51
|
Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dziadek J, Długońska H. Assessment of the antigenic and neuroprotective activity of the subunit anti-Toxoplasma vaccine in T. gondii experimentally infected mice. Vet Parasitol 2018; 254:82-94. [PMID: 29657017 DOI: 10.1016/j.vetpar.2018.02.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the immunogenic and immunoprotective activities and to determine the neuroprotective capacity of the tetravalent vaccine containing selected recombinant T. gondii antigens (ROP2 + ROP4 + SAG1 + MAG1) administered with safe adjuvants (MPL and alum) using male and female inbred mice. The tested antigenic combination provided partial protection against brain cyst formation, especially in males (reduction in cyst burden by 72%). The decrease in cyst burden was observed for the whole brain as well as for specified brain regions associated with natural defensive behaviors, emotion processing and integration of motor and sensory stimuli. The vaccine triggered a strong, specific immune response, regardless of sex, which was characterized by the antigen-specific in vitro synthesis of cytokines (IL-2, IFN-γ and IL-10) and in vivo production of systemic IgG1 and IgG2a immunoglobulins. Immunization prior to the parasite challenge seemed to influence T. gondii - associated behavioral and neurochemical changes, although the impact of vaccination strongly depended on sex and time post-infection. Interestingly, in the vaccinated and T. gondii infected mice there was a significant delay in the parasite-induced loss of aversion toward cat smell (cats are the definitive hosts of the parasite). The regained attraction toward feline scent in vaccinated males, observed during chronic parasite invasion, correlated with the increase in the dopamine metabolism.
Collapse
Affiliation(s)
- Justyna Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Pomorska 141/143, Poland.
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Łódź, Lodowa 106, Poland.
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Banacha 12/16, Poland.
| |
Collapse
|
52
|
Hippocampal expression of a virus-derived protein impairs memory in mice. Proc Natl Acad Sci U S A 2018; 115:1611-1616. [PMID: 29378968 DOI: 10.1073/pnas.1711977115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.
Collapse
|
53
|
Morais FB, Arantes TEFE, Muccioli C. Seroprevalence and Manifestations of Ocular Toxoplasmosis in Patients with Schizophrenia. Ocul Immunol Inflamm 2017; 27:134-137. [PMID: 29283732 DOI: 10.1080/09273948.2017.1408843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Recent studies have linked infectious agents such as Toxoplasma gondii to schizophrenia. We investigated the seroprevalence of T. gondii and conducted ophthalmologic examinations in schizophrenia patients and controls to identify lesions suggestive of ocular toxoplasmosis. METHODS During 2015 and 2016, 34 schizophrenia patients and 85 healthy controls underwent ophthalmologic examination and anti-T. gondii IgG and IgM antibody measurements by chemiluminescence. RESULTS Schizophrenia patients had a higher prevalence of anti-T. gondii IgG positivity than controls (91.18% [95% confidence interval (CI), 77.04%-96.95%] vs. 70.59% [95% CI, 60.18%-79.21%]; p = 0.017). Anti-T. gondii IgM antibodies (acute form) were not detected in any patient. One (3%) schizophrenic patient and two (2.4%) control patients presented fundoscopic scarring. CONCLUSION The seropositivity rate was significantly higher among schizophrenia patients than among controls (p = 0.017). There was no association between the presence of fundoscopic scarring and schizophrenia (p = 1.000).
Collapse
Affiliation(s)
- Fábio Barreto Morais
- a Department of Ophthalmology , Universidade Federal de São Paulo - UNIFESP , São Paulo , SP , Brazil and
| | | | - Cristina Muccioli
- a Department of Ophthalmology , Universidade Federal de São Paulo - UNIFESP , São Paulo , SP , Brazil and
| |
Collapse
|
54
|
Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerg Top Life Sci 2017; 1:563-572. [PMID: 33525856 DOI: 10.1042/etls20170108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host-parasite interaction.
Collapse
|
55
|
Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, Buchon N, Knaden M, Hansson BS. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun 2017; 8:265. [PMID: 28814724 PMCID: PMC5559524 DOI: 10.1038/s41467-017-00334-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/21/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogens and parasites can manipulate their hosts to optimize their own fitness. For instance, bacterial pathogens have been shown to affect their host plants' volatile and non-volatile metabolites, which results in increased attraction of insect vectors to the plant, and, hence, to increased pathogen dispersal. Behavioral manipulation by parasites has also been shown for mice, snails and zebrafish as well as for insects. Here we show that infection by pathogenic bacteria alters the social communication system of Drosophila melanogaster. More specifically, infected flies and their frass emit dramatically increased amounts of fly odors, including the aggregation pheromones methyl laurate, methyl myristate, and methyl palmitate, attracting healthy flies, which in turn become infected and further enhance pathogen dispersal. Thus, olfactory cues for attraction and aggregation are vulnerable to pathogenic manipulation, and we show that the alteration of social pheromones can be beneficial to the microbe while detrimental to the insect host.Behavioral manipulation of host by pathogens has been observed in vertebrates, invertebrates, and plants. Here the authors show that in Drosophila, infection with pathogenic bacteria leads to increased pheromone release, which attracts healthy flies. This process benefits the pathogen since it enhances bacterial dispersal, but is detrimental to the host.
Collapse
Affiliation(s)
- Ian W Keesey
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sarah Koerte
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Mohammed A Khallaf
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Tom Retzke
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Aurélien Guillou
- Department of Entomology, Cornell University, 5124 Comstock Hall, Ithaca, NY, 14853, USA
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Nicolas Buchon
- Department of Entomology, Cornell University, 5124 Comstock Hall, Ithaca, NY, 14853, USA
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
56
|
Sharov AA. Composite Agency: Semiotics of Modularity and Guiding Interactions. BIOSEMIOTICS 2017; 10:157-178. [PMID: 29218071 PMCID: PMC5714302 DOI: 10.1007/s12304-017-9301-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/16/2017] [Indexed: 05/08/2023]
Abstract
Principles of constructivism are used here to explore how organisms develop tools, subagents, scaffolds, signs, and adaptations. Here I discuss reasons why organisms have composite nature and include diverse subagents that interact in partially cooperating and partially conflicting ways. Such modularity is necessary for efficient and robust functionality, including mutual construction and adaptability at various time scales. Subagents interact via material and semiotic relations, some of which force or prescribe actions of partners. Other interactions, which I call "guiding", do not have immediate effects and do not disrupt the evolution and learning capacity of partner agents. However, they modify the extent of learning and evolutionary possibilities of partners via establishment of scaffolds and constraints. As a result, subagents construct reciprocal scaffolding for each other to rebalance their communal evolution and learning. As an example, I discuss guiding interactions between the body and mind of animals, where the pain system adjusts mind-based learning to the physical and physiological constraints of the body. Reciprocal effects of mind and behaviors on the development and evolution of the body includes the effects of Lamarck and Baldwin.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Laboratory of Genetics, 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
57
|
Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro 2017; 9:1759091417724915. [PMID: 28817954 PMCID: PMC5565021 DOI: 10.1177/1759091417724915] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023] Open
Abstract
Genetic and pathologic data suggest that amyloid beta (Aβ), produced by processing of the amyloid precursor protein, is a major initiator of Alzheimer's disease (AD). To gain new insights into Aβ modulation, we sought to harness the power of the coevolution between the neurotropic parasite Toxoplasma gondii and the mammalian brain. Two prior studies attributed Toxoplasma-associated protection against Aβ to increases in anti-inflammatory cytokines (TGF-β and IL-10) and infiltrating phagocytic monocytes. These studies only used one Toxoplasma strain making it difficult to determine if the noted changes were associated with Aβ protection or simply infection. To address this limitation, we infected a third human amyloid precursor protein AD mouse model (J20) with each of the genetically distinct, canonical strains of Toxoplasma (Type I, Type II, or Type III). We then evaluated the central nervous system (CNS) for Aβ deposition, immune cell responses, global cytokine environment, and parasite burden. We found that only Type II infection was protective against Aβ deposition despite both Type II and Type III strains establishing a chronic CNS infection and inflammatory response. Compared with uninfected and Type I-infected mice, both Type II- and Type III-infected mice showed increased numbers of CNS T cells and microglia and elevated pro-inflammatory cytokines, but neither group showed a >2-fold elevation of TGF-β or IL-10. These data suggest that we can now use our identification of protective (Type II) and nonprotective (Type III) Toxoplasma strains to determine what parasite and host factors are linked to decreased Aβ burden rather than simply with infection.
Collapse
Affiliation(s)
| | | | - Wes R. MacDonald
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Jenna Franco
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Anita A. Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
58
|
Neurophysiological Changes Induced by Chronic Toxoplasma gondii Infection. Pathogens 2017; 6:pathogens6020019. [PMID: 28513566 PMCID: PMC5488653 DOI: 10.3390/pathogens6020019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023] Open
Abstract
Although the parasite Toxoplasma gondii is one of the most pervasive neurotropic pathogens in the world, the host-parasite interactions during CNS infection and the consequences of neurological infection are just beginning to be unraveled. The chronic stages of infection have been considered dormant, although several studies have found correlations of infection with an array of host behavioral changes. These may facilitate parasite transmission and impact neurological diseases. During infection, in addition to the presence of the parasites within neurons, host-mediated neuroimmune and hormonal responses to infection are also present. T. gondii induces numerous changes to host neurons during infection and globally alters host neurological signaling pathways, as discussed in this review. Understanding the neurophysiological changes in the host brain is imperative to understanding the parasitic mechanisms and to delineate the effects of this single-celled parasite on health and its contribution to neurological disease.
Collapse
|
59
|
Wang ZT, Verma SK, Dubey JP, Sibley LD. The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat. PLoS Pathog 2017; 13:e1006272. [PMID: 28288194 PMCID: PMC5363998 DOI: 10.1371/journal.ppat.1006272] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The Toxoplasma gondii genome contains two aromatic amino acid hydroxylase genes, AAH1 and AAH2 encode proteins that produce L-DOPA, which can serve as a precursor of catecholamine neurotransmitters. It has been suggested that this pathway elevates host dopamine levels thus making infected rodents less fearful of their definitive Felidae hosts. However, L-DOPA is also a structural precursor of melanins, secondary quinones, and dityrosine protein crosslinks, which are produced by many species. For example, dityrosine crosslinks are abundant in the oocyst walls of Eimeria and T. gondii, although their structural role has not been demonstrated, Here, we investigated the biology of AAH knockout parasites in the sexual reproductive cycle within cats. We found that ablation of the AAH genes resulted in reduced infection in the cat, lower oocyst yields, and decreased rates of sporulation. Our findings suggest that the AAH genes play a predominant role during infection in the gut of the definitive feline host.
Collapse
Affiliation(s)
- Zi T. Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiv K. Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
60
|
From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity. Microbiol Spectr 2017; 5. [PMID: 28155809 DOI: 10.1128/microbiolspec.emf-0009-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the "human microbiome era" continues, there is an increasing awareness of our resident microbiota and its indispensable role in our fitness as holobionts. However, the host-microbe relationship is not so clearly defined for some human symbionts. Here we discuss examples of "accidental pathogens," meaning previously nonpathogenic and/or environmental microbes thought to have inadvertently experienced an evolutionary shift toward pathogenicity. For instance, symbionts such as Helicobacter pylori and JC polyomavirus have been shown to have accompanied humans since prehistoric times and are still abundant in extant populations as part of the microbiome. And yet, the relationship between a subgroup of these microbes and their human hosts seems to have changed with time, and they have recently gained notoriety as gastrointestinal and neuropathogens, respectively. On the other hand, environmental microbes such as Legionella spp. have recently experienced a shift in host range and are now a major problem in industrialized countries as a result of artificial ecosystems. Other variables involved in this accidental phenomenon could be the apparent change or reduction in the diversity of human-associated microbiota because of modern medicine and lifestyles. All of this could result in an increased prevalence of accidental pathogens in the form of emerging pathogens.
Collapse
|
61
|
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18:132-141. [PMID: 28092376 DOI: 10.1038/ni.3656] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022]
Abstract
Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Howard
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
62
|
Sharov AA. Evolutionary biosemiotics and multilevel construction networks. BIOSEMIOTICS 2016; 9:399-416. [PMID: 28163801 PMCID: PMC5283393 DOI: 10.1007/s12304-016-9269-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/08/2016] [Indexed: 05/23/2023]
Abstract
In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition. Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Laboratory of Genetics, 251 Bayview Blvd., Baltimore, MD 21224, USA
| |
Collapse
|
63
|
Severance EG, Xiao J, Jones-Brando L, Sabunciyan S, Li Y, Pletnikov M, Prandovszky E, Yolken R. Toxoplasma gondii-A Gastrointestinal Pathogen Associated with Human Brain Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:143-163. [PMID: 27793216 DOI: 10.1016/bs.irn.2016.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serious psychiatric disorders such as schizophrenia, bipolar disorder, and major depression are important causes of mortality and morbidity worldwide. While these are primarily diseases involving altered brain functioning, numerous studies have documented increased rates of gastrointestinal inflammation and dysfunction in many individuals with these disorders. Toxoplasma gondii is an apicomplexan protozoan intracellular parasite with a widespread distribution in both developed and developing countries. Toxoplasma organisms enter the ecosystem through the shedding of oocysts by Toxoplasma-infected felines. In almost all cases of postnatal human infection, Toxoplasma enters its hosts through the intestinal tract either by the ingestion of oocysts or by the consumption of meat from food animals which themselves were infected by Toxoplasma oocysts. It had previously been thought that most cases of Toxoplasma infection in immune competent children and adults were inapparent and asymptomatic. However, recent studies cast doubt on this concept as exposure to Toxoplasma has been associated with a range of acute and chronic symptoms. Of particular note has been the finding of an increased rate of a range of neurological and psychiatric disorders associated with serological evidence of Toxoplasma exposure. A role of Toxoplasma infection in brain diseases is also supported by the consistent finding of altered cognition and behavior in animal models of infections. Much of the attention relating to the role of Toxoplasma infection in neuropsychiatric disorders has focused on the brain, where Toxoplasma tissue cysts can persist for extended periods of time. However, recent discoveries relating to the role of the gastrointestinal tract in cognition and behavior suggest that Toxoplasma may also increase susceptibility to human brain diseases through immune activation, particularly involving the gastrointestinal mucosa. The study of the pathways relating to the pathobiology and immunology of Toxoplasma infection may provide insights into the pathogenesis of a range of human neuropsychiatric disorders as well as into cognitive functioning in otherwise healthy individuals.
Collapse
Affiliation(s)
- E G Severance
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - J Xiao
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - L Jones-Brando
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - S Sabunciyan
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Y Li
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - M Pletnikov
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - E Prandovszky
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - R Yolken
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
64
|
Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala. Infect Immun 2016; 84:2861-70. [PMID: 27456832 DOI: 10.1128/iai.00217-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection.
Collapse
|
65
|
Abstract
Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade.
Collapse
Affiliation(s)
- Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
66
|
Elsheikha HM, Büsselberg D, Zhu XQ. The known and missing links between Toxoplasma gondii and schizophrenia. Metab Brain Dis 2016; 31:749-59. [PMID: 27041387 DOI: 10.1007/s11011-016-9822-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/20/2016] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, has a striking predilection for infecting the Central Nervous System and has been linked to an increased incidence of a number of psychiatric diseases. Several in vitro and in vivo studies have shown that T. gondii infection can affect the structure, bioenergetics and function of brain cells, and alters several host cell processes, including dopaminergic, tryptophan-kynurenine, GABAergic, AKT1, Jak/STAT, and vasopressinergic pathways. These mechanisms underlying the neuropathology of latent toxoplasmosis seem to operate also in schizophrenia, supporting the link between the two disorders. Better understanding of the intricate parasite-neuroglial communications holds the key to unlocking the mystery of T. gondii-mediated schizophrenia and offers substantial prospects for the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, P.O. Box: 24144, Doha, Qatar
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| |
Collapse
|
67
|
Harris BN, Carr JA. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 2016; 230-231:110-42. [PMID: 27080550 DOI: 10.1016/j.ygcen.2016.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
68
|
Tan D, Soh LJT, Lim LW, Daniel TCW, Zhang X, Vyas A. Infection of male rats with Toxoplasma gondii results in enhanced delay aversion and neural changes in the nucleus accumbens core. Proc Biol Sci 2016; 282:20150042. [PMID: 25994671 DOI: 10.1098/rspb.2015.0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions.
Collapse
Affiliation(s)
- Donna Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Linda Jing Ting Soh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Lee Wei Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Tan Chia Wei Daniel
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Xiaodong Zhang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore Department of Physiology, National University of Singapore, Singapore Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
69
|
Möhle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Müller A, Lavrik IN, Buguliskis JS, Schott BH, Schlüter D, Gundelfinger ED, Montag D, Seifert U, Pahnke J, Dunay IR. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun 2016; 4:25. [PMID: 26984535 PMCID: PMC4793516 DOI: 10.1186/s40478-016-0293-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is associated with the accumulation of β-amyloid (Aβ) as senile plaques in the brain, thus leading to neurodegeneration and cognitive impairment. Plaque formation depends not merely on the amount of generated Aβ peptides, but more importantly on their effective removal. Chronic infections with neurotropic pathogens, most prominently the parasite Toxoplasma (T.) gondii, are frequent in the elderly, and it has been suggested that the resulting neuroinflammation may influence the course of AD. In the present study, we investigated how chronic T. gondii infection and resulting neuroinflammation affect plaque deposition and removal in a mouse model of AD. RESULTS Chronic infection with T. gondii was associated with reduced Aβ and plaque load in 5xFAD mice. Upon infection, myeloid-derived CCR2(hi) Ly6C(hi) monocytes, CCR2(+) Ly6C(int), and CCR2(+) Ly6C(low) mononuclear cells were recruited to the brain of mice. Compared to microglia, these recruited mononuclear cells showed highly increased phagocytic capacity of Aβ ex vivo. The F4/80(+) Ly6C(low) macrophages expressed high levels of Triggering Receptor Expressed on Myeloid cells 2 (TREM2), CD36, and Scavenger Receptor A1 (SCARA1), indicating phagocytic activity. Importantly, selective ablation of CCR2(+) Ly6C(hi) monocytes resulted in an increased amount of Aβ in infected mice. Elevated insulin-degrading enzyme (IDE), matrix metalloproteinase 9 (MMP9), as well as immunoproteasome subunits β1i/LMP2, β2i/MECL-1, and β5i/LMP7 mRNA levels in the infected brains indicated increased proteolytic Aβ degradation. Particularly, LMP7 was highly expressed by the recruited mononuclear cells in the brain, suggesting a novel mechanism of Aβ clearance. CONCLUSIONS Our results indicate that chronic Toxoplasma infection ameliorates β-amyloidosis in a murine model of AD by activation of the immune system, specifically by recruitment of Ly6C(hi) monocytes and by enhancement of phagocytosis and degradation of soluble Aβ. Our findings provide evidence for a modulatory role of inflammation-induced Aβ phagocytosis and degradation by newly recruited peripheral immune cells in the pathophysiology of AD.
Collapse
Affiliation(s)
- Luisa Möhle
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nicole Israel
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Kristin Paarmann
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Krohn
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Sabine Pietkiewicz
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | - Andreas Müller
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Inna N Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, University of Magdeburg, Magdeburg, Germany
| | | | - Björn H Schott
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Dirk Schlüter
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Medical Faculty, University of Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Seifert
- Institute for Molecular and Clinical Immunology, University of Magdeburg, Magdeburg, Germany
| | - Jens Pahnke
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck (UzL), LIED, Lübeck, Germany
- Leibniz Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Ildiko Rita Dunay
- Institute for Medical Microbiology and Hospital Hygiene, University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), University of Magdeburg, Magdeburg, Germany.
| |
Collapse
|
70
|
Is Toxoplasma Gondii Infection Related to Brain and Behavior Impairments in Humans? Evidence from a Population-Representative Birth Cohort. PLoS One 2016; 11:e0148435. [PMID: 26886853 PMCID: PMC4757034 DOI: 10.1371/journal.pone.0148435] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background Toxoplasma gondii (T. gondii) is a protozoan parasite present in around a third of the human population. Infected individuals are commonly asymptomatic, though recent reports have suggested that infection might influence aspects of the host’s behavior. In particular, Toxoplasma infection has been linked to schizophrenia, suicide attempt, differences in aspects of personality and poorer neurocognitive performance. However, these studies are often conducted in clinical samples or convenience samples. Methods/Results In a population-representative birth-cohort of individuals tested for presence of antibodies to T. gondii (N = 837) we investigated the association between infection and four facets of human behavior: neuropsychiatric disorder (schizophrenia and major depression), poor impulse control (suicidal behavior and criminality), personality, and neurocognitive performance. Suicide attempt was marginally more frequent among individuals with T. gondii seropositivity (p = .06). Seropositive individuals also performed worse on one out of 14 measures of neuropsychological function. Conclusion On the whole, there was little evidence that T. gondii was related to increased risk of psychiatric disorder, poor impulse control, personality aberrations or neurocognitive impairment.
Collapse
|
71
|
Naemat A, Elsheikha HM, Boitor RA, Notingher I. Tracing amino acid exchange during host-pathogen interaction by combined stable-isotope time-resolved Raman spectral imaging. Sci Rep 2016; 6:20811. [PMID: 26857158 PMCID: PMC4746650 DOI: 10.1038/srep20811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
This study investigates the temporal and spatial interchange of the aromatic amino acid phenylalanine (Phe) between human retinal pigment epithelial cell line (ARPE-19) and tachyzoites of the apicomplexan protozoan parasite Toxoplasma gondii (T. gondii). Stable isotope labelling by amino acids in cell culture (SILAC) is combined with Raman micro-spectroscopy to selectively monitor the incorporation of deuterium-labelled Phe into proteins in individual live tachyzoites. Our results show a very rapid uptake of l-Phe(D8) by the intracellular growing parasite. T. gondii tachyzoites are capable of extracting l-Phe(D8) from host cells as soon as it invades the cell. l-Phe(D8) from the host cell completely replaces the l-Phe within T. gondii tachyzoites 7-9 hours after infection. A quantitative model based on Raman spectra allowed an estimation of the exchange rate of Phe as 0.5-1.6 × 10(4) molecules/s. On the other hand, extracellular tachyzoites were not able to consume l-Phe(D8) after 24 hours of infection. These findings further our understanding of the amino acid trafficking between host cells and this strictly intracellular parasite. In particular, this study highlights new aspects of the metabolism of amino acid Phe operative during the interaction between T. gondii and its host cell.
Collapse
Affiliation(s)
- Abida Naemat
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Radu A Boitor
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
72
|
Abstract
UNLABELLED During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. IMPORTANCE Infections of the central nervous system can cause seizures. While inflammation in the brain has been proposed to initiate the onset of the seizures, relatively little is known about how inflammation impacts the structure and function of the neurons. Here we used a parasite called Toxoplasma gondii that infects the brain and showed that seizures arise due to a defect in signaling of GABA, which is the neurotransmitter primarily responsible for preventing the onset of seizures.
Collapse
|
73
|
Martin HL, Alsaady I, Howell G, Prandovszky E, Peers C, Robinson P, McConkey GA. Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells. Neuroscience 2015; 306:50-62. [PMID: 26297895 PMCID: PMC4577654 DOI: 10.1016/j.neuroscience.2015.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals.
Collapse
Affiliation(s)
- H L Martin
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - I Alsaady
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Howell
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - E Prandovszky
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - C Peers
- Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - P Robinson
- The Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds LS9 7FT, United Kingdom
| | - G A McConkey
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
74
|
Affiliation(s)
- Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
75
|
Al-Hussainy NH, Al-saedi AM, Al-lehaibi JH, Al-lehaibi YA, Al-Sehli YM, Afifi MA. Serological evidences link toxoplasmosis with schizophrenia and major depression disorder. J Microsc Ultrastruct 2015; 3:148-153. [PMID: 30023193 PMCID: PMC6014278 DOI: 10.1016/j.jmau.2015.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
The etiology of psychiatric disorders is largely unknown. A role of environmental insults during early neurodevelopment have been suggested. Infections are possible risk factors for psychiatric disorders especially Toxoplasma gondii, a neurotropic parasite with a lifelong residence in brain. This study has investigated a possible role of toxoplasmosis in the development of schizophrenia and major depression disorder (MDD). The influence of other covariates; age, gender and family history was also studied. A cross-sectional study on a total of 177 individuals, where anti-Toxoplasma IgG and IgM in sera of schizophrenia (n = 63) and MDD (n = 39) patients, all fulfilling DSM-5 diagnostic criteria, were compared to healthy volunteers (n = 55). Toxoplasma positivity was highest (31.75%) among schizophrenics followed by MDD (25.64%) and controls (14.55%). IgG levels were significantly higher in toxo-positive schizophrenics (230.1 ± 22.9) and MDD (220.56 ± 24.8) compared to controls (9.98 ±1.78). Three patients only, all schizophrenic, have positive IgM antibodies. Age and male gender appear to have positive associations to toxoplasmosis and psychiatric disorders while family history has no obvious additive role. This report is one of few linking Toxoplasma infection to MDD and adds to many suggesting a link between latent toxoplasmosis and schizophrenia.
Collapse
Affiliation(s)
- Nabeel H. Al-Hussainy
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad M. Al-saedi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| | - Jehad H. Al-lehaibi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| | - Yasser A. Al-lehaibi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| | - Yasser M. Al-Sehli
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Saudi Arabia
| | - Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Egypt
- Corresponding author. Tel.: +966 569722590. E-mail address: (M.A. Afifi).
| |
Collapse
|
76
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
77
|
Reassessment of the role of aromatic amino acid hydroxylases and the effect of infection by Toxoplasma gondii on host dopamine. Infect Immun 2014; 83:1039-47. [PMID: 25547791 DOI: 10.1128/iai.02465-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii infection has been described previously to cause infected mice to lose their fear of cat urine. This behavioral manipulation has been proposed to involve alterations of host dopamine pathways due to parasite-encoded aromatic amino acid hydroxylases. Here, we report successful knockout and complementation of the aromatic amino acid hydroxylase AAH2 gene, with no observable phenotype in parasite growth or differentiation in vitro and in vivo. Additionally, expression levels of the two aromatic amino acid hydroxylases were negligible both in tachyzoites and in bradyzoites. Finally, we were unable to confirm previously described effects of parasite infection on host dopamine either in vitro or in vivo, even when AAH2 was overexpressed using the BAG1 promoter. Together, these data indicate that AAH enzymes in the parasite do not cause global or regional alterations of dopamine in the host brain, although they may affect this pathway locally. Additionally, our findings suggest alternative roles for the AHH enzymes in T. gondii, since AAH1 is essential for growth in nondopaminergic cells.
Collapse
|
78
|
Abstract
Toxoplasma gondii is an obligate, intracellular parasite with a broad host range, including humans and rodents. In both humans and rodents, Toxoplasma establishes a lifelong persistent infection in the brain. While this brain infection is asymptomatic in most immunocompetent people, in the developing fetus or immunocompromised individuals such as acquired immune deficiency syndrome (AIDS) patients, this predilection for and persistence in the brain can lead to devastating neurologic disease. Thus, it is clear that the brain-Toxoplasma interaction is critical to the symptomatic disease produced by Toxoplasma, yet we have little understanding of the cellular or molecular interaction between cells of the central nervous system (CNS) and the parasite. In the mouse model of CNS toxoplasmosis it has been known for over 30 years that neurons are the cells in which the parasite persists, but little information is available about which part of the neuron is generally infected (soma, dendrite, axon) and if this cellular relationship changes between strains. In part, this lack is secondary to the difficulty of imaging and visualizing whole infected neurons from an animal. Such images would typically require serial sectioning and stitching of tissue imaged by electron microscopy or confocal microscopy after immunostaining. By combining several techniques, the method described here enables the use of thick sections (160 µm) to identify and image whole cells that contain cysts, allowing three-dimensional visualization and analysis of individual, chronically infected neurons without the need for immunostaining, electron microscopy, or serial sectioning and stitching. Using this technique, we can begin to understand the cellular relationship between the parasite and the infected neuron.
Collapse
Affiliation(s)
- Anita A Koshy
- Department of Neurology, University of Arizona; Department of Immunobiology, University of Arizona; Bio5 Institute, University of Arizona;
| | | |
Collapse
|
79
|
Chronic infection of Toxoplasma gondii downregulates miR-132 expression in multiple brain regions in a sex-dependent manner. Parasitology 2014; 142:623-32. [PMID: 25351997 DOI: 10.1017/s003118201400167x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNA-132 (miR-132) has been demonstrated to affect multiple neuronal functions and its dysregulation is linked to several neurological disorders. We previously showed that acute Toxoplasma gondii infection induces miR-132 expression both in vitro and in vivo. To investigate the impact of chronic infection on miR-132, we infected mice with T. gondii PRU strain and performed assessment 5 months later in six brain regions (cortex, hypothalamus, striatum, cerebellum, olfactory bulb and hippocampus) by qPCR. We found that while acute infection of T. gondii increases the expression of miR-132, chronic infection has the opposite effect. The effect varied amongst different regions of the brain and presented in a sex-dependent manner, with females exhibiting more susceptibility than males. MiR-132 and brain-derived neurotrophic factor (BDNF, an inducer of miR-132) were not co-varies in the brain areas of infected mice. T. gondii DNA/RNA was found in all tested brain regions and a selective tropism towards the hippocampus, based on bradyzoite density, was observed in both males and females. However, the expressions of miR-132 or BDNF were poorly reflected by the density of T. gondii in brain areas. Our findings highlight the importance of investigating the miR-132-mediated neuronal function in mice infected with T. gondii.
Collapse
|
80
|
Kannan G, Prandovszky E, Steinfeldt CB, Gressitt KL, Yang C, Yolken RH, Severance EG, Jones-Brando L, Pletnikov MV. One minute ultraviolet exposure inhibits Toxoplasma gondii tachyzoite replication and cyst conversion without diminishing host humoral-mediated immune response. Exp Parasitol 2014; 145:110-7. [PMID: 25131777 DOI: 10.1016/j.exppara.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/20/2014] [Accepted: 08/03/2014] [Indexed: 12/17/2022]
Abstract
We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 min of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection.
Collapse
Affiliation(s)
- Geetha Kannan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Curtis B Steinfeldt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Kristin L Gressitt
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - ChunXia Yang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Emily G Severance
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Mikhail V Pletnikov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287, USA
| |
Collapse
|
81
|
Abstract
Impulsivity, risk-taking behavior, and elevated stress responsivity are prominent symptoms of mania, a behavioral state common to schizophrenia and bipolar disorder. Though inflammatory processes activated within the brain are involved in the pathophysiology of both disorders, the specific mechanisms by which neuroinflammation drives manic behavior are not well understood. Serotonin cell bodies originating within the dorsal raphe (DR) play a major role in the regulation of behavioral features characteristic of mania. Therefore, we hypothesized that the link between neuroinflammation and manic behavior may be mediated by actions on serotonergic neurocircuitry. To examine this, we induced local neuroinflammation in the DR by viral delivery of Cre recombinase into interleukin (IL)-1β(XAT) transgenic male and female mice, resulting in overexpressing of the proinflammatory cytokine, IL-1β. For assertion of brain-region specificity of these outcomes, the prefrontal cortex (PFC), as a downstream target of DR serotonergic projections, was also infused. Inflammation within the DR, but not the PFC, resulted in a profound display of manic-like behavior, characterized by increased stress-induced locomotion and responsivity, and reduced risk-aversion/fearfulness. Microarray analysis of the DR revealed a dramatic increase in immune-related genes, and dysregulation of genes important in GABAergic, glutamatergic, and serotonergic neurotransmission. Behavioral and physiological changes were driven by a loss of serotonergic neurons and reduced output as measured by high-performance liquid chromatography, demonstrating inflammation-induced serotonergic hypofunction. Behavioral changes were rescued by acute selective serotonin reuptake inhibitor treatment, supporting the hypothesis that serotonin dysregulation stemming from neuroinflammation in the DR underlies manic-like behaviors.
Collapse
|
82
|
Panchin AY, Tuzhikov AI, Panchin YV. Midichlorians--the biomeme hypothesis: is there a microbial component to religious rituals? Biol Direct 2014; 9:14. [PMID: 24990702 PMCID: PMC4094439 DOI: 10.1186/1745-6150-9-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cutting edge research of human microbiome diversity has led to the development of the microbiome-gut-brain axis concept, based on the idea that gut microbes may have an impact on the behavior of their human hosts. Many examples of behavior-altering parasites are known to affect members of the animal kingdom. Some prominent examples include Ophiocordyceps unilateralis (fungi), Toxoplasma gondii (protista), Wolbachia (bacteria), Glyptapanteles sp. (arthropoda), Spinochordodes tellinii (nematomorpha) and Dicrocoelium dendriticum (flat worm). These organisms belong to a very diverse set of taxonomic groups suggesting that the phenomena of parasitic host control might be more common in nature than currently established and possibly overlooked in humans. Presentation of the hypothesis Some microorganisms would gain an evolutionary advantage by encouraging human hosts to perform certain rituals that favor microbial transmission. We hypothesize that certain aspects of religious behavior observed in the human society could be influenced by microbial host control and that the transmission of some religious rituals could be regarded as the simultaneous transmission of both ideas (memes) and parasitic organisms. Testing the hypothesis We predict that next-generation microbiome sequencing of samples obtained from gut or brain tissues of control subjects and subjects with a history of voluntary active participation in certain religious rituals that promote microbial transmission will lead to the discovery of microbes, whose presence has a consistent and positive association with religious behavior. Our hypothesis also predicts a decline of participation in religious rituals in societies with improved sanitation. Implications of the hypothesis If proven true, our hypothesis may provide insights on the origin and pervasiveness of certain religious practices and provide an alternative explanation for recently published positive associations between parasite-stress and religiosity. The discovery of novel microorganisms that affect host behavior may improve our understanding of neurobiology and neurochemistry, while the diversity of such organisms may be of interest to evolutionary biologists and religious scholars. Reviewers This article was reviewed by Prof. Dan Graur, Dr. Rob Knight and Dr. Eugene Koonin
Collapse
Affiliation(s)
- Alexander Y Panchin
- Institute for Information Transmission Problems, Moscow, Russian Federation.
| | | | | |
Collapse
|
83
|
de Bekker C, Merrow M, Hughes DP. From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr Comp Biol 2014; 54:166-76. [PMID: 24907198 DOI: 10.1093/icb/icu063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Co-evolution of parasites and their hosts has led to certain parasites adaptively manipulating the behavior of their hosts. Although the number of examples from different taxa for this phenomenon is growing, the mechanisms underlying parasite-induced manipulation of hosts' behavior are still poorly understood. The development of laboratory infections integrating various disciplines within the life sciences is an important step in that direction. Here, we advocate for such an integrative approach using the parasitic fungi of the genus Ophiocordyceps that induce an adaptive biting behavior in Camponotus ants as an example. We emphasize the use of behavioral assays under controlled laboratory conditions, the importance of temporal aspects of the behavior (possibly involving the circadian clock), and the need to approach colonizing parasites as organizations with a division of labor.
Collapse
Affiliation(s)
- Charissa de Bekker
- *Department of Entomology and Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, PA 16802, USA; Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilians Universität München, 80336 Munich, Germany
| | - Martha Merrow
- *Department of Entomology and Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, PA 16802, USA; Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilians Universität München, 80336 Munich, Germany
| | - David P Hughes
- *Department of Entomology and Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, PA 16802, USA; Institute of Medical Psychology, Faculty of Medicine, Ludwig Maximilians Universität München, 80336 Munich, Germany
| |
Collapse
|
84
|
Weinersmith K, Faulkes Z. Parasitic manipulation of hosts' phenotype, or how to make a zombie--an introduction to the symposium. Integr Comp Biol 2014; 54:93-100. [PMID: 24771088 DOI: 10.1093/icb/icu028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nearly all animals in nature are infected by at least one parasite, and many of those parasites can significantly change the phenotype of their hosts, often in ways that increase the parasite's likelihood of transmission. Hosts' phenotypic changes are multidimensional, and manipulated traits include behavior, neurotransmission, coloration, morphology, and hormone levels. The field of parasitic manipulation of hosts' phenotype has now accrued many examples of systems where parasites manipulate the phenotypes of their hosts and focus has shifted to answering three main questions. First, through what mechanisms do parasites manipulate the hosts' phenotype? Parasites often induce changes in the hosts' phenotypes that neuroscientists are unable to recreate under laboratory conditions, suggesting that parasites may have much to teach us about links between the brain, immune system, and the expression of phenotype. Second, what are the ecological implications of phenotypic manipulation? Manipulated hosts are often abundant, and changes in their phenotype may have important population, community, and ecosystem-level implications. Finally, how did parasitic manipulation of hosts' phenotype evolve? The selective pressures faced by parasites are extremely complex, often with multiple hosts that are actively resisting infection, both in physiological and evolutionary time-scales. Here, we provide an overview of how the work presented in this special issue contributes to tackling these three main questions. Studies on parasites' manipulation of their hosts' phenotype are undertaken largely by parasitologists, and a major goal of this symposium is to recruit researchers from other fields to the study of these phenomena. Our ability to answer the three questions outlined above would be greatly enhanced by participation from individuals trained in the fields of, for example, neurobiology, physiology, immunology, ecology, evolutionary biology, and invertebrate biology. Conversely, because parasites that alter their hosts' phenotype are widespread, these fields will benefit from such study.
Collapse
Affiliation(s)
- Kelly Weinersmith
- *Graduate Group in Ecology, University of California Davis, 1005 Wickson Hall, Davis, CA 95616, USA; Department of Biology, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA
| | - Zen Faulkes
- *Graduate Group in Ecology, University of California Davis, 1005 Wickson Hall, Davis, CA 95616, USA; Department of Biology, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
85
|
Abstract
The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD-INRA-SupAgro, CIRAD TA-A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France; , ,
| | | | | |
Collapse
|
86
|
|