51
|
Osswald M, Jung E, Wick W, Winkler F. Tunneling nanotube‐like structures in brain tumors. Cancer Rep (Hoboken) 2019. [DOI: 10.1002/cnr2.1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor DiseasesUniversity Hospital Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
52
|
Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu SVS. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem 2019; 294:7177-7193. [PMID: 30877198 DOI: 10.1074/jbc.ra118.005659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
Tunneling nanotubes (TNTs) are membrane conduits that mediate long-distance intercellular cross-talk in several organisms and play vital roles during development, pathogenic transmission, and cancer metastasis. However, the molecular mechanisms of TNT formation and function remain poorly understood. The protein MSec (also known as TNFα-induced protein 2 (TNFAIP2) and B94) is essential for TNT formation in multiple cell types. Here, using affinity protein purification, mass spectrometric identification, and confocal immunofluorescence microscopy assays, we found that MSec interacts with the endoplasmic reticulum (ER) chaperone ERp29. siRNA-mediated ERp29 depletion in mammalian cells significantly reduces TNT formation, whereas its overexpression induces TNT formation, but in a strictly MSec-dependent manner. ERp29 stabilized MSec protein levels, but not its mRNA levels, and the chaperone activity of ERp29 was required for maintaining MSec protein stability. Subcellular ER fractionation and subsequent limited proteolytic treatment suggested that MSec is associated with the outer surface of the ER. The ERp29-MSec interaction appeared to require the presence of other bridging protein(s), perhaps triggered by post-translational modification of ERp29. Our study implicates MSec as a target of ERp29 and reveals an indispensable role for the ER in TNT formation, suggesting new modalities for regulating TNT numbers in cells and tissues.
Collapse
Affiliation(s)
- Rajaiah Pergu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Sunayana Dagar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| | - Harsh Kumar
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and.,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and
| | - Rajesh Kumar
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Jayanta Bhattacharya
- the HIV Vaccine Translational Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad Haryana 121001
| | - Sivaram V S Mylavarapu
- From the Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, and .,the Manipal Academy of Higher Education, Manipal Karnataka 576104, and.,the Kalinga Institute of Industrial Technology, Bhubaneswar Odisha 751024, India
| |
Collapse
|
53
|
Hanna SJ, McCoy-Simandle K, Leung E, Genna A, Condeelis J, Cox D. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J Cell Sci 2019; 132:jcs.223321. [PMID: 30659112 DOI: 10.1242/jcs.223321] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
The interaction between tumor cells and macrophages is crucial in promoting tumor invasion and metastasis. In this study, we examined a novel mechanism of intercellular communication, namely membranous actin-based tunneling nanotubes (TNTs), that occurs between macrophages and tumor cells in the promotion of macrophage-dependent tumor cell invasion. The presence of heterotypic TNTs between macrophages and tumor cells induced invasive tumor cell morphology, which was dependent on EGF-EGFR signaling. Furthermore, reduction of a protein involved in TNT formation, M-Sec (TNFAIP2), in macrophages inhibited tumor cell elongation, blocked the ability of tumor cells to invade in 3D and reduced macrophage-dependent long-distance tumor cell streaming in vitro Using an in vivo zebrafish model that recreates macrophage-mediated tumor cell invasion, we observed TNT-mediated macrophage-dependent tumor cell invasion, distant metastatic foci and areas of metastatic spread. Overall, our studies support a role for TNTs as a novel means of interaction between tumor cells and macrophages that leads to tumor progression and metastasis.
Collapse
Affiliation(s)
- Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Edison Leung
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Alessandro Genna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA .,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA
| |
Collapse
|
54
|
Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Front Mol Neurosci 2018; 11:435. [PMID: 30564096 PMCID: PMC6288452 DOI: 10.3389/fnmol.2018.00435] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
The classical view of synapses as the functional contact between presynaptic and postsynaptic neurons has been challenged in recent years by the emerging regulatory role of glial cells. Astrocytes, traditionally considered merely supportive elements are now recognized as active modulators of synaptic transmission and plasticity at the now so-called "tripartite synapse." In addition, an increasing body of evidence indicates that beyond immune functions microglia also participate in various processes aimed to shape synaptic plasticity. Release of neuroactive compounds of glial origin, -process known as gliotransmission-, constitute a widespread mechanism through which glial cells can either potentiate or reduce the synaptic strength. The prevailing vision states that gliotransmission depends on an intracellular Ca2+/exocytotic-mediated release; notwithstanding, growing evidence is pointing at hemichannels (connexons) and pannexin channels (pannexons) as alternative non-vesicular routes for gliotransmitters efflux. In concurrence with this novel concept, both hemichannels and pannexons are known to mediate the transfer of ions and signaling molecules -such as ATP and glutamate- between the cytoplasm and the extracellular milieu. Importantly, recent reports show that glial hemichannels and pannexons are capable to perceive synaptic activity and to respond to it through changes in their functional state. In this article, we will review the current information supporting the "double edge sword" role of hemichannels and pannexons in the function of central and peripheral synapses. At one end, available data support the idea that these channels are chief components of a feedback control mechanism through which gliotransmitters adjust the synaptic gain in either resting or stimulated conditions. At the other end, we will discuss how the excitotoxic release of gliotransmitters and [Ca2+]i overload linked to the opening of hemichannels/pannexons might impact cell function and survival in the nervous system.
Collapse
Affiliation(s)
- Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
55
|
Murray LMA, Krasnodembskaya AD. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells 2018; 37:14-25. [PMID: 30353966 DOI: 10.1002/stem.2922] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022]
Abstract
The therapeutic potential of stem cell-based therapies may be largely dependent on the ability of stem cells to modulate host cells rather than on their differentiation into host tissues. Within the last decade, there has been considerable interest in the intercellular communication mediated by the transfer of cytoplasmic material and organelles between cells. Numerous studies have shown that mitochondria and lysosomes are transported between cells by various mechanisms, such as tunneling nanotubes, microvesicles, and cellular fusion. This review will focus on the known instances of organelle transfer between stem cells and differentiated cells, what effects it has on recipient cells and how organelle transfer is regulated. Stem Cells 2019;37:14-25.
Collapse
Affiliation(s)
- Lisa M A Murray
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
56
|
Jash E, Prasad P, Kumar N, Sharma T, Goldman A, Sehrawat S. Perspective on nanochannels as cellular mediators in different disease conditions. Cell Commun Signal 2018; 16:76. [PMID: 30409198 PMCID: PMC6222982 DOI: 10.1186/s12964-018-0281-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
Tunnelling nanotubes (TNTs), also known as membrane nanochannels, are actin-based structures that facilitate cytoplasmic connections for rapid intercellular transfer of signals, organelles and membrane components. These dynamic TNTs can form de novo in animal cells and establish complex intercellular networks between distant cells up to 150 μm apart. Within the last decade, TNTs have been discovered in different cell types including tumor cells, macrophages, monocytes, endothelial cells and T cells. It has also been further elucidated that these nanotubes play a vital role in diseased conditions such as cancer, where TNT formation occurs at a higher pace and is used for rapid intercellular modulation of chemo-resistance. Viruses such as HIV, HSV and prions also hijack the existing TNT connections between host cells for rapid transmission and evasion of the host immune responses. The following review aims to describe the heterogeneity of TNTs, their role in different tissues and disease conditions in order to enhance our understanding on how these nanotubes can be used as a target for therapies.
Collapse
Affiliation(s)
- Eshna Jash
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Peeyush Prasad
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Taruna Sharma
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India
| | - Aaron Goldman
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA, 01801, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA. .,Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR, India. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
57
|
Yamashita YM, Inaba M, Buszczak M. Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol 2018; 34:59-84. [PMID: 30074816 DOI: 10.1146/annurev-cellbio-100617-062932] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
58
|
Pedicini L, Miteva KT, Hawley V, Gaunt HJ, Appleby HL, Cubbon RM, Marszalek K, Kearney MT, Beech DJ, McKeown L. Homotypic endothelial nanotubes induced by wheat germ agglutinin and thrombin. Sci Rep 2018; 8:7569. [PMID: 29765077 PMCID: PMC5953990 DOI: 10.1038/s41598-018-25853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial barrier formation is maintained by intercellular communication through junctional proteins. The mechanisms involved in maintaining endothelial communication subsequent to barrier disruption remain unclear. It is known that low numbers of endothelial cells can be interconnected by homotypic actin-driven tunneling nanotubes (TNTs) which could be important for intercellular transfer of information in vascular physiology. Here we sought insight into the triggers for TNT formation. Wheat germ agglutinin, a C-type lectin and known label for TNTs, unexpectedly caused striking induction of TNTs. A succinylated derivative was by contrast inactive, suggesting mediation by a sialylated protein. Through siRNA-mediated knockdown we identified that this protein was likely to be CD31, an important sialylated membrane protein normally at endothelial cell junctions. We subsequently considered thrombin as a physiological inducer of endothelial TNTs because it reduces junctional contact. Thrombin reduced junctional contact, redistributed CD31 and induced TNTs, but its effect on TNTs was CD31-independent. Thrombin-induced TNTs nevertheless required PKCα, a known mediator of thrombin-dependent junctional remodelling, suggesting a necessity for junctional proteins in TNT formation. Indeed, TNT-inducing effects of wheat germ agglutinin and thrombin were both correlated with cortical actin rearrangement and similarly Ca2+-dependent, suggesting common underlying mechanisms. Once formed, Ca2+ signalling along TNTs was observed.
Collapse
Affiliation(s)
- Lucia Pedicini
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarina T Miteva
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Verity Hawley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hannah J Gaunt
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Hollie L Appleby
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Katarzyna Marszalek
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
59
|
Tunneling Nanotubes as a Novel Route of Cell-to-Cell Spread of Herpesviruses. J Virol 2018; 92:JVI.00090-18. [PMID: 29491165 DOI: 10.1128/jvi.00090-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/12/2018] [Indexed: 12/21/2022] Open
Abstract
Various types of intercellular connections that are essential for communication between cells are often utilized by pathogens. Recently, a new type of cellular connection, consisting of long, thin, actin-rich membrane extensions named tunneling nanotubes (TNTs), has been shown to play an important role in cell-to-cell spread of HIV and influenza virus. In the present report, we show that TNTs are frequently formed by cells infected by an alphaherpesvirus, bovine herpesvirus 1 (BoHV-1). Viral proteins, such as envelope glycoprotein E (gE), capsid protein VP26, and tegument protein Us3, as well as cellular organelles (mitochondria) were detected by immunofluorescence and live-cell imaging of nanotubes formed by bovine primary fibroblasts and oropharynx cells (KOP cells). Time-lapse confocal studies of live cells infected with fluorescently labeled viruses showed that viral particles were transmitted via TNTs. This transfer also occurred in the presence of neutralizing antibodies, which prevented free entry of BoHV-1. We conclude that TNT formation contributes to successful cell-to-cell spread of BoHV-1 and demonstrate for the first time the participation of membrane nanotubes in intercellular transfer of a herpesvirus in live cells.IMPORTANCE Efficient transmission of viral particles between cells is an important factor in successful infection by herpesviruses. Herpesviruses can spread by the free-entry mode or direct cell-to-cell transfer via cell junctions and long extensions of neuronal cells. In this report, we show for the first time that an alphaherpesvirus can also spread between various types of cells using tunneling nanotubes, intercellular connections that are utilized by HIV and other viruses. Live-cell monitoring revealed that viral transmission occurs between the cells of the same type as well as between epithelial cells and fibroblasts. This newly discovered route of herpesviruses spread may contribute to efficient transmission despite the presence of host immune responses, especially after reactivation from latency that developed after primary infection. Long-range communication provided by TNTs may facilitate the spread of herpesviruses between many tissues and organs of an infected organism.
Collapse
|
60
|
Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Sci Rep 2017; 7:16660. [PMID: 29192225 PMCID: PMC5709493 DOI: 10.1038/s41598-017-16600-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Cell-to-cell communication is essen for the development of multicellular systems and is coordinated by soluble factors, exosomes, gap junction (GJ) channels, and the recently described tunneling nanotubes (TNTs). We and others have demonstrated that TNT-like structures are mostly present during pathogenic conditions, including HIV infection. However, the nature, function, and communication properties of TNTs are still poorly understood. In this manuscript, we demonstrate that TNTs induced by HIV infection have functional GJs at the ends of their membrane extensions and that TNTs mediate long-range GJ communication during HIV infection. Blocking or reducing GJ communication during HIV infection resulted in aberrant TNT cell-to-cell contact, compromising HIV spread and replication. Thus, TNTs and associated GJs are required for the efficient cell-to-cell communication and viral spread. Our data indicate that targeting TNTs/GJs may provide new therapeutic opportunities for the treatment of HIV.
Collapse
|
61
|
Human Astrocytes Transfer Aggregated Alpha-Synuclein via Tunneling Nanotubes. J Neurosci 2017; 37:11835-11853. [PMID: 29089438 PMCID: PMC5719970 DOI: 10.1523/jneurosci.0983-17.2017] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/20/2017] [Accepted: 10/11/2017] [Indexed: 12/30/2022] Open
Abstract
Many lines of evidence suggest that the Parkinson's disease (PD)-related protein α-synuclein (α-SYN) can propagate from cell to cell in a prion-like manner. However, the cellular mechanisms behind the spreading remain elusive. Here, we show that human astrocytes derived from embryonic stem cells actively transfer aggregated α-SYN to nearby astrocytes via direct contact and tunneling nanotubes (TNTs). Failure in the astrocytes' lysosomal digestion of excess α-SYN oligomers results in α-SYN deposits in the trans-Golgi network followed by endoplasmic reticulum swelling and mitochondrial disturbances. The stressed astrocytes respond by conspicuously sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes, which in return deliver mitochondria, indicating a TNT-mediated rescue mechanism. Using a pharmacological approach to inhibit TNT formation, we abolished the transfer of both α-SYN and mitochondria. Together, our results highlight the role of astrocytes in α-SYN cell-to-cell transfer, identifying possible pathophysiological events in the PD brain that could be of therapeutic relevance. SIGNIFICANCE STATEMENT Astrocytes are the major cell type in the brain, yet their role in Parkinson's disease progression remains elusive. Here, we show that human astrocytes actively transfer aggregated α-synuclein (α-SYN) to healthy astrocytes via direct contact and tunneling nanotubes (TNTs), rather than degrade it. The astrocytes engulf large amounts of oligomeric α-SYN that are subsequently stored in the trans-Golgi network region. The accumulation of α-SYN in the astrocytes affects their lysosomal machinery and induces mitochondrial damage. The stressed astrocytes respond by sending out TNTs, enabling intercellular transfer of α-SYN to healthy astrocytes. Our findings highlight an unexpected role of astrocytes in the propagation of α-SYN pathology via TNTs, revealing astrocytes as a potential target for therapeutic intervention.
Collapse
|
62
|
Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S, Cui H, Douillet N, Eugenin EA, Favre D, Goodman S, Gousset K, Hanein D, Israel DI, Kimura S, Kirkpatrick RB, Kuhn N, Jeong C, Lou E, Mailliard R, Maio S, Okafo G, Osswald M, Pasquier J, Polak R, Pradel G, de Rooij B, Schaeffer P, Skeberdis VA, Smith IF, Tanveer A, Volkmann N, Wu Z, Zurzolo C. Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front Mol Neurosci 2017; 10:333. [PMID: 29089870 PMCID: PMC5651011 DOI: 10.3389/fnmol.2017.00333] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022] Open
Abstract
Cell-to-cell communication is essential for the organization, coordination, and development of cellular networks and multi-cellular systems. Intercellular communication is mediated by soluble factors (including growth factors, neurotransmitters, and cytokines/chemokines), gap junctions, exosomes and recently described tunneling nanotubes (TNTs). It is unknown whether a combination of these communication mechanisms such as TNTs and gap junctions may be important, but further research is required. TNTs are long cytoplasmic bridges that enable long-range, directed communication between connected cells. The proposed functions of TNTs are diverse and not well understood but have been shown to include the cell-to-cell transfer of vesicles, organelles, electrical stimuli and small molecules. However, the exact role of TNTs and gap junctions for intercellular communication and their impact on disease is still uncertain and thus, the subject of much debate. The combined data from numerous laboratories indicate that some TNT mediate a long-range gap junctional communication to coordinate metabolism and signaling, in relation to infectious, genetic, metabolic, cancer, and age-related diseases. This review aims to describe the current knowledge, challenges and future perspectives to characterize and explore this new intercellular communication system and to design TNT-based therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Monique L Den Boer
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Stephanie Cherqui
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Haifeng Cui
- GlaxoSmithKline, Collegeville, PA, United States
| | | | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| | - David Favre
- GlaxoSmithKline, Research Triangle Park, NC, United States
| | - Spencer Goodman
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Karine Gousset
- Department of Biology, College of Science and Math, California State University, Fresno, CA, United States
| | - Dorit Hanein
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | | | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Nastaran Kuhn
- Division of Cancer Biology, Physical Sciences-Oncology Network, Cancer Tissue Engineering Collaborative Research Program, Program Director, Structural Biology and Molecular Applications Branch, National Cancer Institute, Bethesda, MD, United States
| | - Claire Jeong
- GlaxoSmithKline, King of Prussia, PA, United States
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Robbie Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Maio
- GlaxoSmithKline, King of Prussia, PA, United States
| | | | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Pasquier
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar Foundation, Ar-Rayyan, Qatar
| | - Roel Polak
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Bob de Rooij
- Department of Pediatric Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ahmad Tanveer
- Section of Intracellular Trafficking and Neurovirology, National Institute of Health, Bethesda, MD, United States
| | - Niels Volkmann
- Bioinformatics and System Biology Program, Sanford Burnham Prebys Medical Discovery, La Jolla, CA, United States
| | - Zhenhua Wu
- GlaxoSmithKline, Collegeville, PA, United States
| | - Chiara Zurzolo
- Unit of Membrane Trafficking and Pathogenesis, Department of Cell Biology and Infection, Pasteur Institute, Paris, France
| |
Collapse
|
63
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
64
|
Farahnak S, McGovern TK, Kim R, O'Sullivan M, Chen B, Lee M, Yoshie H, Wang A, Jang J, Al Heialy S, Lauzon AM, Martin JG. Basic Fibroblast Growth Factor 2 Is a Determinant of CD4 T Cell-Airway Smooth Muscle Cell Communication through Membrane Conduits. THE JOURNAL OF IMMUNOLOGY 2017; 199:3086-3093. [PMID: 28924004 DOI: 10.4049/jimmunol.1700164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/24/2017] [Indexed: 01/23/2023]
Abstract
Activated CD4 T cells connect to airway smooth muscle cells (ASMCs) in vitro via lymphocyte-derived membrane conduits (LMCs) structurally similar to membrane nanotubes with unknown intercellular signals triggering their formation. We examined the structure and function of CD4 T cell-derived LMCs, and we established a role for ASMC-derived basic fibroblast growth factor 2 (FGF2b) and FGF receptor (FGFR)1 in LMC formation. Blocking FGF2b's synthesis and FGFR1 function reduced LMC formation. Mitochondrial flux from ASMCs to T cells was partially FGF2b and FGFR1 dependent. LMC formation by CD4 T cells and mitochondrial transfer from ASMCs was increased in the presence of asthmatic ASMCs that expressed more mRNA for FGF2b compared with normal ASMCs. These observations identify ASMC-derived FGF2b as a factor needed for LMC formation by CD4 T cells, affecting intercellular communication.
Collapse
Affiliation(s)
- Soroor Farahnak
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Toby K McGovern
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Rachael Kim
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Michael O'Sullivan
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Brian Chen
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Minhyoung Lee
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Haruka Yoshie
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Anna Wang
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Joyce Jang
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Saba Al Heialy
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada; and .,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
65
|
Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy. Stem Cells Int 2017; 2017:6917941. [PMID: 28659978 PMCID: PMC5474251 DOI: 10.1155/2017/6917941] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
Intercellular communications play a major role in tissue homeostasis and responses to external cues. Novel structures for this communication have recently been described. These tunneling nanotubes (TNTs) consist of thin-extended membrane protrusions that connect cells together. TNTs allow the cell-to-cell transfer of various cellular components, including proteins, RNAs, viruses, and organelles, such as mitochondria. Mesenchymal stem cells (MSCs) are both naturally present and recruited to many different tissues where their interaction with resident cells via secreted factors has been largely documented. Their immunosuppressive and repairing capacities constitute the basis for many current clinical trials. MSCs recruited to the tumor microenvironment also play an important role in tumor progression and resistance to therapy. MSCs are now the focus of intense scrutiny due to their capacity to form TNTs and transfer mitochondria to target cells, either in normal physiological or in pathological conditions, leading to changes in cell energy metabolism and functions, as described in this review.
Collapse
|
66
|
Bittins M, Wang X. TNT-Induced Phagocytosis: Tunneling Nanotubes Mediate the Transfer of Pro-Phagocytic Signals From Apoptotic to Viable Cells. J Cell Physiol 2017; 232:2271-2279. [PMID: 27591547 PMCID: PMC5485076 DOI: 10.1002/jcp.25584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022]
Abstract
The exposure of phosphatidylserine (PS) on the surface membrane of apoptotic cells triggers the recruitment of phagocytic receptors and subsequently results in uptake by phagocytes. Here we describe how apoptotic cells can use intercellular membrane nanotubes to transfer exposed PS to neighboring viable cells, and thus deposit an "eat-me" tag on the viable cells. Tunneling nanotubes (TNTs) connected UV-treated apoptotic rat pheochromocytoma PC12 cells with neighboring untreated cells. These TNTs were composed of PS-exposed plasma membrane and facilitated the transfer of the membrane from apoptotic to viable cells. Other pro-phagocytic signals, such as oxidized phospholipids and calreticulin, were also transferred to viable cells. In addition, anti-phagocytic signal CD47 presenting on the plasma membrane of viable cells was masked by the transferred PS-membrane. Confocal imaging revealed an increase of phagocytosis of viable PC12 cells by murine RAW264.7 macrophages when the viable PC12 cells were cocultured with UV-treated PC12 cells. Treatment with 50 nM cytochalasin D would abolish TNTs and correspondingly inhibit this phagocytosis of the viable cells. Our study indicates that exposed-PS membrane is delivered from apoptotic to viable cells through TNTs. This transferred membrane may act as a pro-phagocytic signal for macrophages to induce phagocytosis of viable cells in a situation where they are in the vicinity of apoptotic cells. J. Cell. Physiol. 232: 2271-2279, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
| | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
67
|
Osteikoetxea-Molnár A, Szabó-Meleg E, Tóth EA, Oszvald Á, Izsépi E, Kremlitzka M, Biri B, Nyitray L, Bozó T, Németh P, Kellermayer M, Nyitrai M, Matko J. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes. Cell Mol Life Sci 2016; 73:4531-4545. [PMID: 27125884 PMCID: PMC11108537 DOI: 10.1007/s00018-016-2233-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
Tunneling nanotubes (TNTs) are long intercellular connecting structures providing a special transport route between two neighboring cells. To date TNTs have been reported in different cell types including immune cells such as T-, NK, dendritic cells, or macrophages. Here we report that mature, but not immature, B cells spontaneously form extensive TNT networks under conditions resembling the physiological environment. Live-cell fluorescence, structured illumination, and atomic force microscopic imaging provide new insights into the structure and dynamics of B cell TNTs. Importantly, the selective interaction of cell surface integrins with fibronectin or laminin extracellular matrix proteins proved to be essential for initiating TNT growth in B cells. These TNTs display diversity in length and thickness and contain not only F-actin, but their majority also contain microtubules, which were found, however, not essential for TNT formation. Furthermore, we demonstrate that Ca2+-dependent cortical actin dynamics exert a fundamental control over TNT growth-retraction equilibrium, suggesting that actin filaments form the TNT skeleton. Non-muscle myosin 2 motor activity was shown to provide a negative control limiting the uncontrolled outgrowth of membranous protrusions. Moreover, we also show that spontaneous growth of TNTs is either reduced or increased by B cell receptor- or LPS-mediated activation signals, respectively, thus supporting the critical role of cytoplasmic Ca2+ in regulation of TNT formation. Finally, we observed transport of various GM1/GM3+ vesicles, lysosomes, and mitochondria inside TNTs, as well as intercellular exchange of MHC-II and B7-2 (CD86) molecules which may represent novel pathways of intercellular communication and immunoregulation.
Collapse
Affiliation(s)
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical Faculty, University of Pécs, Pecs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pecs, Hungary
| | | | - Ádám Oszvald
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Emese Izsépi
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Beáta Biri
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Péter Németh
- Environmental Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Budapest, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical Faculty, University of Pécs, Pecs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pecs, Hungary
| | - Janos Matko
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
68
|
Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions. Cell Calcium 2016; 60:266-72. [PMID: 27388952 DOI: 10.1016/j.ceca.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 11/22/2022]
Abstract
Tunneling membrane nanotubes (TNTs) are thin membrane projections linking cell bodies separated by many micrometers, which are proposed to mediate signaling and even transfer of cytosolic contents between distant cells. Several reports describe propagation of Ca(2+) signals between distant cells via TNTs, but the underlying mechanisms remain poorly understood. Utilizing a HeLa M-Sec cell line engineered to upregulate TNTs we replicated previous findings that mechanical stimulation elicits robust cytosolic Ca(2+) elevations that propagate to surrounding, physically separate cells. However, whereas this was previously interpreted to involve intercellular communication through TNTs, we found that Ca(2+) signal propagation was abolished - even in TNT-connected cells - after blocking ATP-mediated paracrine signaling with a cocktail of extracellular inhibitors. To then establish whether gap junctions may enable cell-cell signaling via TNTs under these conditions, we expressed sfGFP-tagged connexin-43 (Cx43) in HeLa M-Sec cells. We observed robust communication of mechanically-evoked Ca(2+) signals between distant but TNT-connected cells, but only when both cells expressed Cx43. Moreover, we also observed communication of Ca(2+) signals evoked in one cell by local photorelease of inositol 1,4,5-trisphosphate (IP3). Ca(2+) responses in connected cells began after long latencies at intracellular sites several microns from the TNT connection site, implicating intercellular transfer of IP3 and subsequent IP3-mediated Ca(2+) liberation, and not Ca(2+) itself, as the mediator between TNT-connected, Cx43-expressing cells. Our results emphasize the need to control for paracrine transmission in studies of cell-cell signaling via TNTs and indicate that, in this cell line, TNTs do not establish cytosolic continuity between connected cells but rather point to the crucial importance of connexins to enable communication of cytosolic Ca(2+) signals via TNTs.
Collapse
|
69
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
70
|
Rehberg M, Nekolla K, Sellner S, Praetner M, Mildner K, Zeuschner D, Krombach F. Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1882-1890. [PMID: 26854197 DOI: 10.1002/smll.201503606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Indexed: 06/05/2023]
Abstract
So-called membrane nanotubes are cellular protrusions between cells whose functions include cell communication, environmental sampling, and protein transfer. It has been previously reported that systemically administered carboxyl-modified quantum dots (cQDs) are rapidly taken up by perivascular macrophages in skeletal muscle of healthy mice. Expanding these studies, it is found, by means of in vivo fluorescence microscopy on the mouse cremaster muscle, rapid uptake of cQDs not only by perivascular macrophages but also by tissue-resident cells, which are localized more than 100 μm distant from the closest vessel. Confocal microscopy on muscle tissue, immunostained for the membrane dye DiI, reveals the presence of continuous membranous structures between MHC-II-positive, F4/80-positive cells. These structures contain microtubules, components of the cytoskeleton, which clearly colocalize with cQDs. The cQDs are exclusively found inside endosomal vesicles. Most importantly, by using in vivo fluorescence microscopy, this study detected fast (0.8 μm s(-1) , mean velocity), bidirectional movement of cQDs in such structures, indicating transport of cQD-containing vesicles along microtubule tracks by the action of molecular motors. The findings are the first to demonstrate membrane nanotube function in vivo and they suggest a previously unknown route for the distribution of nanomaterials in tissue.
Collapse
Affiliation(s)
- Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Praetner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
71
|
Buszczak M, Inaba M, Yamashita YM. Signaling by Cellular Protrusions: Keeping the Conversation Private. Trends Cell Biol 2016; 26:526-534. [PMID: 27032616 DOI: 10.1016/j.tcb.2016.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/27/2022]
Abstract
Information exchange between different cells makes multicellular life possible. Signaling between cells can occur over long distances, as in the case of hormone signaling, or it can take place over short distances between immediately juxtaposed neighbors, as in the case of stem cell-niche signaling. The ability of signal-sending and -receiving cells to communicate with one another in a specific manner is of paramount importance in the proper development and function of tissues. Growing evidence indicates that different cellular protrusions help to achieve specificity in signaling that occurs between distinct cell types. Here, we focus on new roles for cellular protrusions in cell-to-cell communication, drawing special attention to how stem cells use specialized extensions to promote reception of self-renewing signals emanating from the niche.
Collapse
Affiliation(s)
- Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | - Mayu Inaba
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Life Sciences Institute, Department of Cell and Developmental Biology Medical School, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology Medical School, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
72
|
Victoria GS, Arkhipenko A, Zhu S, Syan S, Zurzolo C. Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci Rep 2016; 6:20762. [PMID: 26857744 PMCID: PMC4746738 DOI: 10.1038/srep20762] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/07/2016] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are caused by misfolding of the cellular protein PrP(C) to an infectious conformer, PrP(Sc). Intercellular PrP(Sc) transfer propagates conversion and allows infectivity to move from the periphery to the brain. However, how prions spread between cells of the central nervous system is unclear. Astrocytes are specialized non-neuronal cells within the brain that have a number of functions indispensable for brain homeostasis. Interestingly, they are one of the earliest sites of prion accumulation in the brain. A fundamental question arising from this observation is whether these cells are involved in intercellular prion transfer and thereby disease propagation. Using co-culture systems between primary infected astrocytes and granule neurons or neuronal cell lines, we provide direct evidence that prion-infected astrocytes can disseminate prion to neurons. Though astrocytes are capable of secreting PrP, this is an inefficient method of transferring prion infectivity. Efficient transfer required co-culturing and direct cell contact. Astrocytes form numerous intercellular connections including tunneling nanotubes, containing PrP(Sc), often colocalized with endolysosomal vesicles, which may constitute the major mechanism of transfer. Because of their role in intercellular transfer of prions astrocytes may influence progression of the disease.
Collapse
Affiliation(s)
- Guiliana Soraya Victoria
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Alexander Arkhipenko
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Seng Zhu
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Sylvie Syan
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Chiara Zurzolo
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| |
Collapse
|
73
|
Rimkutė L, Jotautis V, Marandykina A, Sveikatienė R, Antanavičiūtė I, Skeberdis VA. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes. BMC Cell Biol 2016; 17:3. [PMID: 26758208 PMCID: PMC4710989 DOI: 10.1186/s12860-016-0080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Membranous tunneling tubes (TTs) are a recently discovered new form of communication between remote cells allowing their electrical synchronization, migration, and transfer of cellular materials. TTs have been identified in the brain and share similarities with neuronal processes. TTs can be open-ended, close-ended or contain functional gap junctions at the membrane interface. Gap junctions are formed of two unapposed hemichannels composed of six connexin (Cx) subunits. There are evidences that Cxs also play channel-independent role in cell adhesion, migration, division, differentiation, formation of neuronal networks and tumorigenicity. These properties of Cxs and TTs may synergetically determine the cellular and intercellular processes. Therefore, we examined the impact of Cxs expressed in the nervous system (Cx36, Cx40, Cx43, Cx45, and Cx47) on: 1) cell mobility; 2) formation and properties of TTs; and 3) transfer of siRNA between remote cells through TTs. Results We have identified two types of TTs between HeLa cells: F-actin rich only and containing F-actin and α-tubulin. The morphology of TTs was not influenced by expression of examined connexins; however, Cx36-EGFP-expressing cells formed more TTs while cells expressing Cx43-EGFP, Cx45, and Cx47 formed fewer TTs between each other compared with wt and Cx40-CFP-expressing cells. Also, Cx36-EGFP and Cx40-CFP-expressing HeLa cells were more mobile compared with wt and other Cxs-expressing cells. TTs containing Cx40-CFP, Cx43-EGFP, or Cx47 gap junctions were capable of transmitting double-stranded small interfering RNA; however, Cx36-EGFP and Cx45 were not permeable to it. In addition, we show that Cx43-EGFP-expressing HeLa cells and laryngeal squamous cell carcinoma cells can couple to the mesenchymal stem cells through TTs. Conclusions Different Cxs may modulate the mobility of cells and formation of TTs in an opposite manner; siRNA transfer through the GJ-containing TTs is Cx isoform-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0080-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| |
Collapse
|
74
|
Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Front Neurosci 2015; 9:480. [PMID: 26733793 PMCID: PMC4683200 DOI: 10.3389/fnins.2015.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Elis Cooper
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|
75
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
76
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
77
|
Scholkmann F. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci 2015; 14:135-53. [DOI: 10.1142/s0219635215300115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
78
|
Abounit S, Delage E, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. ACTA ACUST UNITED AC 2015; 67:12.10.1-12.10.21. [PMID: 26061240 DOI: 10.1002/0471143030.cb1210s67] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication and pathogen transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this unit represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; and (4) monitor their formation in living cells are provided. Finally, this unit describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs.
Collapse
Affiliation(s)
- Saïda Abounit
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Elise Delage
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Chiara Zurzolo
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,Corresponding author
| |
Collapse
|
79
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
80
|
Agnati LF, Fuxe K. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0505. [PMID: 25135966 DOI: 10.1098/rstb.2013.0505] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal-glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.
Collapse
Affiliation(s)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| |
Collapse
|
81
|
Engel PA. Does metabolic failure at the synapse cause Alzheimer's disease? Med Hypotheses 2014; 83:802-8. [PMID: 25456790 DOI: 10.1016/j.mehy.2014.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) a neurodegenerative disorder of widely distributed cortical networks evolves over years while A beta (Aβ) oligomer neurotoxicity occurs within seconds to minutes. This disparity combined with disappointing outcomes of anti-amyloid clinical trials challenges the centrality of Aβ as principal mediator of neurodegeneration. Reconsideration of late life AD as the end-product of intermittent regional failure of the neuronal support system to meet the needs of vulnerable brain areas offers an alternative point of view. This model introduces four ideas: (1) That Aβ is a synaptic signaling peptide that becomes toxic in circumstances of metabolic stress. (2) That intense synaptic energy and maintenance requirements of cortical hubs may exceed resources during peak demand initiating a neurotoxic cascade in these selectively vulnerable regions. (3) That axonal transport to and from neuron soma cannot account fully for high mitochondrial densities and other requirements of distant terminal axons. (4) That neurons as specialists in information management, delegate generic support functions to astrocytes and other cell types. Astrocytes use intercellular transport by exosomes and tunneling nanotubes (TNTs) to deliver mitochondria, substrates and protein reprocessing services to axonal sites distant from neuronal soma. This viewpoint implicates the brain's support system and its disruption by various age and disease-related insults as significant mediators of neurodegenerative disease. A better understanding of this system should broaden concepts of neurodegeneration and facilitate development of effective treatments.
Collapse
Affiliation(s)
- Peter A Engel
- Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Harvard Medical School, United States.
| |
Collapse
|
82
|
Information handling by the brain: proposal of a new "paradigm" involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J Neural Transm (Vienna) 2014; 121:1431-49. [PMID: 24866694 DOI: 10.1007/s00702-014-1240-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
The current view on the organization of the central nervous system (CNS) is basically anchored to the paradigm describing the brain as formed by networks of neurons interconnected by synapses. Synaptic contacts are a fundamental characteristic for describing CNS operations, but increasing evidence accumulated in the last 30 years pointed to a refinement of this view. A possible overcoming of the classical "neuroscience paradigm" will be here outlined, based on the following hypotheses: (1) the basic morpho-functional unit in the brain is a compartment of tissue (functional module) where different resident cells (not only neurons) work as an integrated unit; (2) in these complex networks, a spectrum of intercellular communication processes is exploited, that can be classified according to a dichotomous criterion: wiring transmission (occurring through physically delimited channels) and volume transmission (exploiting diffusion in the extracellular space); (3) the connections between cells can themselves be described as a network, leading to an information processing occurring at different levels from cell network down to molecular level; (4) recent evidence of the existence of specialized structures (microvesicles and tunneling nanotubes) for intercellular exchange of materials, could allow a further type of polymorphism of the CNS networks based on at least transient changes in cell phenotype. When compared to the classical paradigm, the proposed scheme of cellular organization could allow a strong increase of the degrees of freedom available to the whole system and then of its plasticity. Furthermore, long range coordination and correlation can be more easily accommodated within this framework.
Collapse
|
83
|
Tosi G, Vilella A, Chhabra R, Schmeisser MJ, Boeckers TM, Ruozi B, Vandelli MA, Forni F, Zoli M, Grabrucker AM. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. J Control Release 2014; 177:96-107. [DOI: 10.1016/j.jconrel.2014.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 01/01/2023]
|
84
|
Austefjord MW, Gerdes HH, Wang X. Tunneling nanotubes: Diversity in morphology and structure. Commun Integr Biol 2014; 7:e27934. [PMID: 24778759 PMCID: PMC3995728 DOI: 10.4161/cib.27934] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 02/06/2023] Open
Abstract
Tunneling nanotubes (TNTs) are recently discovered thin membranous tubes that interconnect cells. During the last decade, research has shown TNTs to be diverse in morphology and composition, varying between and within cell systems. In addition, the discovery of TNT-like extracellular protrusions, as well as observations of TNTs in vivo, has further enriched our knowledge on the diversity of TNT-like structures. Considering the complex molecular mechanisms underlying the formation of TNTs, as well as their different functions in intercellular communication, it is important to decipher how heterogeneity of TNTs is established, and to address what roles the compositional elements have in the execution of various functions. Here, we review the current knowledge on the morphological and structural diversity of TNTs, and address the relation between the formation, the structure, and the function of TNTs.
Collapse
Affiliation(s)
| | | | - Xiang Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
85
|
De Bock M, Kerrebrouck M, Wang N, Leybaert L. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? Front Pharmacol 2013; 4:120. [PMID: 24133447 PMCID: PMC3783840 DOI: 10.3389/fphar.2013.00120] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/02/2013] [Indexed: 12/30/2022] Open
Abstract
The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell–cell transfer of metabolic and electric signals. GJs are formed by connexins of which Cx43 is most widespread in the human body. In the brain, Cx43 GJs are mostly found in astroglia where they coordinate the propagation of Ca2+ waves, spatial K+ buffering, and distribution of glucose. Beyond its role in direct intercellular communication, Cx43 also forms unapposed, non-junctional hemichannels in the plasma membrane of glial cells. These allow the passage of several neuro- and gliotransmitters that may, combined with downstream paracrine signaling, complement direct GJ communication among glial cells and sustain glial-neuronal signaling. Mutations in the GJA1 gene encoding Cx43 have been identified in a rare, mostly autosomal dominant syndrome called oculodentodigital dysplasia (ODDD). ODDD patients display a pleiotropic phenotype reflected by eye, hand, teeth, and foot abnormalities, as well as craniofacial and bone malformations. Remarkably, neurological symptoms such as dysarthria, neurogenic bladder (manifested as urinary incontinence), spasticity or muscle weakness, ataxia, and epilepsy are other prominent features observed in ODDD patients. Over 10 mutations detected in patients diagnosed with neurological disorders are associated with altered functionality of Cx43 GJs/hemichannels, but the link between ODDD-related abnormal channel activities and neurologic phenotype is still elusive. Here, we present an overview on the nature of the mutants conveying structural and functional changes of Cx43 channels and discuss available evidence for aberrant Cx43 GJ and hemichannel function. In a final step, we examine the possibilities of how channel dysfunction may lead to some of the neurological manifestations of ODDD.
Collapse
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University Ghent, Belgium
| | | | | | | |
Collapse
|
86
|
Zhang J, Zhang Y. Membrane nanotubes: novel communication between distant cells. SCIENCE CHINA-LIFE SCIENCES 2013; 56:994-9. [PMID: 24008389 DOI: 10.1007/s11427-013-4548-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
The many kinds of cell structures involved in cell-cell communication include tight junction, adherens junction and gap junction, but almost all are between adjacent cells. Recently, a general and dynamic membrane tether, termed tunneling nanotubes or membrane nanotubes (MNTs), was discovered to be involved in communication between distant cells. By facilitating intercellular communication, MNTs contribute to many biological functions and pathologic changes in cells. Many works have revealed the structure, formation and functional properties of MNTs. However, as novel structures, further research is needed.
Collapse
Affiliation(s)
- Jianghui Zhang
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Institute of Vascular Medicine of Peking University Third Hospital, Beijing, 100191, China
| | | |
Collapse
|
87
|
Gerdes HH, Rustom A, Wang X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech Dev 2012; 130:381-7. [PMID: 23246917 DOI: 10.1016/j.mod.2012.11.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/15/2023]
Abstract
The development of multi-cellular organisms involves a comprehensive and tightly regulated cell-to-cell communication system to coordinate the activity and behavior of individual cells. Diverse signaling pathways ranging from receptor-mediated signal transduction to contact-dependent communication via gap junctions achieve these complex interactions. In this review, we will focus on a new type of intercellular connection, the tunneling nanotube (TNT), which has been observed in many cell types in vitro and recently also in developing embryos of different species in vivo. We will summarize the latest insights into their functional roles in cell-to-cell signaling with a particular focus on the TNT-dependent electrical coupling between developing embryonic cells. Finally, potential implications of these new findings in the light of developmental processes, particularly in cell migration, will be discussed.
Collapse
Affiliation(s)
- Hans-Hermann Gerdes
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | | | |
Collapse
|