51
|
Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: An overview and future directions. J Control Release 2015; 219:471-487. [PMID: 26439665 PMCID: PMC4699668 DOI: 10.1016/j.jconrel.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
Currently there are no viable treatment options for patients with debilitating inherited retinal degeneration. The vast variability in disease-inducing mutations and resulting phenotypes has hampered the development of therapeutic interventions. Gene therapy is a logical approach, and recent work has focused on ways to optimize vector design and packaging to promote optimized expression and phenotypic rescue after intraocular delivery. In this review, we discuss ongoing ocular clinical trials, which currently use viral gene delivery, but focus primarily on new advancements in optimizing the efficacy of non-viral gene delivery for ocular diseases. Non-viral delivery systems are highly customizable, allowing functionalization to improve cellular and nuclear uptake, bypassing cellular degradative machinery, and improving gene expression in the nucleus. Non-viral vectors often yield transgene expression levels lower than viral counterparts, however their favorable safety/immune profiles and large DNA capacity (critical for the delivery of large ocular disease genes) make their further development a research priority. Recent work on particle coating and vector engineering presents exciting ways to overcome limitations of transient/low gene expression levels, but also highlights the fact that further refinements are needed before use in the clinic.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
52
|
Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology 2015; 122:1899-906. [PMID: 26143542 DOI: 10.1016/j.ophtha.2015.05.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To determine the frequency and severity of visual function loss in female carriers of X-linked retinitis pigmentosa (XLRP). DESIGN Case series. PARTICIPANTS Two hundred seventy-six XLRP carriers with cross-sectional data (n = 242) and longitudinal data (n = 34; median follow-up, 16 years; follow-up range, 3-37 years). Half of the carriers were from RPGR- or RP2-genotyped families. METHODS Retrospective medical records review. MAIN OUTCOME MEASURES Visual acuities, visual field areas, final dark adaptation thresholds, and full-field electroretinography (ERG) responses to 0.5-Hz and 30-Hz flashes. RESULTS In genotyped families, 40% of carriers showed a baseline abnormality on at least 1 of 3 psychophysical tests. There was a wide range of function among carriers. For example, 3 of 121 (2%) genotyped carriers were legally blind because of poor visual acuity, some as young as 35 years. Visual fields were less affected than visual acuity. In all carriers, the average ERG amplitude to 30-Hz flashes was approximately 50% of normal, and the average exponential rate of amplitude loss over time was half that of XLRP males (3.7%/year vs. 7.4%/year, respectively). Among obligate carriers with affected fathers, sons, or both, 53 of 55 (96%) had abnormal baseline ERG results. Some carriers who initially had completely normal fundi in both eyes went on to experience moderately decreased vision, although not legal blindness. Among carriers with RPGR mutations, those with mutations in ORF15, compared with those in exons 1-14, had worse final dark adaptation thresholds and lower 0.5-Hz and 30-Hz ERG amplitudes. CONCLUSIONS Most carriers of XLRP had mildly or moderately reduced visual function but rarely became legally blind. In most cases, obligate carriers could be identified by ERG testing. Carriers of RPGR ORF15 mutations tended to have worse visual function than carriers of RPGR exon 1 through 14 mutations. Because XLRP carrier ERG amplitudes and decay rates over time were on average half of those of affected men, these observations were consistent with the Lyon hypothesis of random X-inactivation.
Collapse
Affiliation(s)
- Jason Comander
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts.
| | - Carol Weigel-DiFranco
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Michael A Sandberg
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Eliot L Berson
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: A laboratory perspective. Prog Retin Eye Res 2015; 48:62-81. [PMID: 26113212 DOI: 10.1016/j.preteyeres.2015.06.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023]
Abstract
Retinal photoreceptors are highly specialized and performing neurons. Their cellular architecture is exquisitely designed to host a high concentration of molecules involved in light capture, phototransduction, electric and chemical signaling, membrane and molecular turnover, light and dark adaption, network activities etc. Such high efficiency and molecular complexity require a great metabolic demand, altogether conferring to photoreceptors particular susceptibility to external and internal insults, whose occurrence usually precipitate into degeneration of these cells and blindness. In Retinitis Pigmentosa, an impressive number of mutations in genes expressed in the retina and coding for a large varieties of proteins leads to the progressive death of photoreceptors and blindness. Recent advances in molecular tools have greatly facilitated the identification of the underlying genetics and molecular bases of RP leading to the successful implementation of gene therapy for some types of mutations, with visual restoration in human patients. Yet, genetic heterogeneity of RP makes mutation-independent approaches highly desirable, although many obstacles pave the way to general strategies for treating this complex disease, which remains orphan. The review will focus on treatments for RP based on pharmacological tools, choosing, among the many ongoing studies, approaches which rely on strong experimental evidence or rationale. For perspective treatments, new concepts are foreseen to emerge from basic studies elucidating the pathways connecting the primary mutations to photoreceptor death, possibly revealing common molecular targets for drug intervention.
Collapse
Affiliation(s)
- Viviana Guadagni
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Elena Novelli
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council (CNR), Area della Ricerca, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
54
|
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138:32-41. [PMID: 26093275 PMCID: PMC4553903 DOI: 10.1016/j.exer.2015.06.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect.
Collapse
Affiliation(s)
- Roly D Megaw
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Dinesh C Soares
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|
55
|
Abstract
Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| |
Collapse
|
56
|
Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 2015; 56:918-31. [PMID: 25667399 DOI: 10.1167/iovs.14-16049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although rare in the general population, retinal dystrophies occupy a central position in current efforts to develop innovative therapies for blinding diseases. This status derives, in part, from the unique biology, accessibility, and function of the retina, as well as from the synergy between molecular discoveries and transformative advances in functional assessment and retinal imaging. The combination of these factors has fueled remarkable progress in the field, while at the same time creating complex challenges for organizing collective efforts aimed at advancing translational research. The present position paper outlines recent progress in gene therapy and cell therapy for this group of disorders, and presents a set of recommendations for addressing the challenges remaining for the coming decade. It is hoped that the formulation of these recommendations will stimulate discussions among researchers, funding agencies, industry, and policy makers that will accelerate the development of safe and effective treatments for retinal dystrophies and related diseases.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States Division of Molecular Therapy, University College London Institute of Ophthalmology, London, England, United Kingdom
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark E Pennesi
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Richard G Weleber
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | |
Collapse
|
57
|
Beltran WA, Cideciyan AV, Lewin AS, Hauswirth WW, Jacobson SG, Aguirre GD. Gene augmentation for X-linked retinitis pigmentosa caused by mutations in RPGR. Cold Spring Harb Perspect Med 2014; 5:a017392. [PMID: 25301933 DOI: 10.1101/cshperspect.a017392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is a severe and early onset form of retinal degeneration, and no treatment is currently available. Recent evidence in two clinically relevant canine models shows that adeno-associated viral (AAV)-mediated RPGR gene transfer to rods and cones can prevent disease onset and rescue photoreceptors at early- and mid-stages of degeneration. There is thus a strong incentive for conducting long-term, preclinical efficacy and safety studies, while concomitantly pursuing the detailed phenotypic characterization of XLRP disease in patients that may benefit from such corrective therapy.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida 32610
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gustavo D Aguirre
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
58
|
Kousal B, Skalicka P, Valesova L, Fletcher T, Hart-Holden N, O'Grady A, Chakarova CF, Michaelides M, Hardcastle AJ, Liskova P. Severe retinal degeneration in women with a c.2543del mutation in ORF15 of the RPGR gene. Mol Vis 2014; 20:1307-17. [PMID: 25352739 PMCID: PMC4169777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/18/2014] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To describe the genotype-phenotype correlation and serial observations in a five-generation Czech family with X-linked retinitis pigmentosa (XLRP) associated with severe visual impairment in women. METHODS Comprehensive ophthalmological examination including spectral domain optical coherence tomography (SD-OCT) was performed. Based on the pedigree structure and women being severely affected, autosomal dominant inheritance was suspected, and screening for known mutations by genotyping microarray was performed. Subsequently, direct sequencing of ORF15 RPGR was undertaken. RESULTS Eighteen family members (nine women and nine men) were examined. A pathogenic variant, c.2543del in ORF15 of RPGR, was found to segregate with disease. The oldest woman and her two sisters had no perception of light in their sixth decade. Four women and five men had signs and symptoms of typical XLRP, including moderate to high myopia. Three other women also had moderate to high myopia and myopic astigmatism but without the presence of bone spicule-like formation. Severe disruption of macular architecture on SD-OCT was equally common in both sexes. Only one 32-year-old female carrier had clinically normal findings. Subfoveal choroidal thickness was decreased in all affected men and in all female carriers, except the only carrier with a normal fundus examination. CONCLUSIONS The c.2543del mutation in ORF15 of RPGR is associated with a severe phenotype in the women in this family. The presence of a significant myopic refractive error, in the absence of male-to-male transmission, may be indicative of X-linked inheritance. Measurements of choroidal thickness may help in clinically identifying carrier status.
Collapse
Affiliation(s)
- Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic,Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders; First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Lucie Valesova
- Department of Ophthalmology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Tracy Fletcher
- Regional Molecular Genetics Service, St Mary's Hospital, Manchester, United Kingdom
| | - Niki Hart-Holden
- Regional Molecular Genetics Service, St Mary's Hospital, Manchester, United Kingdom
| | - Anna O'Grady
- Regional Molecular Genetics Service, St Mary's Hospital, Manchester, United Kingdom
| | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London, United Kingdom,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic,Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders; First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic,UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
59
|
Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology 2014; 121:1620-7. [PMID: 24697911 DOI: 10.1016/j.ophtha.2014.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To identify the genetic causes underlying autosomal recessive retinitis pigmentosa (arRP) and to describe the associated phenotype. DESIGN Case series. PARTICIPANTS Three hundred forty-seven unrelated families affected by arRP and 33 unrelated families affected by retinitis pigmentosa (RP) plus noncongenital and progressive hearing loss, ataxia, or both, respectively. METHODS A whole exome sequencing (WES) analysis was performed in 2 families segregating arRP. A mutational screening was performed in 378 additional unrelated families for the exon-intron boundaries of the ABHD12 gene. To establish a genotype-phenotype correlation, individuals who were homozygous or compound heterozygotes of mutations in ABHD12 underwent exhaustive clinical examinations by ophthalmologists, neurologists, and otologists. MAIN OUTCOME MEASURES DNA sequence variants, best-corrected visual acuity, visual field assessments, electroretinogram responses, magnetic resonance imaging, and audiography. RESULTS After a WES analysis, we identified 4 new mutations (p.Arg107Glufs*8, p.Trp159*, p.Arg186Pro, and p.Thr202Ile) in ABHD12 in 2 families (RP-1292 and W08-1833) previously diagnosed with nonsyndromic arRP, which cosegregated with the disease among the family members. Another homozygous mutation (p.His372Gln) was detected in 1 affected individual (RP-1487) from a cohort of 378 unrelated arRP and syndromic RP patients. After exhaustive clinical examinations by neurologists and otologists, the 4 affected members of the RP-1292 had no polyneuropathy or ataxia, and the sensorineural hearing loss and cataract were attributed to age or the normal course of the RP, whereas the affected members of the families W08-1833 and RP-1487 showed clearly symptoms associated with polyneuropathy, hearing loss, cerebellar ataxia, RP, and early-onset cataract (PHARC) syndrome. CONCLUSIONS Null mutations in the ABHD12 gene lead to PHARC syndrome, a neurodegenerative disease including polyneuropathy, hearing loss, cerebellar ataxia, RP, and early-onset cataract. Our study allowed us to report 5 new mutations in ABHD12. This is the first time missense mutations have been described for this gene. Furthermore, these findings are expanding the spectrum of phenotypes associated with ABHD12 mutations ranging from PHARC syndrome to a nonsyndromic form of retinal degeneration.
Collapse
|
60
|
Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease. PLoS One 2014; 9:e87942. [PMID: 24498227 PMCID: PMC3909326 DOI: 10.1371/journal.pone.0087942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.
Collapse
|
61
|
Yang L, Yin X, Feng L, You D, Wu L, Chen N, Li A, Li G, Ma Z. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One 2014; 9:e85752. [PMID: 24454928 PMCID: PMC3893273 DOI: 10.1371/journal.pone.0085752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022] Open
Abstract
X-linked Retinitis Pigmentosa (XLRP) accounts for 10–20% of all RP cases, and represents the most severe subtype of this disease. Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene are the most common causes of XLRP, accounting for over 70–75% of all XLRP cases. In this work, we analyzed all the exons of RPGR gene with Sanger sequencing in seven Chinese XLRP families, two of these with a provisional diagnosis of adRP but without male-to-male transmission. Three novel deletions (c.2233_34delAG; c.2236_37delGA and c.2403_04delAG) and two known nonsense mutations (c.851C→G and c.2260G→T) were identified in five families. Two novel deletions (c.2233_34delAG and c.2236_37delGA) resulted in the same frame shift (p.E746RfsX22), created similar phenotype in Family 3 and 4. The novel deletion (c.2403_04delAG; p.E802GfsX31) resulted in both XLRP and x-linked cone-rod dystrophy within the male patients of family 5, which suggested the presence of either genetic or environmental modifiers, or both, play a substantial role in disease expression. Genotype-phenotype correlation analysis suggested that (1) both patients and female carriers with mutation in Exon 8 (Family 1) manifest more severe disease than did those with ORF15 mutations (Family 2&3&4); (2) mutation close to downstream of ORF15 (Family 5) demonstrate the early preferential loss of cone function with moderate loss of rod function.
Collapse
Affiliation(s)
- Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Lina Feng
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Debo You
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Lemeng Wu
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Ningning Chen
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Aijun Li
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| | - Zhizhong Ma
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| |
Collapse
|
62
|
The ophthalmic experience: unanticipated primary findings in the era of next generation sequencing. J Genet Couns 2014; 23:588-93. [PMID: 24399093 DOI: 10.1007/s10897-013-9679-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Next generation sequencing (NGS) technology, with the ability to sequence many genomic regions at once, can provide clinicians with increased information, in the form of more mutations detected. Discussions on broad testing technology have largely been focused on incidental findings, or unanticipated results related to diseases beyond the primary indication for testing. By examining multiple genes that could be responsible for the patient's presentation, however, there is also the possibility of unexpected results that are related to the reason genetic testing was ordered. We present a case study where multiple potentially causative mutations were detected using NGS technology. This case raises questions of scientific uncertainty, and has important implications for medical management and secondary studies. Clinicians and genetic counselors should be aware of the potential for increased information to affect one's understanding of genetic risk, and the pre- and post-testing counseling process.
Collapse
|
63
|
Raghupathy RK, McCulloch DL, Akhtar S, Al-Mubrad TM, Shu X. Pathogenesis of X-linked RP3: insights from animal models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:477-85. [PMID: 24664734 DOI: 10.1007/978-1-4614-3209-8_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis Pigmentosa (RP) is a genetically heterogeneous disorder characterized by rod and cone photoreceptor cell dysfunction. X-linked RP (XLRP) is one of the most severe forms of human retinal degeneration, as determined by age-of-set and progression, and accounts for six to 20 % of all RP cases. At least six XLRP loci have been identified, but RP3 is the major subtype of XLRP, accounting for 70 to 80 % of affected families. The RPGR gene is responsible for the RP3 form of XLRP and is mutated in 10-20 % of all RP patients. The pathogenesis of retinitis pigmentosa GTPase regulator (RPGR) mutant-causing RP is not clear, different animal models have been used to understand the pathogenesis of these diseases. In this brief review, we will summarize the functional characterization of RPGR and highlight recent studies in animal models, which will not only shed light on the disease mechanisms in XLRP but will also provide therapeutic strategies for RP treatment.
Collapse
|
64
|
Zahid S, Khan N, Branham K, Othman M, Karoukis AJ, Sharma N, Moncrief A, Mahmood MN, Sieving PA, Swaroop A, Heckenlively JR, Jayasundera T. Phenotypic conservation in patients with X-linked retinitis pigmentosa caused by RPGR mutations. JAMA Ophthalmol 2013; 131:1016-25. [PMID: 23681342 DOI: 10.1001/jamaophthalmol.2013.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE For patients with X-linked retinitis pigmentosa and clinicians alike, phenotypic variability can be challenging because it complicates counseling regarding patients' likely visual prognosis. OBJECTIVE To evaluate the clinical findings from patients with X-linked retinitis pigmentosa with 13 distinct RPGR mutations and assess for phenotypic concordance or variability. DESIGN Retrospective medical record review of data collected from 1985 to 2011. SETTING Kellogg Eye Center, University of Michigan. PATIENTS A total of 42 patients with X-linked retinitis pigmentosa with mutations in RPGR. Age at first visit ranged from 4 to 53 years, with follow-up ranging from 1 to 11 visits (median follow-up time, 5.5 years; range, 1.4-32.7 years, for 23 patients with >1 visit). MAIN OUTCOMES AND MEASURES Clinical data assessed for concordance included visual acuity (VA), Goldmann visual fields (GVFs), and full-field electroretinography (ERG). Electroretinography phenotype (cone-rod vs rod-cone dysfunction) was defined by the extent of photopic vs scotopic abnormality. Qualitative GVF phenotype was determined by the GVF pattern, where central or peripheral loss suggested cone or rod dysfunction, respectively. Goldmann visual fields were also quantified and compared among patients. RESULTS Each mutation was detected in 2 or more related or unrelated patients. Five mutations in 11 patients displayed strong concordance of VA, while 4 mutations in 16 patients revealed moderate concordance of VA. A definitive cone-rod or rod-cone ERG pattern consistent among patients was found in 6 of 13 mutations (46.2%); the remaining mutations were characterized by patients demonstrating both phenotypes or who had limited data or nonrecordable ERG values. Concordant GVF phenotypes (7 rod-cone pattern vs 4 cone-rod pattern) were seen in 11 of 13 mutations (84.6%). All 6 mutations displaying a constant ERG pattern within the mutation group revealed a GVF phenotype consistent with the ERG findings. CONCLUSIONS AND RELEVANCE While VA and ERG phenotypes are concordant in only some patients carrying identical mutations, assessment of GVF phenotypes revealed stronger phenotypic conservation. Phenotypic concordance is important for establishing proper counseling of patients diagnosed as having X-linked retinitis pigmentosa, as well as for establishing accurate patient selection and efficacy monitoring in therapeutic trials.
Collapse
Affiliation(s)
- Sarwar Zahid
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Won J, Charette JR, Philip VM, Stearns TM, Zhang W, Naggert JK, Krebs MP, Nishina PM. Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis. Exp Eye Res 2013; 118:30-5. [PMID: 24200520 DOI: 10.1016/j.exer.2013.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/25/2022]
Abstract
The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Vivek M Philip
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Weidong Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jürgen K Naggert
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mark P Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
66
|
Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 2013; 132:1077-130. [PMID: 23820649 PMCID: PMC3778950 DOI: 10.1007/s00439-013-1331-2] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023]
Abstract
Some individuals with a particular disease-causing mutation or genotype fail to express most if not all features of the disease in question, a phenomenon that is known as 'reduced (or incomplete) penetrance'. Reduced penetrance is not uncommon; indeed, there are many known examples of 'disease-causing mutations' that fail to cause disease in at least a proportion of the individuals who carry them. Reduced penetrance may therefore explain not only why genetic diseases are occasionally transmitted through unaffected parents, but also why healthy individuals can harbour quite large numbers of potentially disadvantageous variants in their genomes without suffering any obvious ill effects. Reduced penetrance can be a function of the specific mutation(s) involved or of allele dosage. It may also result from differential allelic expression, copy number variation or the modulating influence of additional genetic variants in cis or in trans. The penetrance of some pathogenic genotypes is known to be age- and/or sex-dependent. Variable penetrance may also reflect the action of unlinked modifier genes, epigenetic changes or environmental factors. At least in some cases, complete penetrance appears to require the presence of one or more genetic variants at other loci. In this review, we summarize the evidence for reduced penetrance being a widespread phenomenon in human genetics and explore some of the molecular mechanisms that may help to explain this enigmatic characteristic of human inherited disease.
Collapse
Affiliation(s)
- David N. Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | | |
Collapse
|
67
|
Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene. Proc Natl Acad Sci U S A 2013; 110:16139-44. [PMID: 24043777 DOI: 10.1073/pnas.1308243110] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed whole genome sequencing in 16 unrelated patients with autosomal recessive retinitis pigmentosa (ARRP), a disease characterized by progressive retinal degeneration and caused by mutations in over 50 genes, in search of pathogenic DNA variants. Eight patients were from North America, whereas eight were Japanese, a population for which ARRP seems to have different genetic drivers. Using a specific workflow, we assessed both the coding and noncoding regions of the human genome, including the evaluation of highly polymorphic SNPs, structural and copy number variations, as well as 69 control genomes sequenced by the same procedures. We detected homozygous or compound heterozygous mutations in 7 genes associated with ARRP (USH2A, RDH12, CNGB1, EYS, PDE6B, DFNB31, and CERKL) in eight patients, three Japanese and five Americans. Fourteen of the 16 mutant alleles identified were previously unknown. Among these, there was a 2.3-kb deletion in USH2A and an inverted duplication of ~446 kb in EYS, which would have likely escaped conventional screening techniques or exome sequencing. Moreover, in another Japanese patient, we identified a homozygous frameshift (p.L206fs), absent in more than 2,500 chromosomes from ethnically matched controls, in the ciliary gene NEK2, encoding a serine/threonine-protein kinase. Inactivation of this gene in zebrafish induced retinal photoreceptor defects that were rescued by human NEK2 mRNA. In addition to identifying a previously undescribed ARRP gene, our study highlights the importance of rare structural DNA variations in Mendelian diseases and advocates the need for screening approaches that transcend the analysis of the coding sequences of the human genome.
Collapse
|
68
|
Yates CM, Sternberg MJE. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. J Mol Biol 2013; 425:3949-63. [PMID: 23867278 DOI: 10.1016/j.jmb.2013.07.012] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/23/2022]
Abstract
Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective.
Collapse
Affiliation(s)
- Christopher M Yates
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, South Kensington, SW7 2AZ, UK.
| | | |
Collapse
|
69
|
Daiger SP, Sullivan LS, Bowne SJ. Genes and mutations causing retinitis pigmentosa. Clin Genet 2013; 84:132-41. [PMID: 23701314 PMCID: PMC3856531 DOI: 10.1111/cge.12203] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous set of inherited retinopathies with many disease-causing genes, many known mutations, and highly varied clinical consequences. Progress in finding treatments is dependent on determining the genes and mutations causing these diseases, which includes both gene discovery and mutation screening in affected individuals and families. Despite the complexity, substantial progress has been made in finding RP genes and mutations. Depending on the type of RP, and the technology used, it is possible to detect mutations in 30-80% of cases. One of the most powerful approaches to genetic testing is high-throughput 'deep sequencing', that is, next-generation sequencing (NGS). NGS has identified several novel RP genes but a substantial fraction of previously unsolved cases have mutations in genes that are known causes of retinal disease but not necessarily RP. Apparent discrepancy between the molecular defect and clinical findings may warrant reevaluation of patients and families. In this review, we summarize the current approaches to gene discovery and mutation detection for RP, and indicate pitfalls and unsolved problems. Similar considerations apply to other forms of inherited retinal disease.
Collapse
Affiliation(s)
- S P Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
70
|
Blain D, Goetz KE, Ayyagari R, Tumminia SJ. eyeGENE®: a vision community resource facilitating patient care and paving the path for research through molecular diagnostic testing. Clin Genet 2013; 84:190-7. [PMID: 23662816 DOI: 10.1111/cge.12193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/28/2022]
Abstract
Molecular genetics and genomics are revolutionizing the study and treatment of inherited eye diseases. In recognition of the impact of molecular genetics on vision and ophthalmology, the National Eye Institute established the National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE®) as a multidirectional research initiative whereby a clinical component for patients diagnosed with inherited eye disease fosters research into the causes and mechanisms of these ophthalmic diseases. This is accomplished by broadening access to genetic diagnostic testing and maintaining a repository of DNA samples from clinically characterized individuals and their families to allow investigations of the causes, interventions, and management of genetic eye disorders. The eyeGENE® Network currently includes Clinical Laboratory Improvement Amendments (CLIA)-certified diagnostic laboratory partners, over 270 registered clinical organizations with 500 registered users from around the United States and Canada, and is now testing approximately 100 genes representing 35 inherited eye diseases. To date, the Network has received 4400 samples from individuals with rare inherited eye diseases, which are available for access by the vision research community. eyeGENE® is a model partnership between the U.S. federal government, eye health care providers, CLIA-approved molecular diagnostic laboratories, private industry, and scientists who represent a broad research constituency.
Collapse
Affiliation(s)
- D Blain
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
71
|
Li X, Montgomery SB. Detection and impact of rare regulatory variants in human disease. Front Genet 2013; 4:67. [PMID: 23755067 PMCID: PMC3668132 DOI: 10.3389/fgene.2013.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Advances in genome sequencing are providing unprecedented resolution of rare and private variants. However, methods which assess the effect of these variants have relied predominantly on information within coding sequences. Assessing their impact in non-coding sequences remains a significant contemporary challenge. In this review, we highlight the role of regulatory variation as causative agents and modifiers of monogenic disorders. We further discuss how advances in functional genomics are now providing new opportunity to assess the impact of rare non-coding variants and their role in disease.
Collapse
Affiliation(s)
- Xin Li
- Department of Pathology, Stanford University School of Medicine Stanford, CA, USA ; Department of Genetics, Stanford University School of Medicine Stanford, CA, USA
| | | |
Collapse
|
72
|
Barbelanne M, Song J, Ahmadzai M, Tsang WY. Pathogenic NPHP5 mutations impair protein interaction with Cep290, a prerequisite for ciliogenesis. Hum Mol Genet 2013; 22:2482-94. [PMID: 23446637 DOI: 10.1093/hmg/ddt100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the human NPHP5 gene cause retinal and renal disease, but the precise mechanism by which NPHP5 functions is not understood. We report that NPHP5 is a centriolar protein whose depletion inhibits an early step of ciliogenesis, a phenotype reminiscent of Cep290 loss and contrary to IFT88 loss. Functional dissection of NPHP5 interactions with Cep290 and CaM reveals a requirement of the former for ciliogenesis, while the latter prevents NPHP5 self-aggregation. Disease-causing mutations lead to truncated products unable to bind Cep290 and localize to centrosomes, thereby compromising cilia formation. In contrast, a modifier mutation cripples CaM binding but has no overt effect on ciliogenesis. Drugs that antagonize negative regulators of the ciliogenic pathway can rescue ciliogenesis in cells depleted of NPHP5, with response profiles similar to those of Cep290- but not IFT88-depleted cells. Our results uncover the underlying molecular basis of disease and provide novel insights into mitigating NPHP5 deficiency.
Collapse
Affiliation(s)
- Marine Barbelanne
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7
| | | | | | | |
Collapse
|
73
|
Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Daiger SP. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:1411-6. [PMID: 23372056 DOI: 10.1167/iovs.12-11541] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We determined the fraction of families in a well-characterized cohort with a provisional diagnosis of autosomal dominant retinitis pigmentosa (adRP) that have disease-causing mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene or the retinitis pigmentosa 2 (RP2) gene. METHODS Families with a provisional clinical diagnosis of adRP, and a pedigree consistent with adRP but no male-to-male transmission were selected from a cohort of 258 families, and tested for mutations in the RPGR and RP2 genes with di-deoxy sequencing. To facilitate testing of RPGR in "adRP" families that had no male members available for testing, the repetitive and purine-rich ORF15 of RPGR was subcloned and sequenced in heterozygous female subjects from 16 unrelated families. RESULTS Direct sequencing of RPGR and RP2 allowed for identification of a disease-causing mutation in 21 families. Of these "adRP" families 19 had RPGR mutations, and two had RP2 mutations. Subcloning and sequencing of ORF15 of RPGR in female subjects identified one additional RPGR mutation. Of the 22 mutations identified, 15 have been reported previously. CONCLUSIONS These data show that 8.5% (22 in 258) of families thought to have adRP truly have X-linked retinitis pigmentosa (XLRP). These results have substantive implications for calculation of recurrence risk, genetic counseling, and potential treatment options, and illustrate the importance of screening families with a provisional diagnosis of autosomal inheritance and no male-to-male transmission for mutations in X-linked genes. Mutations in RPGR are one of the most common causes of all forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Jennifer D Churchill
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Huang WC, Wright AF, Roman AJ, Cideciyan AV, Manson FD, Gewaily DY, Schwartz SB, Sadigh S, Limberis MP, Bell P, Wilson JM, Swaroop A, Jacobson SG. RPGR-associated retinal degeneration in human X-linked RP and a murine model. Invest Ophthalmol Vis Sci 2012; 53:5594-608. [PMID: 22807293 DOI: 10.1167/iovs.12-10070] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. METHODS XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5-72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. RESULTS Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. CONCLUSIONS RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy.
Collapse
Affiliation(s)
- Wei Chieh Huang
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Thompson DA, Khan NW, Othman MI, Chang B, Jia L, Grahek G, Wu Z, Hiriyanna S, Nellissery J, Li T, Khanna H, Colosi P, Swaroop A, Heckenlively JR. Rd9 is a naturally occurring mouse model of a common form of retinitis pigmentosa caused by mutations in RPGR-ORF15. PLoS One 2012; 7:e35865. [PMID: 22563472 PMCID: PMC3341386 DOI: 10.1371/journal.pone.0035865] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022] Open
Abstract
Animal models of human disease are an invaluable component of studies aimed at understanding disease pathogenesis and therapeutic possibilities. Mutations in the gene encoding retinitis pigmentosa GTPase regulator (RPGR) are the most common cause of X-linked retinitis pigmentosa (XLRP) and are estimated to cause 20% of all retinal dystrophy cases. A majority of RPGR mutations are present in ORF15, the purine-rich terminal exon of the predominant splice-variant expressed in retina. Here we describe the genetic and phenotypic characterization of the retinal degeneration 9 (Rd9) strain of mice, a naturally occurring animal model of XLRP. Rd9 mice were found to carry a 32-base-pair duplication within ORF15 that causes a shift in the reading frame that introduces a premature-stop codon. Rpgr ORF15 transcripts, but not protein, were detected in retinas from Rd9/Y male mice that exhibited retinal pathology, including pigment loss and slowly progressing decrease in outer nuclear layer thickness. The levels of rhodopsin and transducin in rod outer segments were also decreased, and M-cone opsin appeared mislocalized within cone photoreceptors. In addition, electroretinogram (ERG) a- and b-wave amplitudes of both Rd9/Y male and Rd9/Rd9 female mice showed moderate gradual reduction that continued to 24 months of age. The presence of multiple retinal features that correlate with findings in individuals with XLRP identifies Rd9 as a valuable model for use in gaining insight into ORF15-associated disease progression and pathogenesis, as well as accelerating the development and testing of therapeutic strategies for this common form of retinal dystrophy.
Collapse
Affiliation(s)
- Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Naheed W. Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mohammad I. Othman
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Bo Chang
- Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Garrett Grahek
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Zhijian Wu
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suja Hiriyanna
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Nellissery
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiansen Li
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Colosi
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AS); (JRH)
| | - John R. Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (AS); (JRH)
| |
Collapse
|
77
|
Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 2012; 109:2132-7. [PMID: 22308428 DOI: 10.1073/pnas.1118847109] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.
Collapse
|
78
|
Patil H, Guruju MR, Cho KI, Yi H, Orry A, Kim H, Ferreira PA. Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms. Biol Open 2011; 1:140-60. [PMID: 23213406 PMCID: PMC3507198 DOI: 10.1242/bio.2011489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR) through a domain homologous to RCC1 (RHD), a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID) of RPGRIP1 embraces multivalently the shared RHD of RPGR1–19 and RPGRORF15 isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α1 expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α1 self-aggregation ensue. RPGR1–19 localizes to the endoplasmic reticulum, whereas RPGRORF15 presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α1. Disease mutations in RPGR1–19, RPGRORF15, or RID of RPGRIP1α1, singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α1 with RPGR1–19 or RPGRORF15 in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGRORF15, but not RPGR1–19, protects the RID of RPGRIP1α1 from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α1, with deficits in RPGRORF15-dependent intracellular localization of RPGRIP1α1 contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center , Durham, NC 27710 , USA
| | | | | | | | | | | | | |
Collapse
|