51
|
Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2018; 2:475-484. [PMID: 30948828 DOI: 10.1038/s41551-018-0258-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Neurological and psychiatric disorders are often characterized by dysfunctional neural circuits in specific regions of the brain. Existing treatment strategies, including the use of drugs and implantable brain stimulators, aim to modulate the activity of these circuits. However, they are not cell-type-specific, lack spatial targeting or require invasive procedures. Here, we report a cell-type-specific and non-invasive approach based on acoustically targeted chemogenetics that enables the modulation of neural circuits with spatiotemporal specificity. The approach uses ultrasound waves to transiently open the blood-brain barrier and transduce neurons at specific locations in the brain with virally encoded engineered G-protein-coupled receptors. The engineered neurons subsequently respond to systemically administered designer compounds to activate or inhibit their activity. In a mouse model of memory formation, the approach can modify and subsequently activate or inhibit excitatory neurons within the hippocampus, with selective control over individual brain regions. This technology overcomes some of the key limitations associated with conventional brain therapies.
Collapse
Affiliation(s)
- Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Lue
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
52
|
Munoz F, Aurup C, Konofagou EE, Ferrera VP. Modulation of Brain Function and Behavior by Focused Ultrasound. Curr Behav Neurosci Rep 2018; 5:153-164. [PMID: 30393592 PMCID: PMC6208352 DOI: 10.1007/s40473-018-0156-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The past decade has seen rapid growth in the application of focused ultrasound (FUS) as a tool for basic neuroscience research and potential treatment of brain disorders. Here, we review recent developments in our understanding of how FUS can alter brain activity, perception and behavior when applied to the central nervous system, either alone or in combination with circulating agents. RECENT FINDINGS Focused ultrasound in the central nervous system can directly excite or inhibit neuronal activity, as well as affect perception and behavior. Combining FUS with intravenous microbubbles to open the blood-brain barrier also affects neural activity and behavior, and the effects may be more sustained than FUS alone. Opening the BBB also allows delivery of drugs that do not cross the intact BBB including viral vectors for gene delivery. SUMMARY While further research is needed to elucidate the biophysical mechanisms, focused ultrasound, alone or in combination with other factors, is rapidly maturing as an effective technology for altering brain activity. Future challenges include refining control over targeting specificity, the volume of affected tissue, cell-type specificity (excitatory or inhibitory), and the duration of neural and behavioral effects.
Collapse
Affiliation(s)
- Fabian Munoz
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
| | - Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027 USA
- Department of Radiology, Columbia University, New York, NY, 10027 USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University, New York, NY, 10027 USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027 USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027 USA
- Department of Psychiatry, Columbia University, New York, NY, 10027 USA
| |
Collapse
|
53
|
Song L, Wang X, Zhang W, Ye L, Feng X. Low-intensity ultrasound promotes the horizontal transfer of resistance genes mediated by plasmids in E. coli. 3 Biotech 2018; 8:224. [PMID: 29692961 DOI: 10.1007/s13205-018-1247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022] Open
Abstract
Widespread of pathogenic bacteria resistant to antibiotics has become a worldwide public health concern. Conjugative transfer between bacteria is an important mechanism for the horizontal transfer of antibiotic resistance genes. Ultrasound has been widely applied in many fields, but the effect of ultrasound on horizontal transfer of antibiotic-resistant genes is still not clear. We discovered that low-intensity (≤ 0.05 W/cm2) ultrasound had no effect on bacterial growth and survival rates, but increased the permeability of cell membrane, and consequentially elevated the transfer rates of plasmid. Low-intensity ultrasound enhanced conjugation between bacteria, induced expression of conjugation genes TrpBp and TrfAp, and inhibited expression of global regulatory genes KorA, KorB, TrbA, and TrbK. In conclusion, low-intensity ultrasound promoted horizontal transfer of antibiotic-resistant genes by enhancing conjugation and regulating expression of horizontal transfer-related genes.
Collapse
|
54
|
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-Triggered Effects of the Microbubbles Coupled to GDNF Plasmid-Loaded PEGylated Liposomes in a Rat Model of Parkinson's Disease. Front Neurosci 2018; 12:222. [PMID: 29686604 PMCID: PMC5900787 DOI: 10.3389/fnins.2018.00222] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Background: The purpose of this study was to investigate ultrasound-triggered effects of PEGylated liposomes-coupled microbubbles mediated gene transfer of glial cell line-derived neurotrophic factor (GDNF) plasmid (PLs-GDNF-MBs) on behavioral deficits and neuron loss in a rat model of Parkinson's disease (PD). Methods: The unloaded PLs-MBs were characterized for particle size, concentration and zeta potential. PD rat model was established by a unilateral 6-hydroxydopamine (6-OHDA) lesion. Rotational, climbing pole, and suspension tests were used to evaluate behavioral deficits. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. The expression levels of GDNF and nuclear receptor-related factor 1 (Nurr1) were determined by western blot and qRT-PCR analysis. Results: The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased in a time-dependent manner after injection. 6-OHDA elevated amphetamine-induced rotations and decreased the TH and DAT immunoreactivity compared to sham group. However, these effects were blocked by the PLs-GDNF-MBs. In addition, the mRNA and protein expression levels of GDNF and Nurr1 were increased after PLs-GDNF-MBs treatment. Conclusions: The delivery of PLs-GDNF-MBs into the brains using MRI-guided focused ultrasound alleviates the behavioral deficits and neuron loss in the rat model of PD.
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Miao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Gao
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
55
|
Meng Y, Voisin MR, Suppiah S, Kalia SK, Kalia LV, Hamani C, Lipsman N. Is there a role for MR-guided focused ultrasound in Parkinson's disease? Mov Disord 2018; 33:575-579. [PMID: 29476631 DOI: 10.1002/mds.27308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mathew R Voisin
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Ave Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
56
|
Airan RD, Foss CA, Ellens NPK, Wang Y, Mease RC, Farahani K, Pomper MG. MR-Guided Delivery of Hydrophilic Molecular Imaging Agents Across the Blood-Brain Barrier Through Focused Ultrasound. Mol Imaging Biol 2017; 19:24-30. [PMID: 27481359 DOI: 10.1007/s11307-016-0985-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE A wide variety of hydrophilic imaging and therapeutic agents are unable to gain access to the central nervous system (CNS) due to the blood-brain barrier (BBB). In particular, unless a particular transporter exists that may transport the agent across the BBB, most agents that are larger than 500 Da or that are hydrophilic will be excluded by the BBB. Glutamate carboxypeptidase II (GCPII), also known as the prostate-specific membrane antigen (PSMA) in the periphery, has been implicated in various neuropsychiatric conditions. As all agents that target GCPII are hydrophilic and thereby excluded from the CNS, we used GCPII as a platform for demonstrating our MR-guided focused ultrasound (MRgFUS) technique for delivery of GCPII/PSMA-specific imaging agents to the brain. PROCEDURES Female rats underwent MRgFUS-mediated opening of the BBB. After opening of the BBB, either a radio- or fluorescently labeled ureido-based ligand for GCPII/PSMA was administered intravenously. Brain uptake was assessed for 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid ([18F]DCFPyL) and YC-27, two compounds known to bind GCPII/PSMA with high affinity, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging, respectively. Specificity of ligand binding to GCPII/PSMA in the brain was determined with co-administration of a molar excess of ZJ-43, a compound of the same chemical class but different structure from either [18F]DCFPyL or YC-27, which competes for GCPII/PSMA binding. RESULTS Dynamic PET imaging using [18F]DCFPyL demonstrated that target uptake reached a plateau by ∼1 h after radiotracer administration, with target/background ratios continuing to increase throughout the course of imaging, from a ratio of ∼4:1 at 45 min to ∼7:1 by 80 min. NIRF imaging likewise demonstrated delivery of YC-27 to the brain, with clear visualization of tracer in the brain at 24 h. Tissue uptake of both ligands was greatly diminished by ZJ-43 co-administration, establishing specificity of binding of each to GCPII/PSMA. On gross and histological examination, animals showed no evidence for hemorrhage or other deleterious consequences of MRgFUS. CONCLUSIONS MRgFUS provided safe opening of the BBB to enable specific delivery of two hydrophilic agents to target tissues within the brain. This platform might facilitate imaging and therapy using a variety of agents that have heretofore been excluded from the CNS.
Collapse
Affiliation(s)
- Raag D Airan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas P K Ellens
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Keyvan Farahani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
57
|
Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. J Control Release 2017; 261:246-262. [DOI: 10.1016/j.jconrel.2017.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
|
58
|
Abstract
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
59
|
Song KH, Fan AC, Hinkle JJ, Newman J, Borden MA, Harvey BK. Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound. Am J Cancer Res 2017; 7:144-152. [PMID: 28042323 PMCID: PMC5196892 DOI: 10.7150/thno.15987] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 11/05/2022] Open
Abstract
Focused ultrasound with microbubbles is being developed to transiently, locally and noninvasively open the blood-brain barrier (BBB) for improved pharmaceutical delivery. Prior work has demonstrated that, for a given concentration dose, microbubble size affects both the intravascular circulation persistence and extent of BBB opening. When matched to gas volume dose, however, the circulation half-life was found to be independent of microbubble size. In order to determine whether this holds true for BBB opening as well, we independently measured the effects of microbubble size (2 vs. 6 µm diameter) and concentration, covering a range of overlapping gas volume doses (1-40 µL/kg). We first demonstrated precise targeting and a linear dose-response of Evans Blue dye extravasation to the rat striatum for a set of constant microbubble and ultrasound parameters. We found that dye extravasation increased linearly with gas volume dose, with data points from both microbubble sizes collapsing to a single line. A linear trend was observed for both the initial sonication (R2=0.90) and a second sonication on the contralateral side (R2=0.68). Based on these results, we conclude that microbubble gas volume dose, not size, determines the extent of BBB opening by focused ultrasound (1 MHz, ~0.5 MPa at the focus). This result may simplify planning for focused ultrasound treatments by constraining the protocol to a single microbubble parameter - gas volume dose - which gives equivalent results for varying size distributions. Finally, using optimal parameters determined for Evan Blue, we demonstrated gene delivery and expression using a viral vector, dsAAV1-CMV-EGFP, one week after BBB disruption, which allowed us to qualitatively evaluate neuronal health.
Collapse
|
60
|
Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. J Control Release 2016; 240:251-266. [DOI: 10.1016/j.jconrel.2015.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
|
61
|
Liu Y, Thomas A, Sohrabi S, Shi W, Xu J, Yang J. Antibody-coated nanoparticles are promising molecular probes for microscopic analysis of cell behavior. Nanomedicine (Lond) 2016; 11:2383-6. [PMID: 27558959 DOI: 10.2217/nnm-2016-0270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yaling Liu
- Bioengineering program, Lehigh University, Bethlehem, PA 18015, USA.,Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Antony Thomas
- Bioengineering program, Lehigh University, Bethlehem, PA 18015, USA
| | - Salman Sohrabi
- Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
| | - Wentao Shi
- Bioengineering program, Lehigh University, Bethlehem, PA 18015, USA
| | - Jiang Xu
- School of Mechanics & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jie Yang
- School of Mechanics & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
62
|
Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, Chang SD, Tillement O. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro Oncol 2016; 18:1601-1609. [PMID: 27407134 DOI: 10.1093/neuonc/now137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
Drug delivery in the CNS is limited by endothelial tight junctions forming the impermeable blood-brain barrier. The development of new treatment paradigms has previously been hampered by the restrictiveness of the blood-brain barrier to systemically administered therapeutics. With recent advances in stereotactic localization and noninvasive imaging, we have honed the ability to modulate, ablate, and rewire millimetric brain structures to precisely permeate the impregnable barrier. The wide range of focused radiations offers endless possibilities to disrupt endothelial permeability with different patterns and intensity following 3-dimensional coordinates offering a new world of possibilities to access the CNS, as well as to target therapies. We propose a review of the current state of knowledge in targeted drug delivery using noninvasive image-guided approaches. To this end, we focus on strategies currently used in clinics or in clinical trials such as targeted radiotherapy and magnetic resonance guided focused ultrasound, but also on more experimental approaches such as magnetically heated nanoparticles, electric fields, and lasers, techniques which demonstrated remarkable results both in vitro and in vivo. We envision that biodistribution and efficacy of systemically administered drugs will be enhanced with further developments of these promising strategies. Besides therapeutic applications, stereotactic platforms can be highly valuable in clinical applications for interventional strategies that can improve the targetability and efficacy of drugs and macromolecules. It is our hope that by showcasing and reviewing the current state of this field, we can lay the groundwork to guide future research in this realm.
Collapse
Affiliation(s)
- Geoff Appelboom
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Alexandre Detappe
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Melissa LoPresti
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Sijumon Kunjachan
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Stefan Mitrasinovic
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Serge Goldman
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Steve D Chang
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| | - Olivier Tillement
- Department of Neurosurgery, Stanford Medical Center, Stanford, California (G.A., S.D.C.); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (A.D., S.K.); Institut Lumière Matière, Université Claude Bernard Lyon 1, Villeurbanne, France (A.D., O.T.); Department of Neurosurgery, Baylor College of Medicine, Houston, Texas (M.L.); Department of Neurological Surgery, Columbia University Medical Center, New York, New York (S.M.); Department of Nuclear Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium (S.G.)
| |
Collapse
|
63
|
Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 2016; 120:20-37. [PMID: 26907805 DOI: 10.1016/j.neuropharm.2016.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/24/2022]
Abstract
The range of therapeutic treatment options for central nervous system (CNS) diseases is greatly limited by the blood-brain barrier (BBB). While a variety of strategies to circumvent the blood-brain barrier for drug delivery have been investigated, little clinical success has been achieved. Focused ultrasound (FUS) is a unique approach whereby the transcranial application of acoustic energy to targeted brain areas causes a noninvasive, safe, transient, and targeted opening of the BBB, providing an avenue for the delivery of therapeutic agents from the systemic circulation into the brain. There is a great need for viable treatment strategies for CNS diseases, and we believe that the preclinical success of this technique should encourage a rapid movement towards clinical testing. In this review, we address the versatile applications of FUS-mediated BBB opening, the safety profile of the technique, and the physical and biological mechanisms that drive this process. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Charissa Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dallan McMahon
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
64
|
Burgess A, Shah K, Hough O, Hynynen K. Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 2016; 15:477-91. [PMID: 25936845 DOI: 10.1586/14737175.2015.1028369] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods, which can be used to circumvent the BBB to promote drug delivery, is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents.
Collapse
Affiliation(s)
- Alison Burgess
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, S665, Toronto, ON M4N 3M5, Canada
| | | | | | | |
Collapse
|
65
|
Fan CH, Ting CY, Lin CY, Chan HL, Chang YC, Chen YY, Liu HL, Yeh CK. Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease. Sci Rep 2016; 6:19579. [PMID: 26786201 PMCID: PMC4726227 DOI: 10.1038/srep19579] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/16/2015] [Indexed: 01/30/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) supports the growth and survival of dopaminergic neurons. CNS gene delivery currently relies on invasive intracerebral injection to transit the blood-brain barrier. Non-viral gene delivery via systematic transvascular route is an attractive alternative because it is non-invasive, but a high-yield and targeted gene-expressed method is still lacking. In this study, we propose a novel non-viral gene delivery approach to achieve targeted gene transfection. Cationic microbubbles as gene carriers were developed to allow the stable formation of a bubble-GDNF gene complex, and transcranial focused ultrasound (FUS) exposure concurrently interacting with the bubble-gene complex allowed transient gene permeation and induced local GDNF expression. We demonstrate that the focused ultrasound-triggered GDNFp-loaded cationic microbubbles platform can achieve non-viral targeted gene delivery via a noninvasive administration route, outperform intracerebral injection in terms of targeted GDNF delivery of high-titer GDNF genes, and has a neuroprotection effect in Parkinson’s disease (PD) animal models to successfully block PD syndrome progression and to restore behavioral function. This study explores the potential of using FUS and bubble-gene complexes to achieve noninvasive and targeted gene delivery for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Chien-Yu Ting
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 33302 Taiwan
| | - Hong-Lin Chan
- Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei, 11221 Taiwan
| | - Hao-Li Liu
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, 33302 Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, 33302 Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
66
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
67
|
Burgess A, Hynynen K. Microbubble-Assisted Ultrasound for Drug Delivery in the Brain and Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:293-308. [PMID: 26486344 DOI: 10.1007/978-3-319-22536-4_16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier is a serious impediment to the delivery of pharmaceutical treatments for brain diseases, including cancer, neurodegenerative and neuropsychatric diseases. Focused ultrasound, when combined with microbubbles, has emerged as an effective method to transiently and locally open the blood-brain barrier to promote drug delivery to the brain. Focused ultrasound has been used to successfully deliver a wide variety of therapeutic agents to pre-clinical disease models. The requirement for clinical translation of focused ultrasound technology is considered.
Collapse
Affiliation(s)
- Alison Burgess
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada. .,Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
68
|
Sun T, Samiotaki G, Wang S, Acosta C, Chen CC, Konofagou EE. Acoustic cavitation-based monitoring of the reversibility and permeability of ultrasound-induced blood-brain barrier opening. Phys Med Biol 2015; 60:9079-94. [PMID: 26562661 DOI: 10.1088/0031-9155/60/23/9079] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cavitation events seeded by microbubbles have been previously reported to be associated with MR- or fluorescent-contrast enhancement after focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening. However, it is still unknown whether bubble activity can be correlated with the reversibility (the duration of opening and the likelihood of safe reinstatement) and the permeability of opened BBB, which is critical for the clinical translation of using passive cavitation detection to monitor, predict and control the opening. In this study, the dependence of acoustic cavitation on the BBB opening duration, permeability coefficient and histological damage occurrence were thus investigated. Transcranial pulsed FUS at 1.5 MHz in the presence of systemically circulating microbubbles was applied in the mouse hippocampi (n = 60). The stable and inertial cavitation activities were monitored during sonication. Contrast-enhanced MRI was performed immediately after sonication and every 24 h up to 6 d thereafter, to assess BBB opening, brain tissue permeability and potential edema. Histological evaluations were used to assess the occurrence of neurovascular damages. It was found that stable cavitation was well correlated with: (1) the duration of the BBB opening (r(2) = 0.77); (2) the permeability of the opened BBB (r(2) = 0.82); (3) the likelihood of safe opening (P < 0.05, safe opening compared to cases of damage; P < 0.0001, no opening compared to safe opening). The inertial cavitation dose was correlated with the resulting BBB permeability (r(2) = 0.72). Stable cavitation was found to be more reliable than inertial cavitation at assessing the BBB opening within the pressure range used in this study. This study demonstrates that the stable cavitation response during BBB opening holds promise for predicting and controlling the restoration and pharmacokinetics of FUS-opened BBB. The stable cavitation response therefore showed great promise in predicting the BBB opening duration, enabling thus control of opening according to the drug circulation time. In addition, avoiding adverse effects in the brain and assessing the pharmacokinetics of the compounds delivered can also be achieved by monitoring and controlling the stable cavitation emissions.
Collapse
Affiliation(s)
- Tao Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
69
|
Zhao M, Alleva R, Ma H, Daniel AGS, Schwartz TH. Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res 2015; 116:15-26. [PMID: 26354163 PMCID: PMC4567692 DOI: 10.1016/j.eplepsyres.2015.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 06/14/2015] [Indexed: 12/01/2022]
Abstract
Epilepsy affects roughly 1% of the population worldwide. Although effective treatments with antiepileptic drugs are available, more than 20% of patients have seizures that are refractory to medical therapy and many patients experience adverse effects. Hence, there is a continued need for novel therapies for those patients. A new technique called "optogenetics" may offer a new hope for these refractory patients. Optogenetics is a technology based on the combination of optics and genetics, which can control or record neural activity with light. Following delivery of light-sensitive opsin genes such as channelrhodopsin-2 (ChR2), halorhodopsin (NpHR), and others into brain, excitation or inhibition of specific neurons in precise brain areas can be controlled by illumination at different wavelengths with very high temporal and spatial resolution. Neuromodulation with the optogenetics toolbox have already been shown to be effective at treating seizures in animal models of epilepsy. This review will outline the most recent advances in epilepsy research with optogenetic techniques and discuss how this technology can contribute to our understanding and treatment of epilepsy in the future.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Rose Alleva
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Andy G S Daniel
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Otolaryngology, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA; Department of Neuroscience, Weill Medical College of Cornell University, New York Presbyterian Hospital, New York, NY 10021, USA.
| |
Collapse
|
70
|
Chen PY, Wei KC, Liu HL. Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood-brain barrier opening. Hum Vaccin Immunother 2015; 11:2682-7. [PMID: 26378609 DOI: 10.1080/21645515.2015.1071749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The central nervous system (CNS) has long been regarded as an immune-privileged site, with the blood-brain barrier (BBB) limiting the entering of systemic immune cells and components. Exposure of low-energy focused ultrasound (FUS) with the presence of microbubbles has been found to provide a temporary and targeted opening of the BBB without inflicting brain damage or inflammation, and is thus an attractive means of delivering CNS therapeutic agents and raising the potential for targeted CNS immunotherapy. Based on our recent studies on enhancing brain-tumor immune-related therapy via this mechanism, (1) we summarize current approaches using FUS-induced BBB opening to promote immune regulation and project potential directions for FUS-induced CNS immunotherapy.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Kuo-Chen Wei
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Hao-Li Liu
- b Department of Electrical Engineering ; Chang Gung University ; Taoyuan , Taiwan.,c Medical Imaging Research Center; Institute for Radiological Research; Chang Gung University; Chang Gung Memorial Hospital ; Taoyuan , Taiwan
| |
Collapse
|
71
|
Timbie KF, Mead BP, Price RJ. Drug and gene delivery across the blood-brain barrier with focused ultrasound. J Control Release 2015; 219:61-75. [PMID: 26362698 DOI: 10.1016/j.jconrel.2015.08.059] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) remains one of the most significant limitations to treatments of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases and psychiatric disorders. It is now well-established that focused ultrasound (FUS) in conjunction with contrast agent microbubbles may be used to non-invasively and temporarily disrupt the BBB, allowing localized delivery of systemically administered therapeutic agents as large as 100nm in size to the CNS. Importantly, recent technological advances now permit FUS application through the intact human skull, obviating the need for invasive and risky surgical procedures. When used in combination with magnetic resonance imaging, FUS may be applied precisely to pre-selected CNS targets. Indeed, FUS devices capable of sub-millimeter precision are currently in several clinical trials. FUS mediated BBB disruption has the potential to fundamentally change how CNS diseases are treated, unlocking potential for combinatorial treatments with nanotechnology, markedly increasing the efficacy of existing therapeutics that otherwise do not cross the BBB effectively, and permitting safe repeated treatments. This article comprehensively reviews recent studies on the targeted delivery of therapeutics into the CNS with FUS and offers perspectives on the future of this technology.
Collapse
Affiliation(s)
- Kelsie F Timbie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian P Mead
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
72
|
Lin CY, Hsieh HY, Pitt WG, Huang CY, Tseng IC, Yeh CK, Wei KC, Liu HL. Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery. J Control Release 2015; 212:1-9. [PMID: 26071631 DOI: 10.1016/j.jconrel.2015.06.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/28/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Focused ultrasound (FUS) exposure in the presence of microbubbles can temporally open the blood-brain barrier (BBB) and is an emerging technique for non-invasive brain therapeutic agent delivery. Given the potential to deliver large molecules into the CNS via this technique, we propose a reliable strategy to synergistically apply FUS-BBB opening for the non-invasive and targeted delivery of non-viral genes into the CNS for therapeutic purpose. In this study, we developed a gene-liposome system, in which the liposomes are designed to carry plasmid DNA (pDNA, containing luciferase reporter gene) to form a liposomal-plasmid DNA (LpDNA) complex. Pulsed FUS exposure was delivered to induce BBB opening (500-kHz, burst length=10ms, 1% duty cycle, PRF=1Hz). The longitudinal expression of luciferase was quantitated via an in vivo imaging system (IVIS). The reporter gene expression level was confirmed via immunoblotting, and histological staining was used to identify transfected cells via fluorescent microscopy. In a comparison of gene transduction efficiency, the LpDNA system showed better cell transduction than the pDNA system. With longitudinal observation of IVIS monitoring, animals with FUS treatment showed significant promotion of LpDNA release into the CNS and demonstrated enhanced expression of genes upon sonication with FUS-BBB opening, while both the luciferase and GDNF protein expression were successfully measured via Western blotting. The gene expression peak was observed at day 2, and the gene expression level was up to 5-fold higher than that in the untreated hemisphere (compared to a 1-fold increase in the direct-inject positive-control group). The transfection efficiency was also found to be LpDNA dose-dependent, where higher payloads of pDNA resulted in a higher transfection rate. Immunoblotting and histological staining confirmed the expression of reporter genes in glial cells as well as astrocytes. This study suggests that IV administration of LpDNA in combination with FUS-BBB opening can provide effective gene delivery and expression in the CNS, demonstrating the potential to achieve non-invasive and targeted gene delivery for treatment of CNS diseases.
Collapse
Affiliation(s)
- Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Han-Yi Hsieh
- Department of Electrical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - I-Chou Tseng
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan 333, Taiwan; Health Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
73
|
Samiotaki G, Acosta C, Wang S, Konofagou EE. Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound-mediated blood--brain barrier opening in vivo. J Cereb Blood Flow Metab 2015; 35:611-22. [PMID: 25586140 PMCID: PMC4420879 DOI: 10.1038/jcbfm.2014.236] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) constitutes a major obstacle in brain drug delivery. Focused ultrasound (FUS) in conjunction with microbubbles has been shown to open the BBB noninvasively, locally, and transiently to allow large molecules diffusion. Neurturin (NTN), a member of the glial-derived neurotrophic factor (GDNF) family, has been demonstrated to have neuroprotective and regenerative effects on dopaminergic neurons in vivo using invasive drug delivery methods. The brain's ascending nigrostriatal pathway is severely damaged in Parkinson's disease (PD), and therefore the substantia nigra (SN) and striatal caudoputamen (CP) were selected as the target areas. The objective of the study was to investigate whether safe and efficient NTN delivery can be achieved through FUS-induced BBB opening via intravenous administration, and thus trigger the neuroregeneration cascade in the nigrostriatal pathway. After the optimization of FUS parameters and target locations in the murine brain, NTN bioavailability and downstream signaling were detected and characterized through immunostaining. FUS significantly enhanced the delivery of NTN compared with the direct injection technique, whereas triggering of the signaling cascade was detected downstream to the neuronal nuclei. These findings thus indicate the potential of the FUS method to mediate transport of proteins through the blood-brain barrier in a PD animal model.
Collapse
Affiliation(s)
- Gesthimani Samiotaki
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Camilo Acosta
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Shutao Wang
- Department of Radiology, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- 1] Department of Biomedical Engineering, Columbia University, New York, New York, USA [2] Department of Radiology, Columbia University, New York, New York, USA
| |
Collapse
|
74
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|
75
|
Fan CH, Yeh CK. Microbubble-enhanced Focused Ultrasound-induced Blood–brain Barrier Opening for Local and Transient Drug Delivery in Central Nervous System Disease. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
76
|
Wang S, Olumolade OO, Sun T, Samiotaki G, Konofagou EE. Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Ther 2014; 22:104-10. [PMID: 25354683 DOI: 10.1038/gt.2014.91] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/30/2014] [Accepted: 08/26/2014] [Indexed: 02/04/2023]
Abstract
Recombinant adeno-associated virus (rAAV) has shown great promise as a potential cure for neurodegenerative diseases. The existence of the blood-brain barrier (BBB), however, hinders efficient delivery of the viral vectors. Direct infusion through craniotomy is the most commonly used approach to achieve rAAV delivery, which carries increased risks of infection and other complications. Here, we report a focused ultrasound (FUS)-facilitated noninvasive rAAV delivery paradigm that is capable of producing targeted and neuron-specific transductions. Oscillating ultrasound contrast agents (microbubbles), driven by FUS waves, temporarily 'unlock' the BBB, allowing the systemically administrated rAAVs to enter the brain parenchyma, while maintaining their bioactivity and selectivity. Taking the advantage of the neuron-specific promoter synapsin, rAAV gene expression was triggered almost exclusively (95%) in neurons of the targeted caudate-putamen region. Both behavioral assessment and histological examination revealed no significant long-term adverse effects (in the brain and several other critical organs) for this combined treatment paradigm. Results from this study demonstrated the feasibility and safety for the noninvasive, targeted rAAV delivery, which might have open a new avenue in gene therapy in both preclinical and clinical settings.
Collapse
Affiliation(s)
- S Wang
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - O O Olumolade
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - T Sun
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - G Samiotaki
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - E E Konofagou
- 1] Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA [2] Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
77
|
Liu HL, Jan CK, Chu PC, Hong JC, Lee PY, Hsu JD, Lin CC, Huang CY, Chen PY, Wei KC. Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery. IEEE Trans Biomed Eng 2014; 61:1350-60. [PMID: 24658258 DOI: 10.1109/tbme.2014.2305723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Focused ultrasound (FUS) in the presence of microbubbles can bring about transcranial and local opening of the blood-brain barrier (BBB) for potential noninvasive delivery of drugs to the brain. A phased-array ultrasound system is essential for FUS-BBB opening to enable electronic steering and correction of the focal beam which is distorted by cranial bone. Here, we demonstrate our prototype design of a 256-channel ultrasound phased-array system for large-region transcranial BBB opening in the brains of large animals. One of the unique features of this system is the capability of generating concurrent dual-frequency ultrasound signals from the driving system for potential enhancement of BBB opening. A wide range of signal frequencies can be generated (frequency = 0.2-1.2 MHz) with controllable driving burst patterns. Precise output power can be controlled for individual channels via 8-bit duty-cycle control of transistor-transistor logic signals and the 8-bit microcontroller-controlled buck converter power supply output voltage. The prototype system was found to be in compliance with the electromagnetic compatibility standard. Moreover, large animal experiments confirmed the phase switching effectiveness of this system, and induction of either a precise spot or large region of BBB opening through fast focal-beam switching. We also demonstrated the capability of dual-frequency exposure to potentially enhance the BBB-opening effect. This study contributes to the design of ultrasound phased arrays for future clinical applications, and provides a new direction toward optimizing FUS brain drug delivery.
Collapse
|
78
|
The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab 2014; 34:1197-204. [PMID: 24780905 PMCID: PMC4083385 DOI: 10.1038/jcbfm.2014.71] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 12/12/2022]
Abstract
Focused ultrasound (FUS) in combination with microbubbles (MBs) has been successfully used in the delivery of various-size therapeutic agents across the blood-brain barrier (BBB). This study revealed that FUS-induced BBB opening size, defined by the size of the largest molecule that can permeate through the BBB, can be controlled by the acoustic pressure as dictated by cavitational mechanisms. Focused ultrasound was applied onto the mouse hippocampus in the presence of systemically administered MBs for trans-BBB delivery of fluorescently labeled dextrans with molecular weights 3 to 2,000 kDa (hydrodynamic diameter: 2.3 to 54.4 nm). The dextran delivery outcomes were evaluated using ex vivo fluorescence imaging. Cavitation detection was employed to monitor the MB cavitation activity associated with the delivery of these agents. It was found that the BBB opening size was smaller than 3 kDa (2.3 nm) at 0.31 MPa, up to 70 kDa (10.2 nm) at 0.51 MPa, and up to 2,000 kDa (54.4 nm) at 0.84 MPa. Relatively smaller opening size (up to 70 kDa) was achieved with stable cavitation only; however, inertial cavitation was associated with relatively larger BBB opening size (above 500 kDa). These findings indicate that the BBB opening size can be controlled by the acoustic pressure and predicted using cavitation detection.
Collapse
|
79
|
Tsai MT, Chang FY, Lee CK, Gong CSA, Lin YX, Lee JD, Yang CH, Liu HL. Investigation of temporal vascular effects induced by focused ultrasound treatment with speckle-variance optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2009-2022. [PMID: 25071945 PMCID: PMC4102345 DOI: 10.1364/boe.5.002009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 05/30/2023]
Abstract
Focused ultrasound (FUS) can be used to locally and temporally enhance vascular permeability, improving the efficiency of drug delivery from the blood vessels into the surrounding tissue. However, it is difficult to evaluate in real time the effect induced by FUS and to noninvasively observe the permeability enhancement. In this study, speckle-variance optical coherence tomography (SVOCT) was implemented for the investigation of temporal effects on vessels induced by FUS treatment. With OCT scanning, the dynamic change in vessels during FUS exposure can be observed and studied. Moreover, the vascular effects induced by FUS treatment with and without the presence of microbubbles were investigated and quantitatively compared. Additionally, 2D and 3D speckle-variance images were used for quantitative observation of blood leakage from vessels due to the permeability enhancement caused by FUS, which could be an indicator that can be used to determine the influence of FUS power exposure. In conclusion, SVOCT can be a useful tool for monitoring FUS treatment in real time, facilitating the dynamic observation of temporal effects and helping to determine the optimal FUS power.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
- Graduate Institute of Electro-Optical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Feng-Yu Chang
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Cheng-Kuang Lee
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Cihun-Siyong Alex Gong
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Yu-Xiang Lin
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Jiann-Der Lee
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| | - Chih-Hsun Yang
- Department of Dermatology, Chang Gung Memorial Hospital, 5 Fusing Street, Kwei-Shan, Tao-Yaun 33302, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan
| |
Collapse
|
80
|
Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev 2014; 72:94-109. [PMID: 24462453 DOI: 10.1016/j.addr.2014.01.008] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/30/2013] [Accepted: 01/14/2014] [Indexed: 12/24/2022]
Abstract
The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB.
Collapse
Affiliation(s)
- Muna Aryal
- Department of Physics, Boston College, Chestnut Hill, USA; Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Costas D Arvanitis
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Phillip M Alexander
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA; Institute of Biomedical Engineering, Department of Engineering Science, and Brasenose College, University of Oxford, Oxford, UK
| | - Nathan McDannold
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
81
|
Microbubble-mediated ultrasound enhances the lethal effect of gentamicin on planktonic Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2014; 2014:142168. [PMID: 24977141 PMCID: PMC4052079 DOI: 10.1155/2014/142168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
Abstract
Previous research has found that low-intensity ultrasound enhanced the lethal effect of gentamicin on planktonic E. coli. We aimed to further investigate whether microbubble-mediated low-intensity ultrasound could further enhance the antimicrobial efficacy of gentamicin. The planktonic E. coli (ATCC 25922) was distributed to four different interventions: control (GCON), microbubble only (GMB), ultrasound only (GUS), and microbubble-mediated ultrasound (GMUS). Ultrasound was applied with 100 mW/cm(2) (average intensity) and 46.5 KHz, which presented no bactericidal activity. After 12 h, plate counting was used to estimate the number of bacteria, and bacterial micromorphology was observed with transmission electron microscope. The results showed that the viable counts of E. coli in GMUS were decreased by 1.01 to 1.42 log10 CFU/mL compared with GUS (P < 0.01). The minimal inhibitory concentration (MIC) of gentamicin against E. coli was 1 μ g/mL in the GMUS and GUS groups, lower than that in the GCON and GMB groups (2 μ g/mL). Transmission electron microscopy (TEM) images exhibited more destruction and higher thickness of bacterial cell membranes in the GMUS than those in other groups. The reason might be the increased permeability of cell membranes for gentamicin caused by acoustic cavitation.
Collapse
|
82
|
Abstract
INTRODUCTION The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a noninvasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. AREAS COVERED The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. EXPERT OPINION The introduction of magnetic resonance imaging guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development.
Collapse
Affiliation(s)
- Alison Burgess
- Sunnybrook Research Institute, Physical Sciences , 2075 Bayview Avenue, S665, Toronto, ON M4N 3M5 , Canada +1 416 480 5765 ;
| | | |
Collapse
|
83
|
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine 2014; 9:795-811. [PMID: 24550672 PMCID: PMC3926460 DOI: 10.2147/ijn.s52236] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.
Collapse
Affiliation(s)
- Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | - Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia (NDUM), Kuala Lumpur, Malaysia
| | - Mohd Ismail Nafeeza
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | | | - Dmitry Kuznetsov
- Department of Medicinal Nanobiotechnologies, N. I. Pirogoff Russian State Medical University, Moscow, Russia
| |
Collapse
|
84
|
Jin Q, Wang Z, Yan F, Deng Z, Ni F, Wu J, Shandas R, Liu X, Zheng H. A novel cationic microbubble coated with stearic acid-modified polyethylenimine to enhance DNA loading and gene delivery by ultrasound. PLoS One 2013; 8:e76544. [PMID: 24086748 PMCID: PMC3784428 DOI: 10.1371/journal.pone.0076544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
A novel cationic microbubble (MB) for improvement of the DNA loading capacity and the ultrasound-mediated gene delivery efficiency has been developed; it has been prepared with commercial lipids and a stearic acid modified polyethylenimine 600 (Stearic-PEI600) polymer synthesized via acylation reaction of branched PEI600 and stearic acid mediated by N, N'-carbonyldiimidazole (CDI). The MBs’ concentration, size distribution, stability and zeta potential (ζ-potential) were measured and the DNA loading capacity was examined as a function of the amount of Stearic-PEI600. The gene transfection efficiency and cytotoxicity were also examined using breast cancer MCF-7 cells via the reporter plasmid pCMV-Luc, encoding the firefly luciferase gene. The results showed that the Stearic-PEI600 polymer caused a significant increase in magnitude of ζ-potential of MBs. The addition of DNA into cationic MBs can shift ζ-potentials from positive to negative values. The DNA loading capacity of the MBs grew linearly from (5±0.2) ×10−3 pg/µm2 to (20±1.8) ×10−3 pg/µm2 when Stearic-PEI600 was increased from 5 mol% to 30 mol%. Transfection of MCF-7 cells using 5% PEI600 MBs plus ultrasound exposure yielded 5.76±2.58×103 p/s/cm2/sr average radiance intensity, was 8.97- and 7.53-fold higher than those treated with plain MBs plus ultrasound (6.41±5.82) ×102 p/s/cm2/sr, (P<0.01) and PEI600 MBs without ultrasound (7.65±6.18) ×102 p/s/cm2/sr, (P<0.01), respectively. However, the PEI600 MBs showed slightly higher cytotoxicity than plain MBs. The cells treated with PEI600-MBs and plain MBs plus ultrasound showed 59.5±6.1% and 71.4±7.1% cell viability, respectively. In conclusion, our study demonstrated that the novel cationic MBs were able to increase DNA loading capacity and gene transfection efficiency and could be potentially applied in targeted gene delivery and therapy.
Collapse
Affiliation(s)
- Qiaofeng Jin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyong Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail: (HZ); (FY)
| | - Zhiting Deng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Ni
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junru Wu
- Department of Physics, University of Vermont, Burlington, Vermont, United States of America
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Lab for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail: (HZ); (FY)
| |
Collapse
|