51
|
Du Y, Zhou S, Liu M, Wang B, Jiang K, Fang H, Wang L. Understanding the roles of surface proteins in regulation of Lactobacillus pentosus HC-2 to immune response and bacterial diversity in midgut of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1194-1206. [PMID: 30599258 DOI: 10.1016/j.fsi.2018.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The interactions of microbiota in the intestines play an important role in promoting or maintaining the health of hosts. The present study aim to investigate the effects of the surface proteins of Lactobacillus pentosus HC-2 on the immune response and the bacterial composition of Litopenaeus vannamei, thus, the immune-related genes, surface condition, HC-2 numbers and the bacteria diversity in midgut were explored after shrimp feeding the normal HC-2 and 5 M - lithium chloride (LiCl) treated HC-2 for four weeks. Obvious improvements in the intestinal surface were observed in R group than the control group and L group. qPCR analysis demonstrated that the selected immune-related genes of lysozyme, proPO, LGBP, PEN-3α, crustin, and lvLec were significantly up-regulated in group R than in group L. Meanwhile, in the challenge test, shrimp in R group received 72% relative percent survival, which was significantly higher than the L group (RPS = 9%). The bacteria composition analysis showed that the abundance of Proteobacteria were significantly higher in group R and L than in group C, and the Bacteroidetes were significantly higher in group C than in group R and L, whereas the numbers of Chloroflexi were significantly higher in group R than in group C and L. The bacterial community difference analysis revealed that the harmful bacteria such as genus of Vibrio, Tenacibaculu and Thalassobius were decreased and the beneficial bacterium as Ruegeria and Lactobacillus were increased in R group, whereas this phenomenon were not found in L group. Taken together, above results indicating that the surface proteins were indispensable for L. pentosus HC-2 adhesion and colonization in shrimp intestines to improve intestine condition, enhance immune response, competitively exclude the pathogens, and promote the beneficial bacteria growth to protect the shrimp from pathogens infection. The findings in this work will help to promote the understanding of the roles of probiotics in shrimp intestines displaying probiotic-function by regulating the intestinal bacteria.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuhong Zhou
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Mei Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Baojie Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Keyong Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Han Fang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lei Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266400, China.
| |
Collapse
|
52
|
Wang C, Zhou Y, Lv D, Ge Y, Li H, You Y. Change in the intestinal bacterial community structure associated with environmental microorganisms during the growth of Eriocheir sinensis. Microbiologyopen 2018; 8:e00727. [PMID: 30311433 PMCID: PMC6528601 DOI: 10.1002/mbo3.727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
As an important organ to maintain the host's homeostasis, intestinal microbes play an important role in development of the organism. In contrast to those of terrestrial animals, the intestinal microbes of aquatic organisms are affected by environmental microorganisms (including water microorganisms and sediment microorganisms). In the present study, the compositional differences of intestinal microbes in three representative developmental stages of the Chinese mitten crab (Eriocheir sinensis) were studied. Meanwhile, network association analysis, and visualization of the water microorganisms of the crabs’ habitat, the environment microorganisms in the pond, and the intestinal microbes, was carried out. The results showed that the gut microbiota diversity index decreased continuously with age, and the four bacteria of Aeromonas (Proteobacteria), Defluviitaleaceae (Firmicutes), Candidatus Bacilloplasma (Tenericutes), and Dysgonomonas (Bacteroidetes) were the “indigenous” flora of the crab. In the network‐related analysis with the environment, we found that as the culture time increased, the effect of environmental microorganisms on the intestinal microbes of crabs gradually decreased, and the four “indigenous” bacteria were always unaffected by the environmental microorganisms. The results of this study identified the core bacteria of the crab and, for the first time, studied the relationship between intestinal environmental microorganisms, which will aid the practical production of crabs and will promote research into the relationship between specific bacteria and the physiological metabolism of crabs.
Collapse
Affiliation(s)
- Chenhe Wang
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Yanfeng Zhou
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Dawei Lv
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - You Ge
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| | - Huan Li
- Nextomics Biosciences Co., Ltd, Wuhan, China
| | - Yang You
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China.,Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture, Freshwater Fisheries Research Center, CAFS, WuXi, China
| |
Collapse
|
53
|
Su H, Hu X, Xu Y, Xu W, Huang X, Wen G, Yang K, Li Z, Cao Y. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. ENVIRONMENT INTERNATIONAL 2018; 119:327-333. [PMID: 29990953 DOI: 10.1016/j.envint.2018.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
More attention has been paid to the abundance and diversity of antibiotic resistance genes (ARGs) in aquatic environments. However, few studies have investigated the persistence and spatial variation of ARGs in aquatic organisms. This study investigated the occurrence and abundance of ARGs and the bacterial populations in shrimp intestinal tracts during the rearing period in different regions of Guangdong, South China. The results showed that sul1, sul2, qnrD, and floR were the predominant ARGs. Compared with those of juvenile shrimp, the total concentrations of ARGs in the intestinal tract of adult shrimp in three shrimp farms were 2.45-3.92 times higher (p < 0.05), and the bacterial populations in the adult shrimp intestinal tract changed considerably. Redundancy analysis (RDA) showed that the abundance of Proteobacteria, Firmicutes, and Verrucomicrobia in Farms A, B, and C, respectively, were strongly positively correlated with the most abundant and predominant genes (sul1 and qnrD for Farm A; floR and sul2 for Farm B; floR and sul2 for Farm C) in the shrimp intestinal tract. The results of this study indicated that ARGs gained persistence in the developmental stages of the reared shrimp. Different phyla of predominant bacteria were responsible for the increase of ARGs abundance in the shrimp intestinal tract in different regions. This study represents a case study of the persistence and spatial variation of ARGs in aquaculture and can be a reference for the determination of harmful impacts of ARGs on food safety and human health.
Collapse
Affiliation(s)
- Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoshuai Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Keng Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, P.R. China; Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| |
Collapse
|
54
|
Cornejo-Granados F, Gallardo-Becerra L, Leonardo-Reza M, Ochoa-Romo JP, Ochoa-Leyva A. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ 2018; 6:e5382. [PMID: 30128187 PMCID: PMC6089209 DOI: 10.7717/peerj.5382] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/15/2018] [Indexed: 01/08/2023] Open
Abstract
The shrimp or prawn is the most valuable traded marine product in the world market today and its microbiota plays an essential role in its development, physiology, and health. The technological advances and dropping costs of high-throughput sequencing have increased the number of studies characterizing the shrimp microbiota. However, the application of different experimental and bioinformatics protocols makes it difficult to compare different studies to reach general conclusions about shrimp microbiota. To meet this necessity, we report the first meta-analysis of the microbiota from freshwater and marine shrimps using all publically available sequences of the 16S ribosomal gene (16S rRNA gene). We obtained data for 199 samples, in which 63.3% were from marine (Alvinocaris longirostris, Litopenaeus vannamei and Penaeus monodon), and 36.7% were from freshwater (Macrobrachium asperulum, Macrobrachium nipponense, Macrobranchium rosenbergii, Neocaridina denticulata) shrimps. Technical variations among studies, such as selected primers, hypervariable region, and sequencing platform showed a significant impact on the microbiota structure. Additionally, the ANOSIM and PERMANOVA analyses revealed that the most important biological factor in structuring the shrimp microbiota was the marine and freshwater environment (ANOSIM R = 0.54, P = 0.001; PERMANOVA pseudo-F = 21.8, P = 0.001), where freshwater showed higher bacterial diversity than marine shrimps. Then, for marine shrimps, the most relevant biological factors impacting the microbiota composition were lifestyle (ANOSIM R = 0.341, P = 0.001; PERMANOVA pseudo-F = 8.50, P = 0.0001), organ (ANOSIM R = 0.279, P = 0.001; PERMANOVA pseudo-F = 6.68, P = 0.001) and developmental stage (ANOSIM R = 0.240, P = 0.001; PERMANOVA pseudo-F = 5.05, P = 0.001). According to the lifestyle, organ, developmental stage, diet, and health status, the highest diversity were for wild-type, intestine, adult, wild-type diet, and healthy samples, respectively. Additionally, we used PICRUSt to predict the potential functions of the microbiota, and we found that the organ had more differentially enriched functions (93), followed by developmental stage (12) and lifestyle (9). Our analysis demonstrated that despite the impact of technical and bioinformatics factors, the biological factors were also statistically significant in shaping the microbiota. These results show that cross-study comparisons are a valuable resource for the improvement of the shrimp microbiota and microbiome fields. Thus, it is important that future studies make public their sequencing data, allowing other researchers to reach more powerful conclusions about the microbiota in this non-model organism. To our knowledge, this is the first meta-analysis that aims to define the shrimp microbiota.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Instituto de Biotecnología, Cuernavaca, Morelos, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Instituto de Biotecnología, Cuernavaca, Morelos, Mexico
| | - Miriam Leonardo-Reza
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Instituto de Biotecnología, Cuernavaca, Morelos, Mexico
| | - Juan Pablo Ochoa-Romo
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Instituto de Biotecnología, Cuernavaca, Morelos, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Instituto de Biotecnología, Cuernavaca, Morelos, Mexico
| |
Collapse
|
55
|
Yao Z, Yang K, Huang L, Huang X, Qiuqian L, Wang K, Zhang D. Disease outbreak accompanies the dispersive structure of shrimp gut bacterial community with a simple core microbiota. AMB Express 2018; 8:120. [PMID: 30022306 PMCID: PMC6051950 DOI: 10.1186/s13568-018-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence has emerged supporting a tight link between gut bacterial community and shrimp health. However, the knowledge about the variation of gut bacterial community, especially with different disease onset time, remains elusive. Here, healthy and diseased shrimps were collected at 3 disease-outbreak times (day 70, 80 and 85) to investigate the variation of gut bacterial community and its underlying ecological process with 16S rRNA gene amplicon sequencing. The gut bacterial community of diseased shrimp was distinct from the healthy one and temporally less stable, characterized by decreased alpha-diversity and dispersive structure. And its dominant ecological process experienced a transition with disease onset time, although deterministic process mainly governed the healthy gut bacterial assembly. In addition, the core microbiota of healthy shrimp gut harbored more diverse bacterial taxa with more cooperative interactions, while the diseased core microbiota showed opposite pattern with significantly higher abundance of opportunistic pathogens as well. These findings indicate that shrimp heath is highly relevant to the homeostasis of its gut bacterial community. Preservation and restoration of the bacterial community equilibrium could represent an effective strategy for shrimp disease prevention.
Collapse
|
56
|
Xiong J. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Appl Microbiol Biotechnol 2018; 102:7343-7350. [PMID: 29982924 DOI: 10.1007/s00253-018-9199-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
It is now recognized that gut microbiota contributes indispensable roles in safeguarding host health. Shrimp is being threatened by newly emerging diseases globally; thus, understanding the driving factors that govern its gut microbiota would facilitate an initial step to reestablish and maintain a "healthy" gut microbiota. This review summarizes the factors that assemble the shrimp gut microbiota, which focuses on the current progresses of knowledge linking the gut microbiota and shrimp health status. In particular, I propose the exploration of shrimp disease pathogenesis and incidence based on the interplay between dysbiosis in the gut microbiota and disease severity. An updated research on shrimp disease toward an ecological perspective is discussed, including host-bacterial colonization, identification of polymicrobial pathogens and diagnosing disease incidence. Further, a simple conceptual model is offered to summarize the interplay among the gut microbiota, external factors, and shrimp disease. Finally, based on the review, current limitations are raised and future studies directed at solving these concerns are proposed. This review is timely given the increased interest in the role of gut microbiota in disease pathogenesis and the advent of novel diagnosis strategies.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
57
|
Hou D, Huang Z, Zeng S, Liu J, Weng S, He J. Comparative analysis of the bacterial community compositions of the shrimp intestine, surrounding water and sediment. J Appl Microbiol 2018; 125:792-799. [PMID: 29777622 DOI: 10.1111/jam.13919] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 04/23/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
AIMS To reveal the relationship of the bacterial communities in shrimp intestine and surrounding environments. METHODS AND RESULTS We examined bacterial communities in the intestine of pacific white shrimp, Litopenaeus vannamei, the surrounding water and sediment by high-throughput sequencing analysis. Sequences were clustered into operational taxonomic units (OTUs) at 97% similarity levels, which ranged from 4956 to 5976 in each sample. All OTUs were affiliated with at least 64 phyla. The 10 most abundant phyla were Proteobacteria, Cyanobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Acidobacteria, Actinobacteria, Planctomycetes, Gemmatimonadetes and Verrucomicrobia. The relationship of bacterial communities in the intestine and the surroundings was also investigated. A total of 1395 OTUs shared in the three habitats, accounting for 80, 65 and 77% in the intestine, the surrounding water and sediment respectively. There were 352, 891, 833 unique OTUs in intestine, surrounding water and sediment. Welch's t-test analysis showed that the abundances of some taxa were significantly different between the shrimp intestine and surroundings. Unweighted pair-group method with arithmetic mean analysis revealed that there was a generally similar bacterial community composition in three environments. CONCLUSIONS These results showed that the bacterial compositions are mostly the same in shrimp intestine, water and sediment, but with different relative abundances of the bacterial communities. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided valuable findings on the relationship of the bacterial communities in shrimp intestine, the surrounding water and sediment, which can expand our knowledge of the broad trend on bacterial community in shrimp cultural ecosystems.
Collapse
Affiliation(s)
- D Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Z Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - S Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - J Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - S Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - J He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
58
|
Gainza O, Ramírez C, Ramos AS, Romero J. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador. MICROBIAL ECOLOGY 2018; 75:562-568. [PMID: 28929202 DOI: 10.1007/s00248-017-1066-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.
Collapse
Affiliation(s)
- Oreste Gainza
- Doctorado en Acuicultura, Programa Cooperativo, Universidad de Chile, Universidad Católica del Norte y Universidad Católica de Valparaíso, Coquimbo, Chile
| | - Carolina Ramírez
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Avda. El Líbano 5524, Santiago, Chile
| | | | - Jaime Romero
- Laboratorio de Biotecnología, Unidad de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Avda. El Líbano 5524, Santiago, Chile.
| |
Collapse
|
59
|
Ooi MC, Goulden EF, Smith GG, Nowak BF, Bridle AR. Developmental and gut-related changes to microbiomes of the cultured juvenile spiny lobster Panulirus ornatus. FEMS Microbiol Ecol 2018; 93:4628038. [PMID: 29145612 DOI: 10.1093/femsec/fix159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
With recent technologies making it possible for commercial scale closed life-cycle aquaculture production of spiny lobster (Panulirus ornatus) comes a strong impetus to further understand aspects of lobster health. The gut microbiome plays a crucial role in host health, affecting growth, digestion, immune responses and pathogen resistance. Herein we characterise and compare gut microbiomes across different developmental stages (6-7 days post-emergence [dpe], 52 dpe and 13 months post-emergence [mpe]) and gut regions (foregut, midgut and hindgut) of cultured P. ornatus juveniles. Gut samples were analysed using 16S rRNA next-generation sequencing. Core gut microbiomes of P. ornatus comprised the phyla Tenericutes and Proteobacteria. Within class Gammaproteobacteria, families Pseudoalteromonadaceae and Vibrionaceae were dominant members across the majority of the gut microbiomes. Characterisation of bacterial communities from 13 mpe lobsters indicated that the hindgut microbiome was more diverse and compositionally dissimilar to the foregut and midgut. The bacterial composition of the hindgut was more similar among younger juveniles (6-7 dpe and 52 dpe) compared to 13 mpe lobsters. This is the first study to explore gut microbiomes of spiny lobster juveniles. We demonstrate that the composition of the gut microbiome was shaped by gut region, whereas the structure of the hindgut microbiome was influenced by developmental stage.
Collapse
Affiliation(s)
- Mei C Ooi
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| | - Evan F Goulden
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| |
Collapse
|
60
|
Hou D, Huang Z, Zeng S, Liu J, Wei D, Deng X, Weng S, Yan Q, He J. Intestinal bacterial signatures of white feces syndrome in shrimp. Appl Microbiol Biotechnol 2018. [PMID: 29516144 DOI: 10.1007/s00253-018-8855-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that the intestinal microbiota is closely correlated with the host's health status. Thus, a serious disturbance that disrupts the stability of the intestinal microecosystem could cause host disease. Shrimps are one of the most important products among fishery trading commodities. However, digestive system diseases, such as white feces syndrome (WFS), frequently occur in shrimp culture and have led to enormous economic losses across the world. The WFS occurrences are unclear. Here, we compared intestinal bacterial communities of WFS shrimp and healthy shrimp. Intestinal bacterial communities of WFS shrimp exhibited less diversity but were more heterogeneous than those of healthy shrimp. The intestinal bacterial communities were significantly different between WFS shrimp and healthy shrimp; compared with healthy shrimp, in WFS shrimp, Candidatus Bacilloplasma and Phascolarctobacterium were overrepresented, whereas Paracoccus and Lactococcus were underrepresented. PICRUSt functional predictions indicated that the relative abundances of genes involved in energy metabolism and genetic information processing were significantly greater in WFS shrimp. Collectively, we found that the composition and predicted functions of the intestinal bacterial community were markedly shifted by WFS. Significant increases in Candidatus Bacilloplasma and Phascolarctobacterium and decreases in Paracoccus and Lactococcus may contribute to WFS in shrimp.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Dongdong Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Xisha Deng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Qingyun Yan
- Environmental Microbiomics Research Center and School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
61
|
Shang Q, Tang H, Wang Y, Yu K, Wang L, Zhang R, Wang S, Xue R, Wei C. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:681-690. [PMID: 28992495 DOI: 10.1016/j.scitotenv.2017.08.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 06/07/2023]
Abstract
As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO2--N), nitrate (NO3--N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT.
Collapse
Affiliation(s)
- Qian Shang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Environment, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Haifang Tang
- School of Environment, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Shaopeng Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Rui Xue
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| | - Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, 100 East Daxue Road, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, 100 East Daxue Road, Nanning 530004, China; School of Marine Sciences, Guangxi University, 100 East Daxue Road, Nanning 530004, China
| |
Collapse
|
62
|
Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei. J Microbiol 2017; 55:946-954. [PMID: 29214487 DOI: 10.1007/s12275-017-7273-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/23/2017] [Accepted: 11/01/2017] [Indexed: 02/08/2023]
Abstract
Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.
Collapse
|
63
|
Han Z, Li K, Shahzad M, Zhang H, Luo H, Qiu G, Lan Y, Wang X, Mehmood K, Li J. Analysis of the intestinal microbial community in healthy and diarrheal perinatal yaks by high-throughput sequencing. Microb Pathog 2017; 111:60-70. [DOI: 10.1016/j.micpath.2017.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/09/2023]
|
64
|
Schwartz K, Kukuc C, Bier N, Taureck K, Hammerl JA, Strauch E. Diversity of Vibrio navarrensis Revealed by Genomic Comparison: Veterinary Isolates Are Related to Strains Associated with Human Illness and Sewage Isolates While Seawater Strains Are More Distant. Front Microbiol 2017; 8:1717. [PMID: 28932221 PMCID: PMC5592226 DOI: 10.3389/fmicb.2017.01717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022] Open
Abstract
Strains of Vibrio navarrensis are present in aquatic environments like seawater, rivers, and sewage. Recently, strains of this species were identified in human clinical specimens. In this study, V. navarrensis strains isolated from livestock in Germany were characterized that were found in aborted fetuses and/or placentas after miscarriages. The veterinary strains were analyzed using phenotypical and genotypical methods and compared to isolates from marine environments of the Baltic Sea and North Sea. The investigated phenotypical traits were similar in all German strains. Whole genome sequencing (WGS) was used to evaluate a phylogenetic relationship by performing a single nucleotide polymorphism (SNP) analysis. For the SNP analysis, WGS data of two American human pathogenic strains and two Spanish environmental isolates from sewage were included. A phylogenetic analysis of concatenated sequences of five protein-coding housekeeping genes (gyrB, pyrH, recA, atpA, and rpoB), was additionally performed. Both phylogenetic analyses reveal a greater distance of the environmental seawater strains to the other strains. The phylogenetic tree constructed from concatenated sequences of housekeeping genes places veterinary, human pathogenic and Spanish sewage strains into one cluster. Presence and absence of virulence-associated genes were investigated based on WGS data and confirmed by PCR. However, this analysis showed no clear pattern for the potentially pathogenic strains. The detection of V. navarrensis in human clinical specimens strongly suggests that this species should be regarded as a potential human pathogen. The identification of V. navarrensis strains in domestic animals implicates a zoonotic potential of this species. This could indicate a potential threat for humans, as according to the “One Health” concept, human, animal, and environmental health are linked. Future studies are necessary to search for reservoirs of these bacteria in the environment and/or in living organisms.
Collapse
Affiliation(s)
- Keike Schwartz
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Cindy Kukuc
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Nadja Bier
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Karin Taureck
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen SachsenDresden, Germany
| | - Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| |
Collapse
|
65
|
Microbiome of Pacific Whiteleg shrimp reveals differential bacterial community composition between Wild, Aquacultured and AHPND/EMS outbreak conditions. Sci Rep 2017; 7:11783. [PMID: 28924190 PMCID: PMC5603525 DOI: 10.1038/s41598-017-11805-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
Crustaceans form the second largest subphylum on Earth, which includes Litopeneaus vannamei (Pacific whiteleg shrimp), one of the most cultured shrimp worldwide. Despite efforts to study the shrimp microbiota, little is known about it from shrimp obtained from the open sea and the role that aquaculture plays in microbiota remodeling. Here, the microbiota from the hepatopancreas and intestine of wild type (wt) and aquacultured whiteleg shrimp and pond sediment from hatcheries were characterized using sequencing of seven hypervariable regions of the 16S rRNA gene. Cultured shrimp with AHPND/EMS disease symptoms were also included. We found that (i) microbiota and their predicted metagenomic functions were different between wt and cultured shrimp; (ii) independent of the shrimp source, the microbiota of the hepatopancreas and intestine was different; (iii) the microbial diversity between the sediment and intestines of cultured shrimp was similar; and (iv) associated to an early development of AHPND/EMS disease, we found changes in the microbiome and the appearance of disease-specific bacteria. Notably, under cultured conditions, we identified bacterial taxa enriched in healthy shrimp, such as Faecalibacterium prausnitzii and Pantoea agglomerans, and communities enriched in diseased shrimp, such as Aeromonas taiwanensis, Simiduia agarivorans and Photobacterium angustum.
Collapse
|
66
|
Microbiome Dynamics in a Shrimp Grow-out Pond with Possible Outbreak of Acute Hepatopancreatic Necrosis Disease. Sci Rep 2017; 7:9395. [PMID: 28839269 PMCID: PMC5571196 DOI: 10.1038/s41598-017-09923-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/01/2017] [Indexed: 11/08/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) (formerly, early mortality syndrome) is a high-mortality-rate shrimp disease prevalent in shrimp farming areas. Although AHPND is known to be caused by pathogenic Vibrio parahaemolyticus hosting the plasmid-related PirABvp toxin gene, the effects of disturbances in microbiome have not yet been studied. We took 62 samples from a grow-out pond during an AHPND developing period from Days 23 to 37 after stocking white postlarvae shrimp and sequenced the 16S rRNA genes with Illumina sequencing technology. The microbiomes of pond seawater and shrimp stomachs underwent varied dynamic succession during the period. Despite copies of PirABvp, principal co-ordinates analysis revealed two distinctive stages of change in stomach microbiomes associated with AHPND. AHPND markedly changed the bacterial diversity in the stomachs; it decreased the Shannon index by 53.6% within approximately 7 days, shifted the microbiome with Vibrio and Candidatus Bacilloplasma as predominant populations, and altered the species-to-species connectivity and complexity of the interaction network. The AHPND-causing Vibrio species were predicted to develop a co-occurrence pattern with several resident and transit members within Candidatus Bacilloplasma and Cyanobacteria. This study’s insights into microbiome dynamics during AHPND infection can be valuable for minimising this disease in shrimp farming ponds.
Collapse
|
67
|
Zheng Y, Yu M, Liu J, Qiao Y, Wang L, Li Z, Zhang XH, Yu M. Bacterial Community Associated with Healthy and Diseased Pacific White Shrimp ( Litopenaeus vannamei) Larvae and Rearing Water across Different Growth Stages. Front Microbiol 2017; 8:1362. [PMID: 28769916 PMCID: PMC5513922 DOI: 10.3389/fmicb.2017.01362] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities are called another "organ" for aquatic animals and their important influence on the health of host has drawn increasing attention. Thus, it is important to study the relationships between aquatic animals and bacterial communities. Here, bacterial communities associated with Litopenaeus vannamei larvae at different healthy statuses (diseased and healthy) and growth stages (i.e., zoea, mysis, and early postlarvae periods) were examined using 454-pyrosequencing of the 16S rRNA gene. Bacterial communities with significant difference were observed between healthy and diseased rearing water, and several bacterial groups, such as genera Nautella and Kordiimonas could also distinguish healthy and diseased shrimp. Rhodobacteraceae was widely distributed in rearing water at all growth stages but there were several stage-specific groups, indicating that bacterial members in rearing water assembled into distinct communities throughout the larval development. However, Gammaproteobacteria, mainly family Enterobacteriaceae, was the most abundant group (accounting for more than 85%) in shrimp larvae at all growth stages. This study compared bacterial communities associated with healthy and diseased L. vannamei larvae and rearing water, and identified several health- and growth stage-specific bacterial groups, which might be provided as indicators for monitoring the healthy status of shrimp larvae in hatchery.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Min Yu
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Jiwen Liu
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Yanlu Qiao
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | - Long Wang
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China
| | | | - Xiao-Hua Zhang
- Marine Microbiology Lab, College of Marine Life Sciences, Ocean University of ChinaQingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | | |
Collapse
|
68
|
Cardona E, Gueguen Y, Magré K, Lorgeoux B, Piquemal D, Pierrat F, Noguier F, Saulnier D. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol 2016; 16:157. [PMID: 27435866 PMCID: PMC4952143 DOI: 10.1186/s12866-016-0770-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/12/2016] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. RESULTS Analyses of the bacterial community identified in water from BFT and "clear seawater" (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. CONCLUSION This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.
Collapse
Affiliation(s)
- Emilie Cardona
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
- />Ifremer, Unité de recherche Lagons, Ecosystèmes et Aquaculture Durable en Nouvelle Calédonie, Nouméa, New Caledonia
| | - Yannick Gueguen
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
- />Ifremer, UMR 5244 IHPE, UPVD, CNRS, Université de Montpellier, F-34095 Montpellier, France
| | - Kevin Magré
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| | - Bénédicte Lorgeoux
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| | - David Piquemal
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Fabien Pierrat
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Florian Noguier
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Denis Saulnier
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| |
Collapse
|
69
|
Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl Microbiol Biotechnol 2016; 100:6947-54. [PMID: 27333908 DOI: 10.1007/s00253-016-7679-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/23/2022]
Abstract
High-density aquaculture has led to increasing occurrences of diseases in shrimp. Thus, it is imperative to establish effective and quantitative strategies for preventing and predicting these diseases. Water quality indices and investigations of specific pathogen abundance provide only a qualitative evaluation of the risk of shrimp disease and can be inaccurate. To address these shortcomings, we introduced intestinal indicative assemblages as independent variables with which to quantitatively predict incidences of shrimp disease. Given the ignorance regarding the niches differences in the shrimp intestine throughout its developmental stages, the use of probiotics in aquaculture has had limited success. Therefore, we propose the exploration of effective probiotic bacteria from shrimp intestinal flora and the establishment of therapeutic strategies dependent on shrimp age. Following ecological selection principles, we hypothesize that the larval stage provides the best opportunity to establish a desired gut microbiota through preemptive colonization of the treated rearing water with known probiotics. To employ this strategy, however, substantial barriers must be overcome.
Collapse
|
70
|
Zhang M, Sun Y, Chen L, Cai C, Qiao F, Du Z, Li E. Symbiotic Bacteria in Gills and Guts of Chinese Mitten Crab (Eriocheir sinensis) Differ from the Free-Living Bacteria in Water. PLoS One 2016; 11:e0148135. [PMID: 26820139 PMCID: PMC4731060 DOI: 10.1371/journal.pone.0148135] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.
Collapse
Affiliation(s)
- Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| | - Yuhong Sun
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chunfang Cai
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| |
Collapse
|
71
|
Antibacterial activity of garlic (Allium sativum) againts Gram-positive bacteria isolated from tiger shrimp (Penaeus monodon). ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60983-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Dabadé DS, Wolkers-Rooijackers JCM, Azokpota P, Hounhouigan DJ, Zwietering MH, Nout MJR, den Besten HMW. Bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and the surrounding brackish waters and sediment. Int J Food Microbiol 2015; 218:96-104. [PMID: 26656527 DOI: 10.1016/j.ijfoodmicro.2015.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/24/2022]
Abstract
This study aimed at determining bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and their surrounding brackish waters and sediment. Freshly caught shrimp, water and sediment samples were collected in Lakes Nokoue and Aheme in Benin (West Africa) during two periods with different water salinity and temperature. We used complementary culture-dependent and culture-independent methods for microbiota analysis. During both sampling periods, total mesophilic aerobic counts in shrimp samples ranged between 4.4 and 5.9 log CFU/g and were significantly higher than in water or sediment samples. In contrast, bacterial diversity was higher in sediment or water than in shrimps. The dominant phyla were Firmicutes and Proteobacteria in shrimps, Firmicutes, Proteobacteria, and Actinobacteria in water, and Proteobacteria and Chloroflexi in sediment. At species level, distinct bacterial communities were associated with sediment, water and shrimps sampled at the same site the same day. The study suggests that the bacterial community of tropical brackish water shrimps cannot be predicted from the microbiota of their aquatic environment. Thus, monitoring of microbiological quality of aquatic environments might not reflect shrimp microbiological quality.
Collapse
Affiliation(s)
- D Sylvain Dabadé
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Paulin Azokpota
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin
| | - D Joseph Hounhouigan
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - M J Rob Nout
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
73
|
Cheung MK, Yip HY, Nong W, Law PTW, Chu KH, Kwan HS, Hui JHL. Rapid Change of Microbiota Diversity in the Gut but Not the Hepatopancreas During Gonadal Development of the New Shrimp Model Neocaridina denticulata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:811-819. [PMID: 26319409 DOI: 10.1007/s10126-015-9662-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/23/2015] [Indexed: 06/04/2023]
Abstract
During evolution of animals, their co-evolution with bacteria has generally been ignored. Recent studies have provided evidences that the symbiotic bacteria in the animal gut can either be essential or contributing to the plasticity of the host. The Crustacea includes crab, crayfish, lobster, and shrimp and represents the second largest subphylum on the planet. Although there are already studies investigating the intestinal bacterial communities in crustaceans, none of them has examined the microbiota in different parts of the digestive system during the gonad development of the host. Here, we utilized a new shrimp model Neocaridina denticulata and sequenced the 16S rRNA using the Ion Torrent platform to survey the bacterial populations colonizing the hepatopancreas, foregut, and intestine, including midgut and hindgut, of the early, mid, and late ovarian maturation stages of the shrimp. The predominant bacteria phylum was found to be Proteobacteria, with more than 80 % reads from the gut flora at the early gonad development belonged to a Coxiella-type bacterium. Distinct bacterial communities can be detected between the hepatopancreas and gut, although no significant difference could be revealed between the different regions of the gut investigated. Surprisingly, during the gonad development, bacterial diversity changed rapidly in the gut but not the hepatopancreas. This study provides the first evidence that microbiota modified differentially in specific regions of the digestive tract during gonadal development of crustaceans.
Collapse
Affiliation(s)
- Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ho Yin Yip
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Wenyan Nong
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Patrick Tik Wan Law
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Jerome Ho Lam Hui
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
74
|
Rungrassamee W, Klanchui A, Maibunkaew S, Karoonuthaisiri N. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J Invertebr Pathol 2015; 133:12-9. [PMID: 26585302 DOI: 10.1016/j.jip.2015.11.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 01/02/2023]
Abstract
The intestinal microbiota play important roles in health of their host, contributing to maintaining the balance and resilience against pathogen. To investigate effects of pathogen to intestinal microbiota, the bacterial dynamics upon a shrimp pathogen, Vibrio harveyi, exposures were determined in two economically important shrimp species; the black tiger shrimp (BT) and the Pacific white shrimp (PW). Both shrimp species were reared under the same diet and environmental conditions. Shrimp survival rates after the V. harveyi exposure revealed that the PW shrimp had a higher resistance to the pathogen than the BT shrimp. The intestinal bacterial profiles were determined by denaturing gradient gel electrophoresis (DGGE) and barcoded pyrosequencing of the 16S rRNA sequences under no pathogen challenge control and under pathogenic V. harveyi challenge. The DGGE profiles showed that the presence of V. harveyi altered the intestinal bacterial patterns in comparison to the control in BT and PW intestines. This implies that bacterial balance in shrimp intestines was disrupted in the presence of V. harveyi. The barcoded pyrosequencing analysis showed the similar bacterial community structures in intestines of BT and PW shrimp under a normal condition. However, during the time course exposure to V. harveyi, the relative abundance of bacteria belong to Vibrio genus was higher in the BT intestines at 12h after the exposure, whereas relative abundance of vibrios was more stable in PW intestines. The principle coordinates analysis based on weighted-UniFrac analysis showed that intestinal bacterial population in the BT shrimp lost their ability to restore their bacterial balance during the 72-h period of exposure to the pathogen, while the PW shrimp were able to reestablish their bacterial population to resemble those seen in the unexposed control group. This observation of bacterial disruption might correlate to different mortality rates observed between the two shrimp species. Our findings provide evidence of intestinal bacterial population altered by a presence of the pathogen in shrimp intestines and intestinal bacterial stability might provide colonization resistance against the invading pathogen in the host shrimp. Hence, intestinal microbial ecology management may potentially contribute to disease prevention in aquaculture.
Collapse
Affiliation(s)
- Wanilada Rungrassamee
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand.
| | - Amornpan Klanchui
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Sawarot Maibunkaew
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
75
|
Soonthornchai W, Chaiyapechara S, Jarayabhand P, Söderhäll K, Jiravanichpaisal P. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon. PLoS One 2015; 10:e0135783. [PMID: 26285030 PMCID: PMC4540450 DOI: 10.1371/journal.pone.0135783] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/27/2015] [Indexed: 12/16/2022] Open
Abstract
Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids.
Collapse
Affiliation(s)
- Wipasiri Soonthornchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sage Chaiyapechara
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Padermsak Jarayabhand
- Interdisciplinary Graduate Program on Maritime Administration, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kenneth Söderhäll
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Pikul Jiravanichpaisal
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Klong 1, Klongluang, Pathumthani, 12120, Thailand; Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden; Fish Vet Group Asia Limited, 99/386, Chaengwattana Rd., Toongsonghong, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
76
|
Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense). PLoS One 2015; 10:e0132860. [PMID: 26168244 PMCID: PMC4500556 DOI: 10.1371/journal.pone.0132860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense) and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum) as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition.
Collapse
|
77
|
Romano-Bertrand S, Frapier JM, Calvet B, Colson P, Albat B, Parer S, Jumas-Bilak E. Dynamics of the surgical microbiota along the cardiothoracic surgery pathway. Front Microbiol 2015; 5:787. [PMID: 25628618 PMCID: PMC4292786 DOI: 10.3389/fmicb.2014.00787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Human skin associated microbiota are increasingly described by culture-independent methods that showed an unexpected diversity with variation correlated with several pathologies. A role of microbiota disequilibrium in infection occurrence is hypothesized, particularly in surgical site infections. We study the diversities of operative site microbiota and its dynamics during surgical pathway of patients undergoing coronary-artery by-pass graft (CABG). Pre-, per-, and post-operative samples were collected from 25 patients: skin before the surgery, superficially and deeply during the intervention, and healing tissues. Bacterial diversity was assessed by DNA fingerprint using 16S rRNA gene PCR and Temporal Temperature Gel Electrophoresis (TTGE). The diversity of Operational Taxonomic Units (OTUs) at the surgical site was analyzed according to the stage of surgery. From all patients and samples, we identified 147 different OTUs belonging to the 6 phyla Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. High variations were observed among patients but common themes can be observed. The Firmicutes dominated quantitatively but were largely encompassed by the Proteobacteria regarding the OTUs diversity. The genera Propionibacterium and Staphylococcus predominated on the preoperative skin, whereas very diverse Proteobacteria appeared selected in peri-operative samples. The resilience in scar skin was partial with depletion in Actinobacteria and Firmicutes and increase of Gram-negative bacteria. Finally, the thoracic operative site presents an unexpected bacterial diversity, which is partially common to skin microbiota but presents particular dynamics. We described a complex bacterial community that gathers pathobionts and bacteria deemed to be environmental, opportunistic pathogens and non-pathogenic bacteria. These data stress to consider surgical microbiota as a “pathobiome” rather than a reservoir of individual potential pathogens.
Collapse
Affiliation(s)
- Sara Romano-Bertrand
- Equipe Pathogènes et Environnements, UMR 5119 ECOSYM, Université Montpellier 1 Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Jean-Marc Frapier
- Service de Chirurgie Thoracique et Cardiovasculaire, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Brigitte Calvet
- Département de Réanimation de Chirurgie Cardiothoracique, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Pascal Colson
- Département de Réanimation de Chirurgie Cardiothoracique, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Bernard Albat
- Service de Chirurgie Thoracique et Cardiovasculaire, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Sylvie Parer
- Equipe Pathogènes et Environnements, UMR 5119 ECOSYM, Université Montpellier 1 Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Estelle Jumas-Bilak
- Equipe Pathogènes et Environnements, UMR 5119 ECOSYM, Université Montpellier 1 Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| |
Collapse
|
78
|
Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 2014; 9:e91853. [PMID: 24618668 PMCID: PMC3950284 DOI: 10.1371/journal.pone.0091853] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
The black tiger shrimp (Penaeus monodon) is a marine crustacean of economic importance in the world market. To ensure sustainability of the shrimp industry, production capacity and disease outbreak prevention must be improved. Understanding healthy microbial balance inside the shrimp intestine can provide an initial step toward better farming practice and probiotic applications. In this study, we employed a barcode pyrosequencing analysis of V3-4 regions of 16S rRNA genes to examine intestinal bacteria communities in wild-caught and domesticated P. monodon broodstock. Shrimp faeces were removed from intestines prior to further analysis in attempt to identify mucosal bacterial population. Five phyla, Actinobacteria, Fusobacteria, Proteobacteria, Firmicutes and Bacteroidetes, were found in all shrimp from both wild and domesticated environments. The operational taxonomic unit (OTU) was assigned at 97% sequence identity, and our pyrosequencing results identified 18 OTUs commonly found in both groups. Sequences of the shared OTUs were similar to bacteria in three phyla, namely i) Proteobacteria (Vibrio, Photobacterium, Novosphingobium, Pseudomonas, Sphingomonas and Undibacterium), ii) Firmicutes (Fusibacter), and iii) Bacteroidetes (Cloacibacterium). The shared bacterial members in P. monodon from two different habitats provide evidence that the internal environments within the host shrimp also exerts selective pressure on bacterial members. Intestinal bacterial profiles were compared using denaturing gradient gel electrophoresis (DGGE). The sequences from DGGE bands were similar to those of Vibrio and Photobacterium in all shrimp, consistent with pyrosequencing results. This work provides the first comprehensive report on bacterial populations in the intestine of adult black tiger shrimp and reveals some similar bacterial members between the intestine of wild-caught and domesticated shrimp.
Collapse
|
79
|
Meziti A, Kormas KA. Comparison of the Norway lobster (Nephrops norvegicus) gut bacterial communities using 16S rDNA clone libraries and pyrosequencing. Anaerobe 2013; 23:9-11. [PMID: 23933515 DOI: 10.1016/j.anaerobe.2013.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/26/2022]
Abstract
By comparing 16S rDNA cloning and 454 pyrosequencing in the Nephrops norvegicus midgut, several common bacterial OTUs were detected. However, when only one method is to be selected, it needs to be considered whether the revealing of rare OTUs or their accurate phylogenetic relationships is mostly preferred.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos 38446, Greece
| | | |
Collapse
|