51
|
Hult EF, Huang J, Marchal E, Lam J, Tobe SS. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:48-60. [PMID: 25917982 DOI: 10.1016/j.jinsphys.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/24/2023]
Abstract
During development and reproduction the response to ecdysteroids is mediated by a heterodimeric receptor complex comprising the retinoid X receptor/ultraspiracle (RXR/USP) and the ecdysone receptor (EcR). Here, the role of these receptors in the endocrine control of reproduction is examined in the cockroach Diploptera punctata. We report the sequence of four DpRXR and three DpEcR splice variants, including the first description of a Drosophila EcRB2-like isoform in a hemimetabolous insect. DpRXR and DpEcR are broadly expressed in the tissues of adult females, with relatively high transcript levels in the corpora allata (CA), nervous tissue and ovary. Developmental profiling revealed an inverse correlation between DpRXR and DpEcR expression and the activity of the CA. RNAi-mediated depletion of DpRXR and DpEcR did not affect oocyte growth, but inhibited oviposition and impaired chorion formation. Retained oocytes exhibited a degenerating follicular epithelium and were slowly resorbed. Treated animals showed significantly higher rates of JH biosynthesis and a decrease in ecdysteroid titers at the end of vitellogenesis. Reduction of DpRXR and DpEcR expression resulted in an upregulation of genes involved in JH production and a downregulation of allatostatin receptor mRNA in the CA. Treatment with dsRNA also affected the expression of genes downstream of JH in target tissues including vitellogenin and Krüppel-homolog 1 as well as Broad-Complex, an early ecdysone response gene. Overall, results suggest that DpRXR and DpEcR are not required early in the reproductive cycle when events are JH-dependent, but do mediate critical ecdysteroid feedback to the CA late in the gonadotropic cycle.
Collapse
Affiliation(s)
- Ekaterina F Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada; Department of Biology, Zoological Institute, KU Leuven, B-3000 Leuven, Belgium
| | - Jennifer Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
52
|
Roy S, Saha TT, Johnson L, Zhao B, Ha J, White KP, Girke T, Zou Z, Raikhel AS. Regulation of Gene Expression Patterns in Mosquito Reproduction. PLoS Genet 2015; 11:e1005450. [PMID: 26274815 PMCID: PMC4537244 DOI: 10.1371/journal.pgen.1005450] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs) regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM). During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E) and the Ecdysone-Receptor (EcR). Between 36 h and 48 h, the third wave of gene activation—regulated mainly by HR3—occurs. Juvenile Hormone (JH) and its receptor Methoprene-Tolerant (Met) are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the previously unidentified large-scale effects of HR3 and JH/Met on transcriptional regulation during the termination of vitellogenesis and remodeling of the fat body. In addition to being vectors of devastating human diseases, mosquitoes represent outstanding model organisms for studying regulatory mechanisms of differential gene expression due to their rapid reproductive cycles. About 7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period in the fat body, a critical reproductive organ. The major regulators for these waves of gene expression are the two very important insect hormones, 20-hydroxyecdysone (20E) and Juvenile hormone (JH), their respective receptors Ecdysone Receptor (EcR) and Methoprene-Tolerant (Met), amino acids and the orphan nuclear receptor HR3. These key regulators are responsible for activation and repression of co-regulated gene sets, at different time points, within the 72-h reproductive period. Importantly, this study, apart from providing an insight into the regulatory complexity involved in the temporal coordination of gene expression, also reveals the previously unidentified roles of 20E/EcR, JH/Met and HR3 during the 72-h period post blood meal.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Tusar T. Saha
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Lisa Johnson
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, Riverside, California, United States of America
| | - Bo Zhao
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Jisu Ha
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California, Riverside, Riverside, California, United States of America
| | - Kevin P. White
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Thomas Girke
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California, United States of America
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ZZ); (ASR)
| | - Alexander S. Raikhel
- Department of Entomology, University of California, Riverside, Riverside, California, United States of America
- Institute of Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (ZZ); (ASR)
| |
Collapse
|
53
|
Hou Y, Wang XL, Saha TT, Roy S, Zhao B, Raikhel AS, Zou Z. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. PLoS Genet 2015; 11:e1005309. [PMID: 26158648 PMCID: PMC4497655 DOI: 10.1371/journal.pgen.1005309] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Hematophagous mosquitoes serve as vectors of multiple devastating human diseases, and many unique physiological features contribute to the incredible evolutionary success of these insects. These functions place high-energy demands on a reproducing female mosquito, and carbohydrate metabolism (CM) must be synchronized with these needs. Functional analysis of metabolic gene profiling showed that major CM pathways, including glycolysis, glycogen and sugar metabolism, and citrate cycle, are dramatically repressed at post eclosion (PE) stage in mosquito fat body followed by a sharply increase at post-blood meal (PBM) stage, which were also verified by Real-time RT-PCR. Consistent to the change of transcript and protein level of CM genes, the level of glycogen, glucose and trehalose and other secondary metabolites are also periodically accumulated and degraded during the reproductive cycle respectively. Levels of triacylglycerols (TAG), which represent another important energy storage form in the mosquito fat body, followed a similar tendency. On the other hand, ATP, which is generated by catabolism of these secondary metabolites, showed an opposite trend. Additionally, we used RNA interference studies for the juvenile hormone and ecdysone receptors, Met and EcR, coupled with transcriptomics and metabolomics analyses to show that these hormone receptors function as major regulatory switches coordinating CM with the differing energy requirements of the female mosquito throughout its reproductive cycle. Our study demonstrates how, by metabolic reprogramming, a multicellular organism adapts to drastic and rapid functional changes. Mosquitoes transmit numerous devastating human diseases due to their obligatory hematophagy that is required for the efficient reproduction. Metabolism must be synchronized with high energetic needs of a female mosquito for host seeking, blood feeding and rapid egg development. Each reproductive cycle is divided into two phases that are sequentially governed by juvenile hormone (JH) and 20-hydroxyecdysone. During the pre-blood meal phase, the JH receptor Methoprene-tolerant (Met) controls carbohydrate metabolism (CM) pathways and its RNA interference (RNAi) silencing caused up-regulation of CM enzymes at the transcript and protein levels activating glycolytic flux and depletion of storage and circulating sugars. During the second, post blood meal phase, CM was regulated by the ecdysone receptor EcR and its RNAi silencing had a dramatic effect opposite to that of Met RNAi. Thus, we show that Met and EcR function as regulatory switches coordinating carbohydrate metabolism with energetic requirements of the female mosquito reproductive cycle.
Collapse
Affiliation(s)
- Yuan Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tusar T. Saha
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Sourav Roy
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Bo Zhao
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
| | - Alexander S. Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (ASR); (ZZ)
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ASR); (ZZ)
| |
Collapse
|
54
|
Tindwa H, Jo YH, Patnaik BB, Lee YS, Kang SS, Han YS. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:88-98. [PMID: 25727880 DOI: 10.1016/j.dci.2015.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Macroautophagy (hereinafter called autophagy) is a highly regulated process used by eukaryotic cells to digest portions of the cytoplasm that remodels and recycles nutrients and disposes of unwanted cytoplasmic constituents. Currently 36 autophagy-related genes (ATG) and their homologs have been characterized in yeast and higher eukaryotes, including insects. In the present study, we identified and functionally characterized the immune function of an ATG8 homolog in a coleopteran insect, Tenebrio molitor (TmATG8). The cDNA of TmATG8 comprises of an ORF of 363 bp that encodes a protein of 120 amino acid residues. TmATG8 transcripts are detected in all the developmental stages analyzed. TmAtg8 protein contains a highly conserved C-terminal glycine residue (Gly116) and shows high amino acid sequence identity (98%) to its Tribolium castaneum homolog, TcAtg8. Loss of function of TmATG8 by RNAi led to a significant increase in the mortality rates of T. molitor larvae against Listeria monocytogenes. Unlike dsEGFP-treated control larvae, TmATG8-silenced larvae failed to turn-on autophagy in hemocytes after injection with L. monocytogenes. These data suggest that TmATG8 play a role in mediating autophagy-based clearance of Listeria in T. molitor.
Collapse
Affiliation(s)
- Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea; Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture, P.O. Box 3008, Chuo Kikuu, Morogoro, Tanzania
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea; Trident School of Biotech Sciences, Trident Academy of Creative Technology, Chandrasekharpur, Bhubaneswar 751024, Odisha, India
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City, Republic of Korea
| | - Sang Sun Kang
- Department of Biology Education, Chungbuk National University, 410 Seongbong Road, Seowon-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
55
|
Price DP, Schilkey FD, Ulanov A, Hansen IA. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasit Vectors 2015; 8:252. [PMID: 25924822 PMCID: PMC4415286 DOI: 10.1186/s13071-015-0863-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 04/16/2015] [Indexed: 01/13/2023] Open
Abstract
Background Environmental factors such as temperature, nutrient availability, and larval density determine the outcome of postembryonic development in mosquitoes. Suboptimal temperatures, crowding, and starvation during the larval phase reduce adult mosquito size, nutrient stores and affect vectorial capacity. Methods In this study we compared adult female Aedes aegypti, Rockefeller strain, raised under standard laboratory conditions (Large) with those raised under crowded and nutritionally deprived conditions (Small). To compare the gene expression and nutritional state of the major energy storage and metabolic organ, the fat body, we performed transcriptomics using Illumina based RNA-seq and metabolomics using GC/MS on females before and 24 hours following blood feeding. Results Analysis of fat body gene expression between the experimental groups revealed a large number of significantly differentially expressed genes. Transcripts related to immunity, reproduction, autophagy, several metabolic pathways; including amino acid degradation and metabolism; and membrane transport were differentially expressed. Metabolite profiling identified 60 metabolites within the fat body to be significantly affected between small and large mosquitoes, with the majority of detected free amino acids at a higher level in small mosquitoes compared to large. Conclusions Gene expression and metabolites in the adult fat body reflect the individual post-embryonic developmental history of a mosquito larva. These changes affect nutritional storage and utilization, immunity, and reproduction. Therefore, it is apparent that changes in larval environment due to weather conditions, nutrition availability, vector control efforts, and other factors can affect adult vectorial capacity in the field. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0863-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM, USA. .,Molecular Biology Program, New Mexico State University, Las Cruces, USA.
| | | | - Alexander Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Illinois, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, USA. .,Molecular Biology Program, New Mexico State University, Las Cruces, USA.
| |
Collapse
|
56
|
Santos DE, Azevedo DO, Campos LAO, Zanuncio JC, Serrão JE. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy. PROTOPLASMA 2015; 252:619-627. [PMID: 25269629 DOI: 10.1007/s00709-014-0707-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/22/2014] [Indexed: 06/03/2023]
Abstract
Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.
Collapse
Affiliation(s)
- Douglas Elias Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | | | | |
Collapse
|
57
|
Tindwa H, Jo YH, Patnaik BB, Noh MY, Kim DH, Kim I, Han YS, Lee YS, Lee BL, Kim NJ. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:85-99. [PMID: 25403020 DOI: 10.1002/arch.21212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model.
Collapse
Affiliation(s)
- Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
de Assis WA, Malta J, Pimenta PFP, Ramalho-Ortigão JM, Martins GF. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:501-9. [PMID: 24863740 DOI: 10.1016/j.asd.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fat body (FB) is responsible for the storage and synthesis of the majority of proteins and metabolites secreted into the hemolymph. Oenocytes are responsible for lipid processing and detoxification. The FB is distributed throughout the insect body cavity and organized as peripheral and perivisceral portions in the abdomen, with trophocytes and oenocytes attached to the peripheral portion. Here, we investigated the morphology and the subcellular changes in the peripheral and perivisceral FBs and in oenocytes of the sand flies Lutzomyia longipalpis and Phlebotomus papatasi after blood feeding. In L. longipalpis two-sized oenocytes (small and large) were identified, with both cell types displaying well-developed reticular system and smooth endoplasmic reticulum, whereas in P. papatasi, only small cells were observed. Detailed features of FBs of L. longipalpis and P. papatasi are shared either prior to or after blood feeding. The peripheral and perivisceral FBs responded to blood feeding with the development of glycogen zones and rough endoplasmic reticulum. This study provides the first detailed description of the FBs and oenocytes in sand flies, contributing significantly towards are better understanding of the biology of such important disease vectors.
Collapse
Affiliation(s)
- Wiviane Alves de Assis
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Juliana Malta
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Paulo Filemon P Pimenta
- Laboratório de Entomologia Médica, Instituto de Pesquisas René Rachou-CPqRR, Fundação Oswaldo Cruz (Fiocruz-MG), Avenida Augusto de Lima, 1715, Belo Horizonte, Minas Gerais CEP 30190-002, Brazil.
| | | | - Gustavo Ferreira Martins
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
59
|
Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T, Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis. Vet Parasitol 2014; 201:169-75. [DOI: 10.1016/j.vetpar.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
|
60
|
Gai Z, Zhang X, Islam M, Wang X, Li A, Yang Y, Li Y, Peng J, Hong H, Liu K. Characterization of Atg8 in lepidopteran insect cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:57-77. [PMID: 23959953 DOI: 10.1002/arch.21114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Yeast Atg8 and mammalian microtubule-associated protein light chain 3 (LC3) are landmark proteins essential for autophagy. Here the lepidopteran Atg8, a homolog of LC3, is characterized. Sequence analysis reveals that Atg8 proteins are highly conserved in lepidopteran species. The abundance of endogeous Atg8 and the ratios of Atg8 conjugation to phosphatidylethanolamine (Atg8-PE)/Atg8 are different among several lepidopteran cell lines and different tissues of Helicoverpa armigera larvae. Both the density of fluorescent pre-autophagosomal structures with GFP-Ha Atg8 and the abundance of Atg6 are positively correlated with levels of Atg8-PE in different cell lines. The mutant GFP-Atg8(G116A) has lost the function in punctual formation, suggesting that G116 is important for autophagy. Exogenous factors have significant influences on the conversion of Atg8 in lepidopteran cells. Bacillus thuringiensis enhances the degradation of Atg8 in Spodoptera litura Sl-HP cells. Atg8-PE degrades gradually with extension of amino acid starvation, and bafilomycin A1 can block the decrease through the inhibition of autophagosome fusion with lysosome. Interestingly, high pH is more effective than amino acid starvation in Bombyx mori Bme cells to induce the conversion of BmAtg8 to BmAgt8-PE. Change of the quality of fetal bovine serum in the culture medium results in alteration of the ratio of Atg8-PE/Atg8 in some lepidopteran cell lines.
Collapse
Affiliation(s)
- Zhongchao Gai
- College of Life Sciences, Central China Normal University, Wuhan City, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Badisco L, Van Wielendaele P, Vanden Broeck J. Eat to reproduce: a key role for the insulin signaling pathway in adult insects. Front Physiol 2013; 4:202. [PMID: 23966944 PMCID: PMC3735985 DOI: 10.3389/fphys.2013.00202] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/17/2013] [Indexed: 01/25/2023] Open
Abstract
Insects, like all heterotrophic organisms, acquire from their food the nutrients that are essential for anabolic processes that lead to growth (larval stages) or reproduction (adult stage). In adult females, this nutritional input is processed and results in a very specific output, i.e., the production of fully developed eggs ready for fertilization and deposition. An important role in this input-output transition is attributed to the insulin signaling pathway (ISP). The ISP is considered to act as a sensor of the organism's nutritional status and to stimulate the progression of anabolic events when the status is positive. In several insect species belonging to different orders, the ISP has been demonstrated to positively control vitellogenesis and oocyte growth. Whether or not ISP acts herein via a mediator action of lipophilic insect hormones (ecdysteroids and juvenile hormone) remains debatable and might be differently controlled in different insect orders. Most likely, insulin-related peptides, ecdysteroids and juvenile hormone are involved in a complex regulatory network, in which they mutually influence each other and in which the insect's nutritional status is a crucial determinant of the network's output. The current review will present an overview of the regulatory role of the ISP in female insect reproduction and its interaction with other pathways involving nutrients, lipophilic hormones and neuropeptides.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Research Group of Molecular Developmental Physiology and Signal Transduction KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
62
|
Van Wielendaele P, Badisco L, Vanden Broeck J. Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 2013; 188:23-34. [PMID: 23454669 DOI: 10.1016/j.ygcen.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context.
Collapse
Affiliation(s)
- Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, University of Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
63
|
Tian L, Ma L, Guo E, Deng X, Ma S, Xia Q, Cao Y, Li S. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy 2013; 9:1172-87. [PMID: 23674061 DOI: 10.4161/auto.24731] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.
Collapse
Affiliation(s)
- Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, China; State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Mane-Padros D, Cruz J, Cheng A, Raikhel AS. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti. PLoS One 2012; 7:e45019. [PMID: 23049766 PMCID: PMC3458863 DOI: 10.1371/journal.pone.0045019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022] Open
Abstract
The orphan nuclear receptor HR3 is essential for developmental switches during insect development and metamorphosis regulated by 20-hydroxyecdysone (20E). Reproduction of female mosquitoes of the major vector of Dengue fever, Aedes aegypti, is cyclic because of its dependence on blood feeding. 20E is an important hormone regulating vitellogenic events in this mosquito; however, any role for HR3 in 20E-driven reproductive events has not been known. Using RNA interference (RNAi) approach, we demonstrated that Aedes HR3 plays a critical role in a timely termination of expression of the vitellogenin (Vg) gene encoding the major yolk protein precursor. It is also important for downregulation of the Target-of-Rapamycin pathway and activation of programmed autophagy in the Aedes fat body at the end of vitellogenesis. HR3 is critical in activating betaFTZ-F1, EcRB and USPA, the expressions of which are highly elevated at the end of vitellogenesis. RNAi depletion of HR3 (iHR3) prior to the first gonadotrophic cycle affects a normal progression of the second gonadotrophic cycle. Most of ovaries 24 h post second blood meal from iHR3 females in the second cycle were small with follicles that were only slightly different in length from of those of resting stage. In addition, these iHR3 females laid a significantly reduced number of eggs per mosquito as compared to those of iMal and the wild type. Our results indicate an important role of HR3 in regulation of 20E-regulated developmental switches during reproductive cycles of A. aegypti females.
Collapse
Affiliation(s)
- Daniel Mane-Padros
- Department of Entomology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Josefa Cruz
- Department of Entomology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Andrew Cheng
- Department of Entomology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Alexander S. Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Aguila JR, Hoshizaki DK, Gibbs AG. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J Exp Biol 2012; 216:399-406. [DOI: 10.1242/jeb.078311] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Within the complex life cycle of holometabolous insects, nutritional resources acquired during larval feeding are utilized by the pupa and the adult. The broad features of the transfer of larval resources to the pupae and the allocation of larval resources in the adult have been described by studies measuring and tracking macronutrients at different developmental stages. However, the mechanisms of resource transfer from the larva and the factors regulating the allocation of these resources in the adult between growth, reproduction and somatic maintenance are unknown. Drosophila melanogaster Meigen presents a tractable system to test cellular/tissue mechanisms of resource acquisition and allocation, because of the detailed understanding of D. melanogaster development and the experimental tools to manipulate its tissues across developmental stages. In previous work, we demonstrated that the fat body of D. melanogaster larval is important for surviving starvation stress in the young adult and suggested that programmed cell death of the larval fat cells in the adult is important for allocation of resources for female reproduction. Here, we describe the temporal uptake of larval-derived carbon by the ovaries, and demonstrate the importance of larval fat-cell death in the maturation of the ovary and in fecundity. Larvae and adults were fed stable carbon isotopes to follow the acquisition of larval-derived carbon by the adult ovaries. We determined that over half of the nutrients acquired by the ovaries in 2-day old adult females are dependent upon the death of the fat cells. Furthermore, when programmed cell death is inhibited in the larval fat cells, ovarian development was depressed and fecundity reduced.
Collapse
Affiliation(s)
- Jerell R. Aguila
- Stony Brook University Medical Center; University of Nevada, USA
| | | | | |
Collapse
|