51
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
52
|
Gandin V, Trenti A, Porchia M, Tisato F, Giorgetti M, Zanusso I, Trevisi L, Marzano C. Homoleptic phosphino copper(I) complexes with in vitro and in vivo dual cytotoxic and anti-angiogenic activity. Metallomics 2015; 7:1497-507. [PMID: 26190698 DOI: 10.1039/c5mt00163c] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic, tetrahedral Cu(i) complexes of the type [Cu(P)4]BF4 (1-3), where P are the phosphine ligands, 1,3,5-triaza-7-phosphaadamantane (PTA), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) and 2-thia-1,3,5-triaza-phosphoaadamantane-2,2-dioxide (PTA-SO2), have been prepared. Novel complexes [Cu(DAPTA)4]BF42 and [Cu(PTA-SO2)4]BF43 have been fully characterized by means of spectroscopic methods, corroborated by XAS-EXAFS analysis of 2. In vitro cell culture experiments revealed a significant antiproliferative activity for Cu(i) compounds against several human cancer cell lines derived from solid tumors with preferential cell growth inhibition towards tumour compared to non-malignant cells. In vitro monitoring of migration and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs) showed an anti-angiogenic effect of copper(i) complexes at sub-cytotoxic concentrations. In vivo studies on the antitumor efficacy and ability to inhibit angiogenesis confirmed the dual cytotoxic and anti-angiogenic properties of Cu(i) derivatives.
Collapse
Affiliation(s)
- V Gandin
- Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, 35131 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Mroczek-Sosnowska N, Sawosz E, Vadalasetty KP, Łukasiewicz M, Niemiec J, Wierzbicki M, Kutwin M, Jaworski S, Chwalibog A. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int J Mol Sci 2015; 16:4838-49. [PMID: 25741768 PMCID: PMC4394452 DOI: 10.3390/ijms16034838] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 01/01/2023] Open
Abstract
Copper is a key element affecting blood vessel growth and muscle development. However, the ions released from Cu salts are toxic. Given their specific physicochemical properties, nanoparticles of Cu (NanoCu) may have different bioactivity and affect the development of blood vessel and muscles in a different manner than Cu salts. The objective of the study was to evaluate the influence of NanoCu on embryo development and angiogenesis at the systemic and molecular level, in experiments using a chick embryo model. Fertilized chicken eggs were divided into a control group, and groups injected with a placebo, CuSO4 or NanoCu. Embryo development at the whole body level and molecular indices using an embryo chorioallantoic membrane model were measured during embryogenesis. The present study indicated for the first time that NanoCu have pro-angiogenic properties at the systemic level, to a greater degree than CuSO4 salt. The properties of NanoCu were confirmed at the molecular level, demonstrating significant effects on mRNA concentration and on mRNA gene expression of all pro-angiogenic and pro-proliferative genes measured herein.
Collapse
Affiliation(s)
- Natalia Mroczek-Sosnowska
- Division of Poultry Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Krishna Prasad Vadalasetty
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| | - Monika Łukasiewicz
- Division of Poultry Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jan Niemiec
- Division of Poultry Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
54
|
Giacomelli C, Trincavelli ML, Satriano C, Hansson Ö, La Mendola D, Rizzarelli E, Martini C. ♦Copper (II) ions modulate Angiogenin activity in human endothelial cells. Int J Biochem Cell Biol 2015; 60:185-96. [DOI: 10.1016/j.biocel.2015.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/27/2014] [Accepted: 01/07/2015] [Indexed: 12/30/2022]
|
55
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
56
|
Jong NN, McKeage MJ. Emerging roles of metal solute carriers in cancer mechanisms and treatment. Biopharm Drug Dispos 2014; 35:450-62. [DOI: 10.1002/bdd.1903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/27/2014] [Accepted: 05/23/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy N. Jong
- Department of Pharmacology and Clinical Pharmacology and Auckland Cancer Society Research Centre; University of Auckland; Auckland 1142 New Zealand
| | - Mark J. McKeage
- Department of Pharmacology and Clinical Pharmacology and Auckland Cancer Society Research Centre; University of Auckland; Auckland 1142 New Zealand
| |
Collapse
|
57
|
Mohankumar A, Renganathan B, Karunakaran C, Chidambaram S, Konerirajapuram Natarajan S. Peptides derived from the copper-binding region of lysyl oxidase exhibit antiangiogeneic properties by inhibiting enzyme activity: an in vitro study. J Pept Sci 2014; 20:837-49. [PMID: 25044713 DOI: 10.1002/psc.2675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 06/08/2014] [Accepted: 06/14/2014] [Indexed: 12/23/2022]
Abstract
Despite the rigorous research on abnormal angiogenesis, there is a persistent need for the development of new and efficient therapies against angiogenesis-related diseases. The role of Lysyl oxidase (LOX) in angiogenesis and cancer has been established in prior studies. Copper is known to induce the synthesis of LOX, and hence regulates its activity. Hypoxia-induced metastasis is dependent on LOX expression and activity. It has been believed that the inhibition of LOX would be a therapeutic strategy to inhibit angiogenesis. To explore this, we designed peptides (M peptides) from the copper-binding region of LOX and hypothesized them to modulate LOX. The peptides were characterized, and their copper-binding ability was confirmed by mass spectrometry. The M peptides were found to reduce the levels of intracellular copper when the cells were co-treated with copper. The peptides showed promising effect on aortic LOX, recombinant human LOX and LOX produced by human umbilical vein endothelial cells (HUVECs). The study also explores the effect of these peptides on copper and hypoxia-stimulated angiogenic response in HUVECs. It was found that the M peptides inhibited copper/hypoxia-induced LOX activity and inhibited stimulated HUVEC tube formation and migration. This clearly indicated the potential of M peptides in inhibiting angiogenesis, highlighting their role in the formulation of drugs for the same.
Collapse
Affiliation(s)
- Arun Mohankumar
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Medical Research Foundation, Chennai, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
58
|
Gandin V, Tisato F, Dolmella A, Pellei M, Santini C, Giorgetti M, Marzano C, Porchia M. In vitro and in vivo anticancer activity of copper(I) complexes with homoscorpionate tridentate tris(pyrazolyl)borate and auxiliary monodentate phosphine ligands. J Med Chem 2014; 57:4745-60. [PMID: 24793739 DOI: 10.1021/jm500279x] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tetrahedral copper(I) TpCuP complexes 1-15, where Tp is a N,N,N-tris(azolyl)borate and P is a tertiary phosphine, have been synthesized and characterized by means of NMR, ESI-MS, and XAS-EXAFS, and X-ray diffraction analyses on the representative complexes 1 and 10, respectively. All copper(I) complexes were evaluated for their antiproliferative activity against a panel of human cancer cell lines (including cisplatin and multidrug-resistant sublines). The two most effective complexes [HB(pz)3]Cu(PCN), 1, and [HB(pz)3]Cu(PTA), 2, showed selectivity toward tumor vs normal cells, inhibition of 26S proteasome activity associated with endoplasmic reticulum (ER) stress, and unfolded protein response (UPR) activation. No biochemical hallmarks of apoptosis were detected, and morphology studies revealed an extensive cytoplasmic vacuolization coherently with a paraptosis-like cell death mechanism. Finally, the antitumor efficacy of complex 1 was validated in the murine Lewis Lung Carcinoma (LLC) model.
Collapse
Affiliation(s)
- Valentina Gandin
- Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Quail JF, Tsai CY, Howell SB. Characterization of a monoclonal antibody capable of reliably quantifying expression of human Copper Transporter 1 (hCTR1). J Trace Elem Med Biol 2014; 28:151-159. [PMID: 24447817 PMCID: PMC3989404 DOI: 10.1016/j.jtemb.2013.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Abstract
Human copper transporter 1 (hCTR1) is the high-affinity copper influx transporter in mammalian cells that also mediates the influx of cisplatin. Loss of hCTR1 expression has been implicated in the development of resistance to this cancer chemotherapeutic agent. It has turned out to be very difficult to develop antibodies to hCTR1 and polyclonal antibodies produced by different laboratories have yielded conflicting results. We have characterized a newly-available rabbit monoclonal antibody that reacts with an epitope on the N-terminal end of hCTR1 that now permits rigorous identification and quantification of hCTR1 using Western blot analysis. Postnuclear membrane (PNM) preparations made from cells engineered to express high levels of myc-tagged hCTR1, and cells in which the expression of hCTR1 was knocked down, were used to characterize the antibody. The identity of the bands detected was confirmed by immunoprecipitation, surface biotinylation and deglycosylation of myc-tagged hCTR1. Despite the specificity expected of a monoclonal antibody, the anti-hCTR1 detected a variety of bands in whole cell lysates (WCL), which made it difficult to quantify hCTR1. This problem was overcome by isolating post-nuclear membranes and using these for further analysis. Three bands were identified using this antibody in PNM preparations that migrated at 28, 33-35 and 62-64kDa. Multiple lines of evidence presented here suggest that the 33-35 and 62-64kDa bands are hCTR1 whereas the 28kDa band is a cross-reacting protein of unknown identify. The 33-35kDa band is consistent with the expected MW of the glycosylated hCTR1 monomer. This analysis now permits rigorous identification and quantification of hCTR1.
Collapse
Affiliation(s)
- Jacob F Quail
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States
| | - Cheng-Yu Tsai
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States
| | - Stephen B Howell
- Moores UCSD Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093, United States.
| |
Collapse
|