51
|
Dupont J, Reverchon M, Bertoldo MJ, Froment P. Nutritional signals and reproduction. Mol Cell Endocrinol 2014; 382:527-537. [PMID: 24084162 DOI: 10.1016/j.mce.2013.09.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/17/2023]
Abstract
There is extensive evidence that nutrition influences reproductive function in various mammalian species (agricultural animals, rodents and human). However, the mechanisms underlying the relationship between nutrition, energy metabolism and reproductive function are poorly understood. This review considers nutrient sensors as a molecular link between food molecules and consequences for female and male fertility. It focuses on the roles and the molecular mechanisms of some of the relevant hormones, such as insulin and adipokines, and of energy substrates (glucose, fatty acids and amino acids), in the gonadotropic axis (central nervous system and gonads). A greater understanding of the interactions between nutrition and fertility is required for both better management of the physiological processes and the development of new molecules to prevent or cure metabolic diseases and their consequences for fertility.
Collapse
Affiliation(s)
- Joëlle Dupont
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | - Maxime Reverchon
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Michael J Bertoldo
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | - Pascal Froment
- UMR 7247, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| |
Collapse
|
52
|
Framarino-dei-Malatesta M, Derme M, Manzia TM, Iaria G, De Luca L, Fazzolari L, Napoli A, Berloco P, Patel T, Orlando G, Tisone G. Impact of mTOR-I on fertility and pregnancy: state of the art and review of the literature. Expert Rev Clin Immunol 2014; 9:781-9. [DOI: 10.1586/1744666x.2013.824243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
Wang N, Luo LL, Xu JJ, Xu MY, Zhang XM, Zhou XL, Liu WJ, Fu YC. Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism 2014; 63:94-103. [PMID: 24135502 DOI: 10.1016/j.metabol.2013.09.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/04/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Studies have shown that excess body fat negatively affects reproductive functions in females. However, whether obesity affects the ovarian follicle development and ovarian lifespan and the underlying mechanism has not been well elucidated. The aim of the present study was to investigate the association between obesity and ovarian follicle development. METHODS Adult female Sprague-Dawley rats (n = 36) were randomly divided into three groups: the normal control (NC) group, the caloric restriction (CR) group (fed 70% food of the NC group) and the high-fat diet (HF) group. They were maintained on these regimens for 18 weeks. RESULTS The body weight, ovary weight and visceral fat in the HF group were significantly higher than those in the NC group and the CR group at the end of treatment. Histological analysis showed that the HF rats had significantly less number and percentage of primordial follicles, but greater number and percentage of developing and atretic follicles than the NC rats and CR rats. Western blot analysis demonstrated that the level of mTORC1 and p-S6K1 proteins significantly increased in the ovaries of HF rats, whereas that of SIRT1, SIRT6, FOXO3a and NRF-1 decreased compared to the NC rats. In contrast, the expression of mTORC1 and p-S6K1 dramatically declined, while that of SIRT1, SIRT6, FOXO3a and NRF1 increased in the ovaries of CR rats. CONCLUSIONS Our study suggests that the HF diet induced obesity may accelerate the ovarian follicle development and rate of follicle loss through activating mTOR and suppressing SIRT1 signaling, thus leading to POF, and that CR may inhibit the activation of primordial follicles, follicular development and loss, thus extending the ovarian lifespan through suppressing mTOR and activating SIRT1 signaling.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Cell Senescence, Shantou University Medical College, Xinling Road 22, Shantou 515041, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Cuyàs E, Corominas-Faja B, Joven J, Menendez JA. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway. Methods Mol Biol 2014; 1170:113-44. [PMID: 24906312 DOI: 10.1007/978-1-4939-0888-2_7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell division involves a series of ordered and controlled events that lead to cell proliferation. Cell cycle progression implies not only demanding amounts of cell mass, protein, lipid, and nucleic acid content but also a favorable energy state. The mammalian target of rapamycin (mTOR), in response to the energy state, nutrient status, and growth factor stimulation of cells, plays a pivotal role in the coordination of cell growth and the cell cycle. Here, we review how the nutrient-sensing mTOR-signaling cascade molecularly integrates nutritional and mitogenic/anti-apoptotic cues to accurately coordinate cell growth and cell cycle. First, we briefly outline the structure, functions, and regulation of the mTOR complexes (mTORC1 and mTORC2). Second, we concisely evaluate the best known ability of mTOR to control G1-phase progression. Third, we discuss in detail the recent evidence that indicates a new genome stability caretaker function of mTOR based on the specific ability of phosphorylated forms of several mTOR-signaling components (AMPK, raptor, TSC, mTOR, and S6K1), which spatially and temporally associate with essential mitotic regulators at the mitotic spindle and at the cytokinetic cleavage furrow.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona (ICO-Girona), Hospital Dr. Josep Trueta de Girona, Ctra. França s/n, E-17007, Girona, Catalonia, Spain
| | | | | | | |
Collapse
|
55
|
Luo LL, Xu JJ, Fu YC. Rapamycin prolongs female reproductive lifespan. Cell Cycle 2013; 12:3353-4. [PMID: 24091532 PMCID: PMC3895422 DOI: 10.4161/cc.26578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/04/2013] [Indexed: 02/05/2023] Open
Affiliation(s)
- Li-li Luo
- Department of Gynecology and Obstetrics of the First Affiliated Hospital; Shantou University Medical College; Shantou, PR China
| | - Jin-jie Xu
- Laboratory of Cell Senescence; Shantou University Medical College; Shantou, PR China
| | - Yu-cai Fu
- Laboratory of Cell Senescence; Shantou University Medical College; Shantou, PR China
- Correspondence to: Yu-cai Fu,
| |
Collapse
|
56
|
Dokladny K, Zuhl MN, Mandell M, Bhattacharya D, Schneider S, Deretic V, Moseley PL. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J Biol Chem 2013; 288:14959-72. [PMID: 23576438 DOI: 10.1074/jbc.m113.462408] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell.
Collapse
Affiliation(s)
- Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Xu M, Tao G, Kang M, Gao Y, Zhu H, Gong W, Wang M, Wu D, Zhang Z, Zhao Q. A polymorphism (rs2295080) in mTOR promoter region and its association with gastric cancer in a Chinese population. PLoS One 2013; 8:e60080. [PMID: 23555892 PMCID: PMC3612103 DOI: 10.1371/journal.pone.0060080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/21/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND As an imperative part of PI3K/Akt/mTOR pathway, mammalian target of rapamycin (mTOR) has been demonstrated to increase in gastric cancer cells and tumors. Our research explored the relationship between single nucleotide polymorphism (SNP) rs2295080 in mTOR promoter region and the risk of gastric cancer (GC). METHODS Seven hundred and fifty-three (753) gastric adenocarcinoma patients and 854 matched healthy subjects were recruited in the cancer association study and 60 tissues were used to test the expression of mTOR. Unconditional logistic regression was selected to evaluate the association between the rs2295080 T>G polymorphism and GC risk. We then examined the functionality of this promoter genetic variant by luciferase assay and EMSA. RESULTS Individuals with G allele had a 23% decreased risk of GC, comparing with those carrying T allele (adjusted OR = 0.77, 95% CI = 0.65-0.92). This protective effect of G allele stood out better in male group. Meanwhile, GC patients carrying TG/GG genotype also displayed a decreased mRNA level of mTOR (P = 0.004). In luciferase assay, T allele tended to enhance the transcriptional activity of mTOR with an approximate 0.5-fold over G allele. Furthermore, EMSA tests explained that different alleles of rs2295080 displayed different affinities to some transcriptional factor. CONCLUSION The mTOR promoter polymorphism rs2295080 was significantly associated with GC risk. This SNP, which effectively influenced the expression of mTOR, may be a new biomarker of early diagnosis of gastric cancer and a suitable indicator of utilizing mTOR inhibitor for treatment of GC.
Collapse
Affiliation(s)
- Ming Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People’s Hospital Affiliated to Nanjing Medical University, Huai-an, China
| | - Meiyun Kang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Gao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haixia Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Core Laboratory of Nantong Tumor Hospital, Nantong, China
| | - Weida Gong
- Department of General Surgery, Yixing Cancer Hospital, Yixing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (ZZ); (QZ)
| |
Collapse
|
58
|
Kogasaka Y, Hoshino Y, Hiradate Y, Tanemura K, Sato E. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol Reprod Dev 2013; 80:334-48. [DOI: 10.1002/mrd.22166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 01/26/2023]
|
59
|
|
60
|
Pharmacological inhibition of mTORC1 prevents over-activation of the primordial follicle pool in response to elevated PI3K signaling. PLoS One 2013; 8:e53810. [PMID: 23326514 PMCID: PMC3543305 DOI: 10.1371/journal.pone.0053810] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
The majority of ovarian primordial follicles must be preserved in a quiescent state to allow for the regular production of gametes over the female reproductive lifespan. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Under certain pathological conditions, the entire pool of primordial follicles matures simultaneously leading to an accelerated loss of primordial follicles and to premature ovarian failure (POF). We have previously shown that loss of Pten (phosphatase and tensin homolog deleted on chromosome ten) in mouse oocytes leads to premature activation of the entire pool of primordial follicles, subsequent follicular depletion in early adulthood, and the onset of POF. Lack of PTEN leads to increased phosphatidylinositol 3-kinase (PI3K)–Akt and mammalian target of rapamycin complex 1 (mTORC1) signaling in the oocytes. To study the functional and pathological roles of elevated mTORC1 signaling in the oocytes, we treated the Pten-mutant mice with the specific mTORC1 inhibitor rapamycin. When administered to Pten-deficient mice prior to the activation of the primordial follicles, rapamycin effectively prevented global follicular activation and preserved the ovarian reserve. These results provide a rationale for exploring the possible use of rapamycin as a drug for the preservation of the primordial follicle pool, and the possible prevention of POF.
Collapse
|
61
|
Vazquez-Martin A, Sauri-Nadal T, Menendez OJ, Oliveras-Ferraros C, Cufí S, Corominas-Faja B, López-Bonet E, Menendez JA. Ser2481-autophosphorylated mTOR colocalizes with chromosomal passenger proteins during mammalian cell cytokinesis. Cell Cycle 2012; 11:4211-21. [PMID: 23095638 DOI: 10.4161/cc.22551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Energy- and nutrient-sensing proteins such as AMPK, mTOR and S6K1 are now recognized as novel regulators of mitotic completion in proliferating cells. We investigated the cellular distribution of the Ser2481 autophosphorylation of mTOR, which directly monitors mTORC-specific catalytic activity, during mammalian cell mitosis and cytokinesis. Automated immunofluorescence experiments in human carcinoma cell lines revealed that phospho-mTOR (Ser2481) exhibited profound spatial and temporal dynamics during cell division. Phospho-mTOR (Ser2481) was strikingly enriched in mitotic cells, and in prophase, bright phospho-mTOR (Ser2481) staining could be clearly observed among condensed chromosomes. Phospho-mTOR (Ser2481) then redistributes from diffuse cytosolic staining that partially colocalizes with the mitotic spindle during the early phases of mitosis to the furrow at the onset of cytokinesis. Like the bona fide chromosomal passenger proteins (CPPs) INCENP and Aurora B, phospho-mTOR (Ser2481) displayed noteworthy accumulation in the central spindle midzone and the midbody regions, which persisted during the furrowing process. Accordingly, double-staining experiments confirmed that phospho-mTOR (Ser2481) largely colocalized with CCPs in the midbodies. The CPP-like mitotic localization of phospho-mTOR (Ser2481) was fully prevented by the microtubule-depolymerizing drug nocodazole; mitotic traveling of phospho-mTOR (Ser2481) to the midbody during telophase and cytokinesis, where it appears to be integrated into the CPP-driven cytokinetic machinery, may therefore require dynamic microtubules. Although the Ser2448-phosphorylated form of mTOR was also found at high levels during M-phase in human cancer cells, we failed to observe a significant association of phospho-mTOR (Ser2448) with CCP-positive mitotic and cytokinetic structures. Our findings add phospho-mTOR (Ser2481) to the growing list of phospho-active forms of proteins belonging to the AMPK/mTOR/S6K1 signaling axis that reside at the mitotic and cytokinetic apparatus. Future studies should elucidate how the specific ability of phospho-mTOR (Ser2481) to spatially and temporally couple to the cleavage furrow and midbody region as a CPP-like protein can signal to or from adjacent signaling complexes and/or with the basic machinery of cell abscission.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Girona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Braun M, Young J, Reiner CS, Poster D, Krauer F, Kistler AD, Kristanto P, Wang X, Liu Y, Loffing J, Andreisek G, von Eckardstein A, Senn O, Wüthrich RP, Serra AL. Low-dose oral sirolimus and the risk of menstrual-cycle disturbances and ovarian cysts: analysis of the randomized controlled SUISSE ADPKD trial. PLoS One 2012; 7:e45868. [PMID: 23071528 PMCID: PMC3468602 DOI: 10.1371/journal.pone.0045868] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/22/2012] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Sirolimus has been approved for clinical use in non proliferative and proliferative disorders. It inhibits the mammalian target of rapamycin (mTOR) signaling pathway which is also known to regulate ovarian morphology and function. Preliminary observational data suggest the potential for ovarian toxicity but this issue has not been studied in randomized controlled trials. We reviewed the self-reported occurrence of menstrual cycle disturbances and the appearance of ovarian cysts post hoc in an open label randomized controlled phase II trial conducted at the University Hospital Zürich between March 2006 and March 2010. Adult females with autosomal dominant polycystic kidney disease, an inherited kidney disease not known to affect ovarian morphology and function, were treated with 1.3 to 1.5 mg sirolimus per day for a median of 19 months (N = 21) or standard care (N = 18). Sirolimus increased the risk of both oligoamenorrhea (hazard ratio [HR] 4.3, 95% confidence interval [CI] 1.1 to 29) and ovarian cysts (HR 4.4, CI 1.1 to 26); one patient was cystectomized five months after starting treatment with sirolimus. We also studied mechanisms of sirolimus-associated ovarian toxicity in rats. Sirolimus amplified signaling in rat ovarian follicles through the pro-proliferative phosphatidylinositol 3-kinase pathway. Low dose oral sirolimus increases the risk of menstrual cycle disturbances and ovarian cysts and monitoring of sirolimus-associated ovarian toxicity is warranted and might guide clinical practice with mammalian target of rapamycin inhibitors. TRIAL REGISTRATION ClinicalTrials.gov NCT00346918.
Collapse
Affiliation(s)
- Matthias Braun
- Division of Nephrology, University Hospital, Zürich, Switzerland
| | - James Young
- Biometrical Practice BIOP AG, Basel, Switzerland
| | - Cäcilia S. Reiner
- Division of Diagnostic and Interventional Radiology, University Hospital, Zürich, Switzerland
| | - Diane Poster
- Division of Nephrology, University Hospital, Zürich, Switzerland
| | - Fabienne Krauer
- Division of Nephrology, University Hospital, Zürich, Switzerland
| | | | - Paulus Kristanto
- Medication Adherence Research Centre, AARDEX Group, Visé, Belgium
| | - Xueqi Wang
- Department of Nephrology, Changzheng Hospital, Shanghai, China
| | - Yang Liu
- Center for Integrative Human Research, University of Zürich, Zürich, Switzerland
| | | | - Gustav Andreisek
- Division of Diagnostic and Interventional Radiology, University Hospital, Zürich, Switzerland
| | | | - Oliver Senn
- Institute of General Practice and Health Services Research, University Hospital, Zürich, Switzerland
| | | | - Andreas L. Serra
- Division of Nephrology, University Hospital, Zürich, Switzerland
- * E-mail:
| |
Collapse
|