
- Mice
- Mice, Inbred BALB C
- Vero Cells
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Xingui Tian
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Xiaobo Su
- Department of Medical Genetics and Cell Biology, School of Basic Science, Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Xiao Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Haitao Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Ting Li
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Zhichao Zhou
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Tianhua Zhong
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Rong Zhou
- State Key Lab of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
100
|
Meng FY, Li JX, Li XL, Chu K, Zhang YT, Ji H, Li L, Liang ZL, Zhu FC. Tolerability and immunogenicity of an inactivated enterovirus 71 vaccine in Chinese healthy adults and children: an open label, phase 1 clinical trial. Hum Vaccin Immunother 2012; 8:668-74. [PMID: 22634437 DOI: 10.4161/hv.19521] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this open labeled phase 1 clinical trial with enterovirus 71 (EV71) vaccine (ClinicalTrials.gov number: NCT01267903) performed in Donghai County, Jiangsu Province, China, in January 2011. A total of 100 healthy participants, stratified by age (40 adults aged 16-22 y and 60 children aged 6-15 y), were enrolled from volunteers and sequentially received EV71 vaccines of 160U (only for children), 320U, or 640U on day 0 and 28, in a manner of dose escalation. All the participants were followed for 28 d after each shot. During the study period, 37 participants reported at least one injection-site or systemic adverse reaction. No case of grade 3 adverse reaction or serious adverse event (SAE) was observed. Also no dose-related increase in reaction rate was noticed. Pain at injection-site and fever were the most frequently reported local and systematic reaction, respectively. The studied EV71 vaccines demonstrated acceptable tolerability and no anti-nuclear antibody (ANA) seropositive was detected pre or post vaccinations in participants. Also, no clinically significant abnormal change for the liver or kidney function indexes was found. In the according-to-protocol cohort for immunogenicity, it was observed one dose of EV71 vaccine elicited good immune response in the participants, especially for the ones with sero-positive baseline. No obvious dose-response relationship for immunogenicity was found.
Collapse
Affiliation(s)
- Fan-Yue Meng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|