51
|
Ostadhossein F, Misra SK, Mukherjee P, Ostadhossein A, Daza E, Tiwari S, Mittal S, Gryka MC, Bhargava R, Pan D. Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5845-5861. [PMID: 27545321 PMCID: PMC5542878 DOI: 10.1002/smll.201601161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/29/2016] [Indexed: 05/08/2023]
Abstract
Signal transducer and activator of transcription factor 3 (STAT-3) is known to be overexpressed in cancer stem cells. Poor solubility and variable drug absorption are linked to low bioavailability and decreased efficacy. Many of the drugs regulating STAT-3 expression lack aqueous solubility; hence hindering efficient bioavailability. A theranostics nanoplatform based on luminescent carbon particles decorated with cucurbit[6]uril is introduced for enhancing the solubility of niclosamide, a STAT-3 inhibitor. The host-guest chemistry between cucurbit[6]uril and niclosamide makes the delivery of the hydrophobic drug feasible while carbon nanoparticles enhance cellular internalization. Extensive physicochemical characterizations confirm successful synthesis. Subsequently, the host-guest chemistry of niclosamide and cucurbit[6]uril is studied experimentally and computationally. In vitro assessments in human breast cancer cells indicate approximately twofold enhancement in IC50 of drug. Fourier transform infrared and fluorescence imaging demonstrate efficient cellular internalization. Furthermore, the catalytic biodegradation of the nanoplatforms occur upon exposure to human myeloperoxidase in short time. In vivo studies on athymic mice with MCF-7 xenograft indicate the size of tumor in the treatment group is half of the controls after 40 d. Immunohistochemistry corroborates the downregulation of STAT-3 phosphorylation. Overall, the host-guest chemistry on nanocarbon acts as a novel arsenal for STAT-3 inhibition.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Prabuddha Mukherjee
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Alireza Ostadhossein
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Enrique Daza
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Saumya Tiwari
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Shachi Mittal
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Mark C Gryka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave., Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Carle Foundation Hospital, 502 N. Busey St., Urbana, IL, 61801, USA
- Departments of Bioengineering and Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Institute for Sustainability in Energy and Environment, 502 N. Busey St., Urbana, IL, 61801, USA
| |
Collapse
|
52
|
Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, Lee SJ, Yamashita M, Hughes SG, Fayad L, Piha-Paul S, Nadella MVP, Mohseni M, Lawson D, Reimer C, Blakey DC, Xiao X, Hsu J, Revenko A, Monia BP, MacLeod AR. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 2016; 7:314ra185. [PMID: 26582900 DOI: 10.1126/scitranslmed.aac5272] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Next-generation sequencing technologies have greatly expanded our understanding of cancer genetics. Antisense technology is an attractive platform with the potential to translate these advances into improved cancer therapeutics, because antisense oligonucleotide (ASO) inhibitors can be designed on the basis of gene sequence information alone. Recent human clinical data have demonstrated the potent activity of systemically administered ASOs targeted to genes expressed in the liver. We describe the preclinical activity and initial clinical evaluation of a class of ASOs containing constrained ethyl modifications for targeting the gene encoding the transcription factor STAT3, a notoriously difficult protein to inhibit therapeutically. Systemic delivery of the unformulated ASO, AZD9150, decreased STAT3 expression in a broad range of preclinical cancer models and showed antitumor activity in lymphoma and lung cancer models. AZD9150 preclinical activity translated into single-agent antitumor activity in patients with highly treatment-refractory lymphoma and non-small cell lung cancer in a phase 1 dose-escalation study.
Collapse
Affiliation(s)
- David Hong
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Razelle Kurzrock
- UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| | - Youngsoo Kim
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Richard Woessner
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Anas Younes
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - John Nemunaitis
- Mary Crowley Cancer Research Center, 7777 Forest Lane, Dallas, TX 75230, USA
| | - Nathan Fowler
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Tianyuan Zhou
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Joanna Schmidt
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Minji Jo
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Samantha J Lee
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Mason Yamashita
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Steven G Hughes
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Luis Fayad
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sarina Piha-Paul
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Murali V P Nadella
- Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Waltham, MA 02451, USA
| | - Morvarid Mohseni
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Deborah Lawson
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Corinne Reimer
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - David C Blakey
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TF, UK
| | - Xiaokun Xiao
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Jeff Hsu
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Alexey Revenko
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA.
| |
Collapse
|
53
|
Singer JW, Al-Fayoumi S, Ma H, Komrokji RS, Mesa R, Verstovsek S. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor. J Exp Pharmacol 2016; 8:11-9. [PMID: 27574472 PMCID: PMC4993559 DOI: 10.2147/jep.s110702] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions.
Collapse
Affiliation(s)
- Jack W Singer
- Translational Medicine, CTI BioPharma Corp., Seattle, WA
| | | | - Haiching Ma
- Department of Research and Development, Reaction Biology, Malvern, PA
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ruben Mesa
- Division of Hematology and Medical Oncology, Mayo Clinic Cancer Center, Scottsdale, AZ
| | - Srdan Verstovsek
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
54
|
Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG. The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets 2016; 20:1339-1356. [PMID: 27353429 DOI: 10.1080/14728222.2016.1206891] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is strong pharmaceutical development of agents targeting the IL-17-TH17 pathway for the treatment of psoriasis (Ps) and psoriatic arthritis (PsA). Lung cancer accounts for 28% of all cancer-related deaths worldwide, and roughly 80% of patients with newly-diagnosed non-small cell lung cancer (NSCLC) present with metastatic disease, with a poor prognosis of around 12 months. Therefore, there is a high unmet medical need for the development of new and potent systemic treatments in this deadly disease. The emergence of immunotherapies such as anti-PD-1 or anti-PDL1 as candidate therapies in non-small cell lung cancer (NSCLC) indicates that targeting critical immuno-modulatory cytokines including those within the IL-17-Th1/Th17 axis may have proven benefit in the treatment of lung cancer. Areas covered: In this review we describe the current evidence for aberrant IL-17-Th1/Th17 settings in cancer, particularly with regard to targeting this axis in NSCLC. We further discuss the current agents under pharmaceutical development which could potentially target this axis, and discuss the current limitations and areas of concern regarding the use of these in lung cancer. Expert opinion: Current evidence suggests that moving forward agents targeting the IL-17-Th1/Th17 pathway may have novel new oncoimmunology indications in the treatment paradigm for NSCLC.
Collapse
Affiliation(s)
- Markus Joerger
- a Department of Medical Oncology & Hematology , Cantonal Hospital , St. Gallen , Switzerland
| | - Stephen P Finn
- b Department of Histopathology & Morbid Anatomy , Trinity College Dublin , Dublin , Ireland
| | - Sinead Cuffe
- c HOPE Directorate , St James's Hospital , Dublin , Ireland
| | - Annette T Byrne
- d Department of Physiology and Medical Physics & Centre for Systems Medicine , Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Steven G Gray
- e Thoracic Oncology Research Group , IMM, St James's Hospital , Dublin , Ireland.,f Department of Clinical Medicine , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
55
|
Reversine Induced Multinucleated Cells, Cell Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer Cells. PLoS One 2016; 11:e0158587. [PMID: 27385117 PMCID: PMC4934785 DOI: 10.1371/journal.pone.0158587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Reversine, an A3 adenosine receptor antagonist, has been shown to induce differentiated myogenic-lineage committed cells to become multipotent mesenchymal progenitor cells. We and others have reported that reversine has an effect on human tumor suppression. This study revealed anti-tumor effects of reversine on proliferation, apoptosis and autophagy induction in human non-small cell lung cancer cells. Treatment of these cells with reversine suppressed cell growth in a time- and dosage-dependent manner. Moreover, polyploidy occurred after reversine treatment. In addition, caspase-dependent apoptosis and activation of autophagy by reversine in a dosage-dependent manner were also observed. We demonstrated in this study that reversine contributes to growth inhibition, apoptosis and autophagy induction in human lung cancer cells. Therefore, reversine used as a potential therapeutic agent for human lung cancer is worthy of further investigation.
Collapse
|
56
|
Cortinovis D, Abbate M, Bidoli P, Capici S, Canova S. Targeted therapies and immunotherapy in non-small-cell lung cancer. Ecancermedicalscience 2016; 10:648. [PMID: 27433281 PMCID: PMC4929979 DOI: 10.3332/ecancer.2016.648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Indexed: 01/23/2023] Open
Abstract
Non-small-cell lung cancer is still considered a difficult disease to manage because of its aggressiveness and resistance to common therapies. Chemotherapy remains the gold standard in nearly 80% of lung cancers, but clinical outcomes are discouraging, and the impact on median overall survival (OS) barely reaches 12 months. At the end of the last century, the discovery of oncogene-driven tumours completely changed the therapeutic landscape in lung cancers, harbouring specific gene mutations/translocations. Epidermal growth factors receptor (EGFR) common mutations first and anaplastic lymphoma kinase (ALK) translocations later led new insights in lung cancer biology knowledge. The use of specific tyrosine kinases inhibitors overturned the biological behaviour of EGFR mutation positive tumours and became a preclinical model to understand the heterogeneity of lung cancers and the mechanisms of drug resistance. In this review, we summarise the employment of targeted agents against the most representative biomolecular alterations and provide some criticisms of the therapeutic strategies.
Collapse
Affiliation(s)
- D Cortinovis
- Medical Oncology Unit, AOU San Gerardo, via Giambattista Pergolesi 33, 20900 Monza, Italy
| | - M Abbate
- Medical Oncology Unit, AOU San Gerardo, via Giambattista Pergolesi 33, 20900 Monza, Italy
| | - P Bidoli
- Medical Oncology Unit, AOU San Gerardo, via Giambattista Pergolesi 33, 20900 Monza, Italy
| | - S Capici
- Medical Oncology Unit, AOU San Gerardo, via Giambattista Pergolesi 33, 20900 Monza, Italy
| | - S Canova
- Medical Oncology Unit, AOU San Gerardo, via Giambattista Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
57
|
Zhang FQ, Yang WT, Duan SZ, Xia YC, Zhu RY, Chen YB. JAK2 inhibitor TG101348 overcomes erlotinib-resistance in non-small cell lung carcinoma cells with mutated EGF receptor. Oncotarget 2016; 6:14329-43. [PMID: 25869210 PMCID: PMC4546470 DOI: 10.18632/oncotarget.3685] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations are responsive to EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, NSCLC patients with secondary somatic EGFR mutations are resistant to EGFR-TKI treatment. In this study, we investigated the effect of TG101348 (a JAK2 inhibitor) on the tumor growth of erlotinib-resistant NSCLC cells. Cell proliferation, apoptosis, gene expression and tumor growth were evaluated by diphenyltetrazolium bromide (MTT) assay, flow cytometry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, Western Blot and a xenograft mouse model, respectively. Results showed that erlotinib had a stronger impact on the induction of apoptosis in erlotinib-sensitive PC-9 cells but had a weaker effect on erlotinib-resistant H1975 and H1650 cells than TG101348. TG101348 significantly enhanced the cytotoxicity of erlotinib to erlotinib-resistant NSCLC cells, stimulated erlotinib-induced apoptosis and downregulated the expressions of EGFR, p-EGFR, p-STAT3, Bcl-xL and survivin in erlotinib-resistant NSCLC cells. Moreover, the combined treatment of TG101348 and erlotinib induced apoptosis, inhibited the activation of p-EGFR and p-STAT3, and inhibited tumor growth of erlotinib-resistant NSCLC cells in vivo. Our results indicate that TG101348 is a potential adjuvant for NSCLC patients during erlotinib treatment.
Collapse
Affiliation(s)
- Fu-quan Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wen-tao Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shan-zhou Duan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying-chen Xia
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rong-ying Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yong-bing Chen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
58
|
Bunn PA, Minna JD, Augustyn A, Gazdar AF, Ouadah Y, Krasnow MA, Berns A, Brambilla E, Rekhtman N, Massion PP, Niederst M, Peifer M, Yokota J, Govindan R, Poirier JT, Byers LA, Wynes MW, McFadden DG, MacPherson D, Hann CL, Farago AF, Dive C, Teicher BA, Peacock CD, Johnson JE, Cobb MH, Wendel HG, Spigel D, Sage J, Yang P, Pietanza MC, Krug LM, Heymach J, Ujhazy P, Zhou C, Goto K, Dowlati A, Christensen CL, Park K, Einhorn LH, Edelman MJ, Giaccone G, Gerber DE, Salgia R, Owonikoko T, Malik S, Karachaliou N, Gandara DR, Slotman BJ, Blackhall F, Goss G, Thomas R, Rudin CM, Hirsch FR. Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes? J Thorac Oncol 2016; 11:453-74. [PMID: 26829312 PMCID: PMC4836290 DOI: 10.1016/j.jtho.2016.01.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Paul A Bunn
- University of Colorado Cancer Center, Aurora, Colorado
| | - John D Minna
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Adi F Gazdar
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Anton Berns
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | - Jun Yokota
- Institute of Predictive and Personalized Medicine of Cancer, Barcelona, Spain; National Cancer Center Research Institute, Tokyo, Japan
| | | | - John T Poirier
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lauren A Byers
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Murry W Wynes
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | | | | | | | - Anna F Farago
- Massachusetts General Hospital, Boston, Massachusetts
| | - Caroline Dive
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | | | | | - Jane E Johnson
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Melanie H Cobb
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - David Spigel
- Sara Cannon Research Institute, Nashville, Tennessee
| | | | - Ping Yang
- Mayo Clinic Cancer Center, Rochester, Minnesota
| | | | - Lee M Krug
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Heymach
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Caicun Zhou
- Cancer Institute of Tongji University Medical School, Shanghai, China
| | - Koichi Goto
- National Cancer Center Hospital East, Chiba, Japan
| | - Afshin Dowlati
- Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | | | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Martin J Edelman
- University of Maryland, Greenebaum Cancer Center, Baltimore, Maryland
| | | | - David E Gerber
- University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - David R Gandara
- University of California Davis Comprehensive Cancer Center, Davis, California
| | - Ben J Slotman
- Vrije Universiteit Medical Center, Amsterdam, Netherlands
| | | | | | | | | | - Fred R Hirsch
- University of Colorado Cancer Center, Aurora, Colorado.
| |
Collapse
|
59
|
Brassinin inhibits STAT3 signaling pathway through modulation of PIAS-3 and SOCS-3 expression and sensitizes human lung cancer xenograft in nude mice to paclitaxel. Oncotarget 2016; 6:6386-405. [PMID: 25788267 PMCID: PMC4467444 DOI: 10.18632/oncotarget.3443] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022] Open
Abstract
Persistent phosphorylation of signal transducers and activators of transcription 3 (STAT3) is frequently observed in tumor cells. We found that brassinin (BSN) suppressed both constitutive and IL-6-inducible STAT3 activation in lung cancer cells. Moreover, BSN induced PIAS-3 protein and mRNA, whereas the expression of SOCS-3 was reduced. Knockdown of PIAS-3 by small interfering RNA prevented inhibition of STAT3 and cytotoxicity by BSN. Overexpression of SOCS-3 in BSN-treated cells increased STAT3 phosphorylation and cell viability. BSN down-regulated STAT3-regulated gene products, inhibited proliferation, invasion, as well as induced apoptosis. Most importantly, when administered intraperitoneally, combination of BSN and paclitaxel significantly decreased the tumor development in a xenograft lung cancer mouse model associated with down-modulation of phospho-STAT3, Ki-67 and CD31. We suggest that BSN inhibits STAT3 signaling through modulation of PIAS-3 and SOCS-3, thereby attenuating tumor growth and increasing sensitivity to paclitaxel.
Collapse
|
60
|
Patel JN, Ersek JL, Kim ES. Lung cancer biomarkers, targeted therapies and clinical assays. Transl Lung Cancer Res 2015; 4:503-14. [PMID: 26629419 DOI: 10.3978/j.issn.2218-6751.2015.06.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Until recently, the majority of genomic cancer research has been in discovery and validation; however, as our knowledge of tumor molecular profiling improves, the idea of genomic application in the clinic becomes increasingly tangible, paralleled with the drug development of newer targeted therapies. A number of profiling methodologies exist to identify biomarkers found within the patient (germ-line DNA) and tumor (somatic DNA). Subsequently, commercially available clinical assays to test for both germ-line and somatic alterations that are prognostic and/or predictive of disease outcome, toxicity or treatment response have significantly increased. This review aims to summarize clinically relevant cancer biomarkers that serve as targets for therapy and their potential relationship to lung cancer. In order to realize the full potential of genomic cancer medicine, it is imperative that clinicians understand these intricate molecular pathways, the therapeutic implication of mutations within these pathways, and the availability of clinical assays to identify such biomarkers.
Collapse
Affiliation(s)
- Jai N Patel
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Jennifer L Ersek
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| | - Edward S Kim
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC, USA
| |
Collapse
|
61
|
Lewis KM, Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Fridley C, Siller R, Tweardy DJ. Small-molecule targeting of signal transducer and activator of transcription (STAT) 3 to treat non-small cell lung cancer. Lung Cancer 2015; 90:182-90. [PMID: 26410177 PMCID: PMC4619129 DOI: 10.1016/j.lungcan.2015.09.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lung cancer is the leading cause of cancer death in both men and women. Non-small cell lung cancer (NSCLC) has an overall 5-year survival rate of 15%. While aberrant STAT3 activation has previously been observed in NSCLC, the scope of its contribution is uncertain and agents that target STAT3 for treatment are not available clinically. METHODS We determined levels of activated STAT3 (STAT3 phosphorylated on Y705, pSTAT3) and the two major isoforms of STAT3 (α and β) in protein extracts of 8 NSCLC cell lines, as well as the effects of targeting STAT3 in vitro and in vivo in NSCLC cells using short hairpin (sh) RNA and two novel small-molecule STAT3 inhibitors, C188-9 and piperlongumine (PL). RESULTS Levels of pSTAT3, STAT3α, and STATβ were increased in 7 of 8 NSCLC cell lines. Of note, levels of pSTAT3 were tightly correlated with levels of STAT3β, but not STAT3α. Targeting of STAT3 in A549 cells using shRNA decreased tSTAT3 by 75%; this was accompanied by a 47-78% reduction in anchorage-dependent and anchorage-independent growth and a 28-45% reduction in mRNA levels for anti-apoptotic STAT3 gene targets. C188-9 and PL (@30 μM) each reduced pSTAT3 levels in all NSCLC cell lines tested by ≥50%, reduced anti-apoptotic protein mRNA levels by 25-60%, and reduced both anchorage-dependent and anchorage-independent growth of NSCLC cell lines with IC50 values ranging from 3.06 to 52.44 μM and 0.86 to 11.66 μM, respectively. Treatment of nude mice bearing A549 tumor xenografts with C188-9 or PL blocked tumor growth and reduced levels of pSTAT3 and mRNA encoding anti-apoptotic proteins. CONCLUSION STAT3 is essential for growth of NSCLC cell lines and tumors and its targeting using C188-9 or PL may be a useful strategy for treatment.
Collapse
Affiliation(s)
- Katherine M Lewis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Uddalak Bharadwaj
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - T Kris Eckols
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mikhail Kolosov
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Moses M Kasembeli
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Colleen Fridley
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ricardo Siller
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
62
|
Nash O, Omotuyi O, Lee J, Kwon BM, Ogbadu L. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling. J Mol Model 2015; 21:280. [DOI: 10.1007/s00894-015-2821-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
|
63
|
Abstract
Breast cancer is among the most commonly diagnosed cancer types in women worldwide and is the second leading cause of cancer-related disease in the USA. SH2 domains recruit signaling proteins to phosphotyrosine residues on aberrantly activated growth factor and cytokine receptors and contribute to cancer cell cycling, metastasis, angiogenesis and so on. Herein we review phosphopeptide mimetic and small-molecule approaches targeting the SH2 domains of Grb2, Grb7 and STAT3 that inhibit their targets and reduce proliferation in in vitro breast cancer models. Only STAT3 inhibitors have been evaluated in in vivo models and have led to tumor reduction. Taken together, these studies suggest that targeting SH2 domains is an important approach to the treatment of breast cancer.
Collapse
|
64
|
Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P, Huang L. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep 2015; 5:8477. [PMID: 26166037 PMCID: PMC4499885 DOI: 10.1038/srep08477] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/22/2015] [Indexed: 12/25/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are mostly used in non-small cell lung cancer (NSCLC) treatment. Unfortunately, treatment with Gefitinib for a period of time will result in drug resistance and cause treatment failure in clinic. Therefore, exploring novel compounds to overcome this resistance is urgently required. Here we investigated the antitumor effect of homoharringtonine (HHT), a natural compound extracted from Cephalotaxus harringtonia, on Gefitinib-resistant NSCLC cell lines in vitro and in vivo. NCI-H1975 cells with EGFR T790M mutation are more sensitive to HHT treatment compared with that of A549 cells with wild type EGFR. HHT inhibited cells growth, cell viability and colony formation, as well as induced cell apoptosis through mitochondria pathway. Furthermore, we explored the mechanism of HHT inhibition on NSCLC cells. Higher level of interleukin-6 (IL-6) existed in lung cancer patients and mutant EGFR and TGFβ signal requires the upregulation of IL-6 through the gp130/JAK pathway to overactive STAT3, an oncogenic protein which has been considered as a potential target for cancer therapy. HHT reversiblely inhibited IL-6-induced STAT3 Tyrosine 705 phosphorylation and reduced anti-apoptotic proteins expression. Gefitinib-resistant NSCLC xenograft tests also confirmed the antitumor effect of HHT in vivo. Consequently, HHT has the potential in Gefitinib-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Wei Cao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ying Liu
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ran Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongling Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Pinghong Ming
- Laboratory of Zhuhai People’s Hospital, Zhuhai, Guangdong, 519000, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
65
|
Reikvam H, Hauge M, Brenner AK, Hatfield KJ, Bruserud Ø. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication. Expert Rev Hematol 2015; 8:299-313. [PMID: 25835070 DOI: 10.1586/17474086.2015.1032935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
66
|
Santoni M, Massari F, Del Re M, Ciccarese C, Piva F, Principato G, Montironi R, Santini D, Danesi R, Tortora G, Cascinu S. Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer. Expert Opin Investig Drugs 2015; 24:809-24. [PMID: 25746129 DOI: 10.1517/13543784.2015.1020370] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) mediates the expression of a variety of genes in response to cell stimuli and thus plays a key role in several cellular processes such as cell growth and apoptosis. Deregulation of the STAT3 activity has been shown in many malignancies, including breast, head and neck, prostate, pancreas, ovarian and brain cancers and melanoma. Thus, STAT3 may represent an ideal target for cancer therapy. AREAS COVERED The authors review recent data on the role of STAT3 in tumor initiation and progression, as well as the ongoing clinical trials in cancer patients. The content includes information derived from trial databases, regulatory authorities and scientific literature. EXPERT OPINION Targeting STAT3 activation leads to the inhibition of tumor growth and metastasis both in vitro and in vivo without affecting normal cells; this suggests that STAT3 could be a valid molecular target for cancer therapy. Extensive clinical research is trying to find anti-STAT3 agents with high single-agent activity. The identification and development of novel drugs that can target deregulated STAT3 activation effectively is both a scientific and clinical challenge that needs to be addressed in the near future.
Collapse
Affiliation(s)
- Matteo Santoni
- Polytechnic University of the Marche Region, Medical Oncology, AOU Ospedali Riuniti , via Conca 71, 60126 Ancona , Italy +39 0715964263 ; +39 0715964269 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cui YH, Suh Y, Lee HJ, Yoo KC, Uddin N, Jeong YJ, Lee JS, Hwang SG, Nam SY, Kim MJ, Lee SJ. Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene 2015; 34:5372-82. [PMID: 25639867 DOI: 10.1038/onc.2014.466] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/24/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Despite ionizing radiation (IR) is being widely used as a standard treatment for lung cancer, many evidences suggest that IR paradoxically promotes cancer malignancy. However, its molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that exposure to fractionated radiation (2 Gy per day for 3 days) induces the secretion of granulocyte-colony-stimulating factor (G-CSF) that has been commonly used in cancer therapies to ameliorate neutropenia. Intriguingly, radiation-induced G-CSF promoted the migratory and invasive properties by triggering the epithelial-mesenchymal cell transition (EMT) in non-small-cell lung cancer cells (NSCLCs). By irradiation, G-CSF was upregulated transcriptionally by β-catenin/TCF4 complex that binds to the promoter region of G-CSF as a transcription factor. Importantly, irradiation increased the stability of β-catenin through the activation of PI3K/AKT (phosphatidylinositol 3-kinase/AKT), thereby upregulating the expression of G-CSF. Radiation-induced G-CSF is recognized by G-CSFR and transduced its intracellular signaling JAK/STAT3 (Janus kinase/signal transducers and activators of transcription), thereby triggering EMT program in NSCLCs. Taken together, our findings suggest that the application of G-CSF in cancer therapies to ameliorate neutropenia should be reconsidered owing to its effect on cancer progression, and G-CSF could be a novel therapeutic target to mitigate the harmful effect of radiotherapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Y-H Cui
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Y Suh
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - H-J Lee
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - K-C Yoo
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - N Uddin
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Y-J Jeong
- Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - J-S Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, Korea
| | - S-G Hwang
- Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - S-Y Nam
- Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul, Korea
| | - M-J Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - S-J Lee
- Laboratory of Molecular Biochemisty, Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
68
|
Abstract
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
Collapse
|
69
|
Dutta P, Sabri N, Li J, Li WX. Role of STAT3 in lung cancer. JAKSTAT 2015; 3:e999503. [PMID: 26413424 DOI: 10.1080/21623996.2014.999503] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
Lung cancer remains a challenging disease. It is responsible for the high cancer mortality rates in the US and worldwide. Elucidation of the molecular mechanisms operative in lung cancer is an important first step in developing effective therapies. Accumulating evidence over the last 2 decades suggests a critical role for Signal Transducer and Activator of Transcription 3 (STAT3) as a point of convergence for various signaling pathways that are dysregulated in the disease. In this review, we discuss possible molecular mechanisms involving STAT3 in lung tumorigenesis based on recent literature. We consider possible roles of STAT3 in cancer cell proliferation and survival, in the tumor immune environment, and in epigenetic regulation and interaction of STAT3 with other transcription factors. We also discuss the potential role of STAT3 in tumor suppression, which complicates strategies of targeting STAT3 in cancer therapy.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Department of Medicine; University of California, San Diego ; La Jolla, CA USA
| | - Nafiseh Sabri
- Department of Medicine; University of California, San Diego ; La Jolla, CA USA ; Department of Chemistry & Molecular Biology; University of Gothenburg ; Gothenburg, Sweden
| | - Jinghong Li
- Department of Medicine; University of California, San Diego ; La Jolla, CA USA
| | - Willis X Li
- Department of Medicine; University of California, San Diego ; La Jolla, CA USA
| |
Collapse
|
70
|
Cheng E, Whitsett TG, Tran NL, Winkles JA. The TWEAK Receptor Fn14 Is an Src-Inducible Protein and a Positive Regulator of Src-Driven Cell Invasion. Mol Cancer Res 2014; 13:575-83. [PMID: 25392346 DOI: 10.1158/1541-7786.mcr-14-0411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The TNF receptor superfamily member Fn14 (TNFRSF12A) is the sole signaling receptor for the proinflammatory cytokine TWEAK (TNFSF12). TWEAK Fn14 engagement stimulates multiple signal transduction pathways, including the NF-κB pathway, and this triggers important cellular processes (e.g., growth, differentiation, migration, and invasion). The TWEAK-Fn14 axis is thought to be a major physiologic mediator of tissue repair after acute injury. Various studies have revealed that Fn14 is highly expressed in many solid tumor types, and that Fn14 signaling may play a role in tumor growth and metastasis. Previously, it was shown that Fn14 levels are frequently elevated in non-small cell lung cancer (NSCLC) tumors and cell lines that exhibit constitutive EGFR phosphorylation (activation). Furthermore, elevated Fn14 levels increased NSCLC cell invasion in vitro and lung metastatic tumor colonization in vivo. The present study reveals that EGFR-mutant NSCLC cells that express high levels of Fn14 exhibit constitutive activation of the cytoplasmic tyrosine kinase Src, and that treatment with the Src family kinase (SFK) inhibitor dasatinib decreases Fn14 gene expression at both the mRNA and protein levels. Importantly, siRNA-mediated depletion of the SFK member Src in NSCLC cells also decreases Fn14 expression. Finally, expression of the constitutively active v-Src oncoprotein in NIH 3T3 cells induces Fn14 gene expression, and NIH 3T3/v-Src cells require Fn14 expression for full invasive capacity. IMPLICATIONS These results indicate that oncogenic Src may contribute to Fn14 overexpression in solid tumors, and that Src-mediated cell invasion could potentially be inhibited with Fn14-targeted therapeutics.
Collapse
Affiliation(s)
- Emily Cheng
- Department of Surgery, Center for Vascular and Inflammatory Diseases, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Timothy G Whitsett
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Nhan L Tran
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jeffrey A Winkles
- Department of Surgery, Center for Vascular and Inflammatory Diseases, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
71
|
Bruserud Ø, Nepstad I, Hauge M, Hatfield KJ, Reikvam H. STAT3 as a possible therapeutic target in human malignancies: lessons from acute myeloid leukemia. Expert Rev Hematol 2014; 8:29-41. [PMID: 25374305 DOI: 10.1586/17474086.2015.971005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
STAT3 is important for transcriptional regulation in human acute myeloid leukemia (AML). STAT3 has thousands of potential DNA binding sites but usually shows cell type specific binding preferences to a limited number of these. Furthermore, AML is a very heterogeneous disease, and studies of the prognostic impact of STAT3 in human AML have also given conflicting results. A more detailed characterization of STAT3 functions and the expression of various isoforms in human AML will therefore be required before it is possible to design clinical studies of STAT3 inhibitors in this disease, and it will be especially important to investigate whether the functions of STAT3 differ between patients. Several other malignancies also show extensive biological heterogeneity, and the present discussion and the suggested scientific approaches may thus be relevant for other cancer patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
72
|
Abstract
In a recent study, we have shown that STAT3 expressed by tumor cells blunts antitumor immunity during carcinogen-induced lung tumorigenesis. STAT3 inhibits the production of pro-inflammatory chemokines and MHC Class I chain-related gene A. In contrast, STAT3 promotes the expression of MHC class I molecules. Consequently, STAT3 promotes tumor cell resistance to NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Hiroshi Kida
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases; Osaka University Graduate School of Medicine; Suita, Osaka, Japan
| | | | | |
Collapse
|
73
|
Bradley E, Dasgupta S, Jiang X, Zhao X, Zhu G, He Q, Dinkins M, Bieberich E, Wang G. Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. PLoS One 2014; 9:e110119. [PMID: 25330231 PMCID: PMC4203763 DOI: 10.1371/journal.pone.0110119] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/08/2014] [Indexed: 11/21/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells. Metabolically, Spns2 expression increased the extracellular S1P level while its knockdown the intracellular. Pharmacological inhibition of S1P synthesis abolished the augmented cell migration mediated by Spns2 knockdown, indicating that intracellular S1P plays a key role in this process. Cell signaling studies indicated that Spns2 expression impaired GSK-3β and Stat3 mediated pro-survival pathways. Conversely, these pathways were activated by Spns2 knockdown, which explains the increased cell migration since they are also crucial for migration. Alterations of Spns2 were found to affect several enzymes involved in S1P metabolism, including sphingosine kinases, S1P phosphatases, and S1P lyase 1. Genetically, Spns2 mRNA level was found to be reduced in advanced lung cancer (LC) patients as quantified by using a small scale qPCR array. These data show for the first time that Spns2 plays key roles in regulating the cellular functions in NSCLC cells, and that its down-regulation is a potential risk factor for LC.
Collapse
Affiliation(s)
- Eric Bradley
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xue Jiang
- Shengjing Hospital, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaying Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Gu Zhu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Qian He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
74
|
Yuan F, Fu X, Shi H, Chen G, Dong P, Zhang W. Induction of murine macrophage M2 polarization by cigarette smoke extract via the JAK2/STAT3 pathway. PLoS One 2014; 9:e107063. [PMID: 25198511 PMCID: PMC4157812 DOI: 10.1371/journal.pone.0107063] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Xiao Fu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Hengfei Shi
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Guopu Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ping Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weiyun Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
75
|
Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors. Proc Natl Acad Sci U S A 2014; 111:12787-92. [PMID: 25139989 DOI: 10.1073/pnas.1404881111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), a latent transcription factor associated with inflammatory signaling and innate and adaptive immune responses, is known to be aberrantly activated in a wide variety of cancers. In vitro analysis of STAT3 in human cancer cell lines has elucidated a number of specific targets associated with poor prognosis in breast cancer. However, to date, no comparison of cancer subtype and gene expression associated with STAT3 signaling in human patients has been reported. In silico analysis of human breast cancer microarray and reverse-phase protein array data was performed to identify expression patterns associated with STAT3 in basal-like and luminal breast cancers. Results indicate clearly identifiable STAT3-regulated signatures common to basal-like breast cancers but not to luminal A or luminal B cancers. Furthermore, these differentially expressed genes are associated with immune signaling and inflammation, a known phenotype of basal-like cancers. These findings demonstrate a distinct role for STAT3 signaling in basal breast cancers, and underscore the importance of considering subtype-specific molecular pathways that contribute to tissue-specific cancers.
Collapse
|
76
|
McMurray JS, Mandal PK, Liao WS, Klostergaard J, Robertson FM. The consequences of selective inhibition of signal transducer and activator of transcription 3 (STAT3) tyrosine705 phosphorylation by phosphopeptide mimetic prodrugs targeting the Src homology 2 (SH2) domain. JAKSTAT 2014; 1:263-347. [PMID: 24058783 PMCID: PMC3670284 DOI: 10.4161/jkst.22682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herein we review our progress on the development of phosphopeptide-based prodrugs targeting the SH2 domain of STAT3 to prevent recruitment to cytokine and growth factor receptors, activation, nuclear translocation and transcription of genes involved in cancer. We developed high affinity phosphopeptides (KI = 46–200 nM). Corresponding prodrugs inhibited constitutive and IL-6 induced Tyr705 phosphorylation at 0.5–1 μM in a variety of human cancer cell lines. They were not cytotoxic at 5 μM in vitro but they inhibited tumor growth in a human xenograft breast cancer model in mice, accompanied by reduced VEGF expression and angiogenesis.
Collapse
Affiliation(s)
- John S McMurray
- The Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | | | | | | | | |
Collapse
|
77
|
Tumor Restrictions to Oncolytic Virus. Biomedicines 2014; 2:163-194. [PMID: 28548066 PMCID: PMC5423468 DOI: 10.3390/biomedicines2020163] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/17/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy has advanced since the days of its conception but therapeutic efficacy in the clinics does not seem to reach the same level as in animal models. One reason is premature oncolytic virus clearance in humans, which is a reasonable assumption considering the immune-stimulating nature of the oncolytic agents. However, several studies are beginning to reveal layers of restriction to oncolytic virotherapy that are present before an adaptive neutralizing immune response. Some of these barriers are present constitutively halting infection before it even begins, whereas others are raised by minute cues triggered by virus infection. Indeed, we and others have noticed that delivering viruses to tumors may not be the biggest obstacle to successful therapy, but instead the physical make-up of the tumor and its capacity to mount antiviral defenses seem to be the most important efficacy determinants. In this review, we summarize the constitutive and innate barriers to oncolytic virotherapy and discuss strategies to overcome them.
Collapse
|
78
|
The Role of STAT3 in Non-Small Cell Lung Cancer. Cancers (Basel) 2014; 6:708-22. [PMID: 24675568 PMCID: PMC4074799 DOI: 10.3390/cancers6020708] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022] Open
Abstract
Persistent phosphorylation of signal transducer and activator of transcription 3 (STAT3) has been demonstrated in 22%~65% of non-small cell lung cancers (NSCLC). STAT3 activation is mediated by receptor tyrosine kinases, such as epidermal growth factor receptor (EGFR) and MET, cytokine receptors, such as IL-6, and non-receptor kinases, such as Src. Overexpression of total or phosphorylated STAT3 in resected NSCLC leads to poor prognosis. In a preclinical study, overexpression of STAT3 was correlated with chemoresistance and radioresistance in NSCLC cells. Here, we review the role of STAT3 and the mechanisms of treatment resistance in malignant diseases, especially NSCLC. As STAT3 is a critical mediator of the oncogenic effects of EGFR mutations, we discuss STAT3 pathways in EGFR-mutated NSCLC, referring to mechanisms of EGFR tyrosine kinase inhibitor resistance.
Collapse
|
79
|
Westrate LM, Sayfie AD, Burgenske DM, MacKeigan JP. Persistent mitochondrial hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PLoS One 2014; 9:e91911. [PMID: 24632851 PMCID: PMC3954829 DOI: 10.1371/journal.pone.0091911] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/15/2014] [Indexed: 11/18/2022] Open
Abstract
Cancer cells have several hallmarks that define their neoplastic behavior. One is their unabated replicative potential that allows cells to continually proliferate, and thereby contribute to increasing tumor burden. The progression of a cell through the cell cycle is regulated by a series of checkpoints that ensures successful transmission of genetic information, as well as various cellular components, including organelles and protein complexes to the two resulting daughter cells. The mitochondrial reticulum undergoes coordinated changes in shape to correspond with specific stages of the cell cycle, the most dramatic being complete mitochondrial fragmentation prior to cytokinesis. To determine whether mitochondrial fission is a required step to ensure proper mitochondrial segregation into two daughter cells, we investigated the importance of mitochondrial dynamics to cell cycle progression. We found that mitochondrial hyperfusion promotes a defect in cell cycle progression characterized by an inability for cells to exit G2/M. Additionally, extended periods of persistent mitochondrial fusion led to robust caspase-dependent cell death. The cell death signals were coordinated through activation and cleavage of caspase-8, promoting a potent death response. These results demonstrate the importance of mitochondrial dynamics in cell cycle progression, and that inhibiting mitochondrial fission regulators may provide a therapeutic strategy to target the replicative potential of cancer cells.
Collapse
Affiliation(s)
- Laura M. Westrate
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Institute Graduate School, Grand Rapids, Michigan, United States of America
| | - Aaron D. Sayfie
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Danielle M. Burgenske
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Institute Graduate School, Grand Rapids, Michigan, United States of America
| | - Jeffrey P. MacKeigan
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Van Andel Institute Graduate School, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
80
|
You S, Li R, Park D, Xie M, Sica GL, Cao Y, Xiao ZQ, Deng X. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol Cancer Ther 2014; 13:606-16. [PMID: 24362463 PMCID: PMC3964811 DOI: 10.1158/1535-7163.mct-13-0608] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge affecting the outcomes of patients with lung cancer is the development of acquired radioresistance. However, the mechanisms underlying the development of resistance to therapy are not fully understood. Here, we discovered that ionizing radiation induces phosphorylation of Janus-associated kinase (JAK)-2 and STAT3 in association with increased levels of Bcl2/Bcl-XL in various human lung cancer cells. To uncover new mechanism(s) of radioresistance of lung cancer, we established lung cancer cell model systems with acquired radioresistance. As compared with radiosensitive parental lung cancer cells (i.e., A549, H358, and H157), the JAK2/STAT3/Bcl2/Bcl-XL survival pathway is significantly more activated in acquired radioresistant lung cancer cells (i.e., A549-IRR, H358-IRR, and H157-IRR). Higher levels of STAT3 were found to be accumulated in the nucleus of radioresistant lung cancer cells. Niclosamide, a potent STAT3 inhibitor, can reduce STAT3 nuclear localization in radioresistant lung cancer cells. Intriguingly, either inhibition of STAT3 activity by niclosamide or depletion of STAT3 by RNA interference reverses radioresistance in vitro. Niclosamide alone or in combination with radiation overcame radioresistance in lung cancer xenografts. These findings uncover a novel mechanism of radioresistance and provide a more effective approach to overcome radioresistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway, which may potentially improve lung cancer outcome, especially for those patients who have resistance to radiotherapy.
Collapse
Affiliation(s)
- Shuo You
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Second Affiliated Hospital of Xiangya, Central South University, Changsha, Hunan 410008, China
| | - Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gabriel L. Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zhi-Qiang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
81
|
Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT. JAK/STAT3 signaling is required for TGF-β-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol 2014; 44:1643-51. [PMID: 24573038 DOI: 10.3892/ijo.2014.2310] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a key step in the early stages of cancer metastasis, is orchestrated by several signaling pathways, including IL-6/JAK/STAT3 and TGF-β/Smad signaling. However, an association between the two signaling pathways during the EMT process is largely unknown. Here, we focused on lung cancer and demonstrated that TGF-β1 induced the phosphorylation of Smad3 (p-Smad3), upregulation of Snail, a fibroblast-like morphology, and downregulation of E-cadherin as well as upregulation of vimentin in lung cancer cell lines. SIS3 (an inhibitor of Smad3) suppressed TGF-β1-induced activation of Smad3, upregulation of Snail and the EMT process. Importantly, the JAK2/STAT3-specific inhibitor AG490 blocked Stat3 phosphorylation, resulting in attenuated levels of TGF-β1-induced p-Smad3, Snail, MMP2, and Smad-mediated PAI-1 promoter reporter gene activity in A549 and H1650 cells. Subsequently, AG490 inhibited TGF-β-induced cell migration and invasion. Moreover, exogenous IL-6 treatment stimulated Stat3 activation, enhanced TGF-β-induced expression of p-Smad3 and Snail, aggravated the EMT process, and increased lung cancer cell migration and invasion induced by TGF-β1. Our findings show that the JAK/STAT3 pathway is required for TGF-β-induced EMT and cancer cell migration and invasion via upregulation of the expression of p-Smad3 and Snail, and the IL-6/JAK/STAT3 and TGF-β/Smad signaling synergistically enhance EMT in lung carcinomas. The present study suggests a novel rationale for inhibiting cancer metastasis using anti-IL-6/JAK/STAT3 and anti-TGF-β/Smad therapeutic strategies.
Collapse
Affiliation(s)
- Reng-Yun Liu
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yuanyuan Zeng
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Zeyi Liu
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou 215123, P.R. China
| | - Jun Zhao
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
82
|
EGFR inhibition by pentacyclic triterpenes exhibit cell cycle and growth arrest in breast cancer cells. Life Sci 2014; 95:53-62. [DOI: 10.1016/j.lfs.2013.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/09/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
83
|
Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611-29. [PMID: 23903221 DOI: 10.1038/nrd4088] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials.
Collapse
|
84
|
DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies. Am J Hum Genet 2013; 93:439-51. [PMID: 23954162 DOI: 10.1016/j.ajhg.2013.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/21/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022] Open
Abstract
Cancers are caused by the accumulation of genomic alterations. Driver mutations are required for the cancer phenotype, whereas passenger mutations are irrelevant to tumor development and accumulate through DNA replication. A major challenge facing the field of cancer genome sequencing is to identify cancer-associated genes with mutations that drive the cancer phenotype. Here, we describe a powerful and flexible statistical framework for identifying driver genes and driver signaling pathways in cancer genome-sequencing studies. Biological knowledge of the mutational process in tumors is fully integrated into our statistical models and includes such variables as the length of protein-coding regions, transcript isoforms, variation in mutation types, differences in background mutation rates, the redundancy of genetic code, and multiple mutations in one gene. This framework provides several significant features that are not addressed or naively obtained by previous methods. In particular, on the observation of low prevalence of somatic mutations in individual tumors, we propose a heuristic strategy to estimate the mixture proportion of chi-square distribution of likelihood ratio test (LRT) statistics. This provides significantly increased statistical power compared to regular LRT. Through a combination of simulation and analysis of TCGA cancer sequencing study data, we demonstrate high accuracy and sensitivity in our methods. Our statistical methods and several auxiliary bioinformatics tools have been incorporated into a computational tool, DrGaP. The newly developed tool is immediately applicable to cancer genome-sequencing studies and will lead to a more complete identification of altered driver genes and driver signaling pathways in cancer.
Collapse
|
85
|
Wilson GS, Tian A, Hebbard L, Duan W, George J, Li X, Qiao L. Tumoricidal effects of the JAK inhibitor Ruxolitinib (INC424) on hepatocellular carcinoma in vitro. Cancer Lett 2013; 341:224-30. [PMID: 23941832 DOI: 10.1016/j.canlet.2013.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumour with limited treatment options. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signalling pathway plays a key role in promoting tumorigenesis in HCC. Recently a new JAK inhibitor Ruxolitinib (INC424) has been developed by Novartis Pharmaceuticals and it shows high affinity for JAK signalling with very low affinity for non-JAK targets. Clinical trials have demonstrated that Ruxolitinib has good therapeutic efficacy for the treatment of myelofibrosis and is currently FDA approved for the treatment of advanced stages of this disease. Our study tested the effects of Ruxolitinib on HCC tumorigenesis in vitro. Ruxolitinib effectively inhibited JAK/STAT signalling in HCC cells with a significant reduction in the expression of JAK downstream targets pSTAT1 and pSTAT3. Ruxolitinib also caused a marked reduction in the proliferation and colony formation of HCC cells. The antiproliferative effect of Ruxolitinib on HCC cells is unlikely due to off-target effects with no inhibition of key regulators of other cell proliferative pathways. To our knowledge this study is the first to report on the effect of Ruxolitinib on liver cancer cells.
Collapse
Affiliation(s)
- George S Wilson
- Storr Liver Unit, Westmead Millennium Institute, the University of Sydney at the Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
86
|
Peyser ND, Grandis JR. Critical analysis of the potential for targeting STAT3 in human malignancy. Onco Targets Ther 2013; 6:999-1010. [PMID: 23935373 PMCID: PMC3735336 DOI: 10.2147/ott.s47903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins was originally discovered in the context of normal cell biology where they function to transduce intracellular and extracellular signals to the nucleus, ultimately leading to transcription of specific target genes and downstream phenotypic effects. It was quickly appreciated that the STATs, especially STAT3, play a fundamental role in human malignancy. In contrast to normal biology in which transient STAT3 signaling is strictly regulated by a tightly coordinated network of activators and deactivators, STAT3 is constitutively activated in human malignancies. Constitutive STAT3 signaling has been associated with many cancerous phenotypes across nearly all human cancers, including the upregulation of cell growth, proliferation, survival, and motility, among others. Studies involving candidate preclinical STAT3 inhibitors have further demonstrated that the reversal of these phenotypes results from pharmacologic or genetic inhibition of STAT3, suggesting that STAT3 may be a promising target for clinical interventions. Indeed, a Phase 0 clinical trial involving a STAT3 decoy oligonucleotide demonstrated that STAT3 is a drug-gable target in human tumors. Because of the ubiquity of overactive STAT3 in cancer, its role in promoting a wide variety of cancerous phenotypes, and the strong clinical and preclinical studies performed to date, STAT3 represents a promising target for the development of inhibitors for the treatment of human cancers.
Collapse
Affiliation(s)
- Noah D Peyser
- Departments of Otolaryngology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
87
|
Yeh CT, Huang WC, Rao YK, Ye M, Lee WH, Wang LS, Tzeng DT, Wu CH, Shieh YS, Huang CYF, Chen YJ, Hsiao M, Wu AT, Yang Z, Tzeng YM. A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells. Carcinogenesis 2013; 34:2918-28. [DOI: 10.1093/carcin/bgt255] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
88
|
Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines. BMC Vet Res 2012; 8:244. [PMID: 23244668 PMCID: PMC3585923 DOI: 10.1186/1746-6148-8-244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS). Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. RESULTS We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. CONCLUSION LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.
Collapse
|
89
|
Schinwald A, Chernova T, Donaldson K. Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 2012; 9:47. [PMID: 23199075 PMCID: PMC3546062 DOI: 10.1186/1743-8977-9-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/26/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The objective of this study was to examine the threshold fibre length for the onset of pulmonary inflammation after aspiration exposure in mice to four different lengths of silver nanowires (AgNW). We further examined the effect of fibre length on macrophage locomotion in an in vitro wound healing assay. We hypothesised that exposure to longer fibres causes both increased inflammation and restricted mobility leading to impaired clearance of long fibres from the lower respiratory tract to the mucociliary escalator in vivo. METHODS Nine week old female C57BL/6 strain mice were exposed to AgNW and controls via pharyngeal aspiration. The dose used in this study was equalised to fibre number and based on 50 μg/ mouse for AgNW(14). To examine macrophage migration in vitro a wound healing assay was used. An artificial wound was created in a confluent layer of bone marrow derived macrophages by scraping with a pipette tip and the number of cells migrating into the wound was monitored microscopically. The dose was equalised for fibre number and based on 2.5 μg/cm(2) for AgNW(14). RESULTS Aspiration of AgNW resulted in a length dependent inflammatory response in the lungs with threshold at a fibre length of 14 μm. Shorter fibres including 3, 5 and 10 μm elicited no significant inflammation. Macrophage locomotion was also restricted in a length dependent manner whereby AgNW in the length of ≥5 μm resulted in impaired motility in the wound closure assay. CONCLUSION We demonstrated a 14 μm cut-off length for fibre-induced pulmonary inflammation after aspiration exposure and an in vitro threshold for inhibition of macrophage locomotion of 5 μm. We previously reported a threshold length of 5 μm for fibre-induced pleural inflammation. This difference in pulmonary and pleural fibre- induced inflammation may be explained by differences in clearance mechanism of deposited fibres from the airspaces compared to the pleural space. Inhibition of macrophage migration at long fibre lengths could account for their well-documented long term retention in the lungs compared to short fibres. Knowledge of the threshold length for acute pulmonary inflammation contributes to hazard identification of nanofibres.
Collapse
Affiliation(s)
- Anja Schinwald
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ken Donaldson
- MRC/University of Edinburgh, Centre for Inflammation Research, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
90
|
Mandal PK, Ren Z, Chen X, Kaluarachchi K, Liao WSL, McMurray JS. Structure-Activity Studies of Phosphopeptidomimetic Prodrugs Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 3 (Stat3). Int J Pept Res Ther 2012; 19:3-12. [PMID: 24707243 DOI: 10.1007/s10989-012-9313-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Signal transducer and activator of transcription 3 (Stat3) transmits signals from growth factors and interleukin-6 family cytokines by binding to their receptors via its Src homology 2 (SH2) domain. This results in phosphorylation of Tyr705, dimerization, translocation to the nucleus, and regulation of transcription of downstream genes. Stat3 is constitutively activated in several human cancers and is a target for anti-cancer drug design. We have shown previously phosphorylation of Tyr705 in intact cancer cells can be inhibited with prodrugs of phosphopeptide mimics targeting the SH2 domain. In a series of prodrugs consisting of bis-pivaloyloxymethyl esters of 4'-phosphonodifluoromethyl cinnamoyl-Haic-Gln-NHBn, appending methyl group to the β-position of the cinnamate increased potency ca. twofold, which paralleled the increase in affinity of the corresponding phosphopeptide models. However, dramatic increases in potency were observed when the C-terminal C(O)NHBn of Gln-NHBn was replaced with a simple methyl group. In this communication we continue to explore the effects of structural modifications of prodrugs on their ability to inhibit Tyr705 phosphorylation. A set of 4-substituted prolines incorporated into β-methyl-4-phosphocinnamoyl-leucinyl-Xaa-4-aminopentamide model peptides exhibited affinities of 88-317 nM by fluorescence polarization (Pro IC50 = 156 nM). In corresponding prodrugs, Pro inhibited constitutive Stat3 phosphorylation at 10 μM in MDA-MB-468 breast tumor cells. However, 4,4-difluoroproline and 4,4-dimethylproline resulted in complete inhibition at 0.5 μM. These results suggest that the prodrug with native proline undergoes metabolism that those with substituted prolines do not. In conclusion, changes in structure with minimal impact on intrinsic affinity can nevertheless have profound effects on the cellular potency of prodrug inhibitors of Stat3.
Collapse
Affiliation(s)
- Pijus K Mandal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Zhiyong Ren
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Xiaomin Chen
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Kumar Kaluarachchi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Warren S-L Liao
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - John S McMurray
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
91
|
Auzenne EJ, Klostergaard J, Mandal PK, Liao WS, Lu Z, Gao F, Bast RC, Robertson FM, McMurray JS. A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 2012; 10:155-162. [PMID: 23350355 PMCID: PMC4033579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Signal transducer and activator of transcription 3 (Stat3) is constitutively activated in a number of human cancers and cancer cell lines. Via its Src homology 2 (SH2) domain, Stat3 is recruited to phosphotyrosine residues on intracellular domains of cytokine and growth factor receptors, whereupon it is phosphorylated on Tyr705, dimerizes, translocates to the nucleus and is reported to participate in the expression of genes related to angiogenesis, metastasis, growth and survival. To block this process, we are developing cell-permeable, phosphatase-stable phosphopeptide mimics, targeted to the SH2 domain of Stat3, that inhibit the phosphorylation of Tyr705 of Stat3 in cultured tumor cells (Mandal et al., J. Med. Chem. 54, 3549-5463, 2011). At concentrations that inhibit tyrosine phosphorylation, these materials were not cytotoxic, similar to recent reports on JAK inhibitors. At higher concentrations, cytotoxicity was accompanied by off-target effects. We report that treatment of MDA-MB-468 human breast cancer xenografts in mice with peptidomimetic PM-73G significantly inhibited tumor growth, which was accompanied by reduction in VEGF production and microvessel density. No evidence of apoptosis or changes in the expression of the canonical genes cyclin D1 or survivin were observed. Thus selective inhibition of Stat3 Tyr705 phosphorylation may be a novel anti-angiogenesis strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Edmond J. Auzenne
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Jim Klostergaard
- Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Pijus K. Mandal
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Warren S. Liao
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Fengqin Gao
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - Fredika M. Robertson
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| | - John S. McMurray
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|