51
|
Khairunisa BH, Susanti D, Loganathan U, Teutsch CD, Campbell BT, Fiske D, Wilkinson CA, Aylward FO, Mukhopadhyay B. Dominant remodelling of cattle rumen microbiome by Schedonorus arundinaceus (tall fescue) KY-31 carrying a fungal endophyte. Access Microbiol 2022; 4:000322. [PMID: 35355877 PMCID: PMC8941964 DOI: 10.1099/acmi.0.000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Tall fescue KY-31 is an important primary forage for beef cattle. It carries a fungal endophyte that produces ergovaline, the main cause of tall fescue toxicosis that leads to major revenue loss for livestock producers. The MaxQ, an engineered cultivar, hosts an ergovaline nonproducing strain of the fungus and consequently is nontoxic. However, it is less attractive economically. It is not known how rumen microbiome processes these two forages towards nutrient generation and ergovaline transformation. We have analysed the rumen microbiome compositions of cattle that grazed MaxQ with an intervening KY-31 grazing period using the 16S rRNA-V4 element as an identifier and found that KY-31 remodelled the microbiome substantially, encompassing both cellulolytic and saccharolytic functions. The effect was not evident at the whole microbiome levels but was identified by analysing the sessile and planktonic fractions separately. A move from MaxQ to KY-31 lowered the Firmicutes abundance in the sessile fraction and increased it in planktonic part and caused an opposite effect for Bacteroidetes, although the total abundances of these dominant rumen organisms remained unchanged. The abundances of Fibrobacter , which degrades less degradable fibres, and certain cellulolytic Firmicutes such as Pseudobutyrivibrio and Butyrivibrio 2, dropped in the sessile fraction, and these losses were apparently compensated by increased occurrences of Eubacterium and specific Ruminococcaceae and Lachnospiraceae . A return to MaxQ restored the original Firmicutes and Bacteroidetes distributions. However, several KY-31 induced changes, such as the low abundance of Fibrobacter and Butyrivibrio two remained in place, and their substitutes maintained significant presence. The rumen microbiome was distinct from previously reported faecal microbiomes. In summary, KY-31 and MaxQ were digested in the cattle rumen with distinct consortia and the KY-31-specific features were dominant. The study also identified candidate ergovaline transforming bacteria. It highlighted the importance of analysing sessile and planktonic fractions separately.
Collapse
Affiliation(s)
- Bela Haifa Khairunisa
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Present address: Elanco Animal Health, Greenfield, IN, USA
| | - Usha Loganathan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christopher D Teutsch
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: University of Kentucky Research and Education Center, Princeton, KY, USA
| | - Brian T Campbell
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
- Present address: Archer Daniels Midland Company, Decatur, IL, USA
| | - David Fiske
- Shennandoah Valley Agricultural Research and Extension Center, Virginia Tech, Raphine, VA, 24472, USA
| | - Carol A Wilkinson
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
52
|
Terler G, Poier G, Klevenhusen F, Zebeli Q. Replacing concentrates with a high-quality hay in the starter feed in dairy calves: I. Effects on nutrient intake, growth performance, and blood metabolic profile. J Dairy Sci 2022; 105:2326-2342. [PMID: 35086709 DOI: 10.3168/jds.2021-21078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Concentrate-rich starter feeds are commonly fed to dairy calves to stimulate early solid feed intake and growth performance; yet, starter feeds lacking in forage fiber may jeopardize gut development. This research primarily aimed to test a complete or partial replacement of concentrates with hay of different qualities in the starter feed on nutrient intake, growth performance, apparent total-tract digestibility (ATTD) of nutrients, and blood metabolites in dairy calves. Immediately after birth, 40 Holstein Friesian calves were randomly allocated to 1 of 4 starter diets, which differed in hay quality and concentrate inclusion [MQH = 100% medium-quality hay, 9.4 MJ of metabolizable energy (ME), 149 g of crude protein (CP), 522 g of neutral detergent fiber (NDF)/kg of dry matter (DM); HQH = 100% high-quality hay, 11.2 MJ of ME, 210 g of CP, 455 g of NDF/kg of DM; MQH+C = 30% medium-quality hay + 70% starter concentrate; HQH+C = 30% high-quality hay + 70% starter concentrate]. The concentrate consisted mainly of grains, oilseeds, and mineral supplements (13.5 MJ of ME, 193 g of CP, 204 g of NDF/kg of DM). Calves were used in the experiment from d 1 to 99 of life. During the first 4 wk, all calves were fed acidified whole milk ad libitum, and afterward they were gradually weaned from wk 5 to 12. Calves had ad libitum access to their starter diets and water throughout the experiment. Milk, water, and solid feed intake was recorded daily, live weight was measured once a week, and blood samples were collected on d 1, 3, 7, 21, 49, 77, and 91 and analyzed for selected metabolites. The ATTD was measured in wk 14 of life. Total DM intake and daily weight gain of calves were not affected by the starter feed during the first 8 wk of life. However, from wk 9 to 14, calves fed the MQH diet had lower DM, ME, and CP intake and gained less weight than calves from the other experimental groups. Feeding the HQH diet resulted in similar CP and ME intake and growth performance compared with calves receiving diets containing concentrates. Furthermore, feeding the HQH diet improved the ATTD of NDF, resulting in similar ATTD of organic matter with the HQH+C and MQH+C groups. Interestingly, calves fed the HQH+C diet showed less sorting for concentrate, compared with the MQH+C group. Concentration of blood metabolites, including glucose, lactate, insulin, nonesterified fatty acids, triglycerides, and total protein, did not differ after the first week of life. However, serum β-hydroxybutyrate was higher in calves fed the HQH diet starting from wk 11. Both groups fed the hay-only diets maintained higher cholesterol levels after weaning compared with the groups fed hay-concentrate mixtures. In conclusion, feeding high-quality hay can fully replace starter concentrates in the feeding of dairy calves without adverse effects on performance during the rearing period, while increasing forage fiber intake and utilization, which enhanced ruminal ketogenesis and cholesterogenesis around weaning. Further research is needed to evaluate long-term effects of feeding high-quality hay on health and development of dairy calves, especially in terms of the observed improvements in ruminal ketogenesis and cholesterogenesis around weaning.
Collapse
Affiliation(s)
- G Terler
- Institute for Livestock Research, Agricultural Research and Education Centre Raumberg-Gumpenstein, 8952 Irdning-Donnersbachtal, Austria.
| | - G Poier
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - F Klevenhusen
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, 10589 Berlin, Germany
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
53
|
Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:331-340. [PMID: 35024470 PMCID: PMC8718735 DOI: 10.1016/j.aninu.2021.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Subacute ruminal acidosis (SARA) represents one of the most important digestive disorders in intensive dairy farms, and dairy cows are individually different in the severity of SARA risk. The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA. In the present study, 12 cows were initially enrolled in the experiment. Based on average ruminal pH, 4 cows with the lowest ruminal pH were assigned to the susceptible group (SUS, pH = 5.76, n = 4) and 4 cows with the highest ruminal pH assigned to the tolerant group (TOL, pH = 6.10, n = 4). Rumen contents from susceptible (SUS, n = 4) and tolerant (TOL, n = 4) dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches (16S and 18S rRNA gene sequencing and metabolome). The results showed that despite being fed the same diet, SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids (VFA) and propionate than TOL cows (P < 0.05). No significant differences were observed in dry matter intake, milk yield, and other milk compositions between the SUS and TOL groups (P > 0.05). The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups (P = 0.01). More specifically, the relative abundance of starch-degrading bacteria (Prevotella spp.) was greater (P < 0.05), while the proportion of fiber-degrading bacteria (unclassified Ruminococcaceae spp., Ruminococcus spp., Papillibacter, and unclassified Family_XIII) was lower in the rumen of SUS cows compared with TOL cows (P < 0.05). Community analysis of protozoa showed that there were no significant differences in the diversity, richness, and community structure (P > 0.05). Metabolomics analysis revealed that the concentrations of organic acids (such as lactic acid), biogenic amines (such as histamine), and bacterial degradation products (such as hypoxanthine) were significantly higher in the SUS group compared to the TOL group (P < 0.05). These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity, in particular propionate. This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA. Overall, these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.
Collapse
|
54
|
Guo J, Xu L, Khalouei H, Fehr K, Senaratne V, Ghia JE, Yoon I, Khafipour E, Plaizier JC. Saccharomyces cerevisiae fermentation products reduce bacterial endotoxin concentrations and inflammation during grain-based subacute ruminal acidosis in lactating dairy cows. J Dairy Sci 2022; 105:2354-2368. [PMID: 34998547 DOI: 10.3168/jds.2021-20572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Subacute ruminal acidosis (SARA) is a metabolic disorder in dairy cows that is associated with dysbiosis of rumen and hindgut microbiomes, translocation of immunogenic compounds from the gut lumen into blood circulation, and systemic inflammatory response. In this study we hypothesized that Saccharomyces cerevisiae fermentation products (SCFP) attenuate the increases in ruminal and peripheral bacterial endotoxin concentrations and the inflammation resulting from repeated induction of SARA. Lactating Holstein dairy cows (parity 2 and 3+, n = 32) were fed diets with or without SCFP (all from Diamond V) and subjected to 2 episodes of SARA challenges. Cows received a basal total mixed ration (TMR) containing 34% neutral detergent fiber and 18.6% starch, dry matter (DM) basis. Treatments were randomly assigned to control (basal TMR and 140 g/d of ground corn with no SCFP) or 1 of 3 SCFP treatments: basal TMR and 14 g/d Original XPC (SCFPa), 19 g/d NutriTek (SCFPb-1×), or 38 g/d NutriTek (SCFPb-2×) mixed with 126, 121, or 102 g/d of ground corn, respectively. Treatments were implemented from 4 wk before until 12 wk after parturition. During wk 5 (SARA1) and wk 8 of lactation (SARA2), grain-based SARA challenges were conducted by gradually replacing 20% of DM of the basal TMR over 3 d with pellets containing 50% wheat and 50% barley. Ruminal fluid, fecal, and blood samples were collected weekly during Pre-SARA1 (wk 4, as baseline), Post-SARA1 (wk 7), and Post-SARA2 (wk 10 for blood and wk 12 for rumen and fecal parameters) stages, and twice a week during the challenges SARA1 and SARA2. Rumen papillae samples were taken only during Pre-SARA1 and Post-SARA2. We measured the concentrations of free lipopolysaccharides (LPS) in the rumen fluid and feces; free LPS and lipoteichoic acid (LTA) endotoxins in peripheral plasma; interleukin (IL)-1β and IL-6 in peripheral serum; acute-phase proteins, serum amyloid A (SAA), and LPS-binding protein in peripheral plasma; haptoglobin (Hp) in peripheral serum; and myeloperoxidase (MPO) in rumen papillae. Induction of SARA episodes increased free LPS concentrations in rumen fluid and tended to increase LTA in peripheral plasma. The SARA episodes increased concentration of circulating SAA and tended to increase that of IL-1β compared with Pre-SARA1. Induction of SARA did not affect the concentrations of circulating IL-6, Hp, and MPO. The SCFP supplementation reduced plasma concentrations of LTA and SAA and serum concentration of IL-1β compared with control. Additionally, SCFPb-2× tended to reduce ruminal LPS in second-parity cows compared with control. Overall, SCFP supplementation appeared to stabilize the rumen environment and reduce proinflammatory status, hence attenuating adverse digestive and inflammatory responses associated with SARA episodes.
Collapse
Affiliation(s)
- J Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - L Xu
- Department of Animal Science, Nanjing Agricultural University, Jiangsu, 210095, China
| | - H Khalouei
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - K Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - V Senaratne
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada
| | - J E Ghia
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; Department of Internal Medicine, Section of Gastroenterology, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - I Yoon
- Diamond V, Cedar Rapids, IA 52404
| | - E Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada.
| | - J C Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2E2, Canada.
| |
Collapse
|
55
|
The rumen liquid metatranscriptome of post-weaned dairy calves differed by pre-weaning ruminal administration of differentially-enriched, rumen-derived inocula. Anim Microbiome 2022; 4:4. [PMID: 34983694 PMCID: PMC8728904 DOI: 10.1186/s42523-021-00142-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background Targeted modification of the dairy calf ruminal microbiome has been attempted through rumen fluid inoculation to alter productive phenotypes later in life. However, sustainable effects of the early life interventions have not been well studied, particularly on the metabolically active rumen microbiota and its functions. This study investigated the sustained effects of adult-derived rumen fluid inoculations in pre-weaning dairy calves on the active ruminal microbiome of post-weaned dairy calves analyzed via RNA-sequencing. Results Two different adult-derived microbial inocula (bacterial- or protozoal-enriched rumen fluid; BE or PE, respectively) were administered in pre-weaned calves (3–6 weeks) followed by analyzing active rumen microbiome of post-weaned calves (9 weeks). The shared bacterial community at the genus level of 16S amplicon-seq and RNA-seq datasets was significantly different (P = 0.024), 21 out of 31 shared major bacterial genera differed in their relative abundance between the two analytic pipelines. No significant differences were found in any of the prokaryotic alpha- and beta-diversity measurements (P > 0.05), except the archaeota that differed for BE based on the Bray–Curtis dissimilarity matrix (P = 0.009). Even though the relative abundances of potentially transferred microbial and functional features from the inocula were minor, differentially abundant prokaryotic genera significantly correlated to various fermentation and animal measurements including butyrate proportion, body weight, and papillae length and counts. The overall microbial functions were affected quantitatively by BE and qualitatively by PE (P < 0.05), and this might be supported by the individual KEGG module and CAZymes profile differences. Exclusive networks between major active microbial (bacterial and archaeal genera) and functional features (KEGG modules) were determined which were differed by microbial inoculations. Conclusions This study demonstrated that actively transcribed microbial and functional features showed reliable connections with different fermentations and animal development responses through adult rumen fluid inoculations compared to our previous 16S amplicon sequencing results. Exclusive microbial and functional networks of the active rumen microbiome of dairy calves created by BE and PE might also be responsible for the different ruminal and animal characteristics. Further understanding of the other parts of the gastrointestinal tract (e.g., abomasum, omasum, and small intestine) using metatranscriptomics will be necessary to elucidate undetermined biological factors affected by microbial inoculations. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00142-z.
Collapse
|
56
|
Klassen L, Reintjes G, Li M, Jin L, Amundsen C, Xing X, Dridi L, Castagner B, Alexander TW, Abbott DW. Fluorescence activated cell sorting and fermentation analysis to study rumen microbiome responses to administered live microbials and yeast cell wall derived prebiotics. Front Microbiol 2022; 13:1020250. [PMID: 36938132 PMCID: PMC10022430 DOI: 10.3389/fmicb.2022.1020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/12/2022] [Indexed: 03/06/2023] Open
Abstract
Rapid dietary changes, such as switching from high-forage to high-grain diets, can modify the rumen microbiome and initiate gastrointestinal distress, such as bloating. In such cases, feed additives, including prebiotics and live microbials, can be used to mitigate these negative consequences. Bio-Mos® is a carbohydrate-based prebiotic derived from yeast cells that is reported to increase livestock performance. Here, the responses of rumen bacterial cells to Bio-Mos® were quantified, sorted by flow cytometry using fluorescently-labeled yeast mannan, and taxonomically characterized using fluorescence in situ hybridization and 16S rRNA sequencing. Further, to evaluate the effects of bovine-adapted Bacteroides thetaiotaomicron administration as a live microbial with and without Bio-Mos® supplementation, we analyzed microbial fermentation products, changes to carbohydrate profiles, and shifts in microbial composition of an in vitro rumen community. Bio-Mos® was shown to be an effective prebiotic that significantly altered microbial diversity, composition, and fermentation; while addition of B. thetaiotaomicron had no effect on community composition and resulted in fewer significant changes to microbial fermentation. When combined with Bio-Mos®, there were notable, although not significant, changes to major bacterial taxa, along with increased significant changes in fermentation end products. These data suggest a synergistic effect is elicited by combining Bio-Mos® and B. thetaiotaomicron. This protocol provides a new in vitro methodology that could be extended to evaluate prebiotics and probiotics in more complex artificial rumen systems and live animals.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Department of Pharmacology & Therapeutics, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Meiying Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Long Jin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Carolyn Amundsen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Lharbi Dridi
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Bastien Castagner
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- *Correspondence: D. Wade Abbott,
| |
Collapse
|
57
|
Characterizing the Alteration in Rumen Microbiome and Carbohydrate-Active Enzymes Profile with Forage of Muskoxen Rumen through Comparative Metatranscriptomics. Microorganisms 2021; 10:microorganisms10010071. [PMID: 35056520 PMCID: PMC8777777 DOI: 10.3390/microorganisms10010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Muskox (Ovibos moschatus), as the biggest herbivore in the High Arctic, has been enduring the austere arctic nutritional conditions and has evolved to ingest and digest scarce and high lignified forages to support the growth and reproduce, implying probably harbor a distinct microbial reservoir for the deconstruction of plant biomass. Therefore, metagenomics approach was applied to characterize the rumen microbial community and understand the alteration in rumen microbiome of muskoxen fed either triticale straw or brome hay. The difference in the structure of microbial communities including bacteria, archaea, fungi, and protozoa between the two forages was observed at the taxonomic level of genus. Further, although the highly abundant phylotypes in muskoxen rumen fed either triticale straw or brome hay were almost the same, the selective enrichment different phylotypes for fiber degrading, soluble substrates fermenting, electron and hydrogen scavenging through methanogenesis, acetogenesis, propionogenesis, and sulfur-reducing was also noticed. Specifically, triticale straw with higher content of fiber, cellulose selectively enriched more lignocellulolytic taxa and electron transferring taxa, while brome hay with higher nitrogen content selectively enriched more families and genera for degradable substrates-digesting. Intriguingly, the carbohydrate-active enzyme profile suggested an over representation and diversity of putative glycoside hydrolases (GHs) in the animals fed on triticale straw. The majority of the cellulases belonged to fiver GH families (i.e., GH5, GH6, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus, Piromyces, Neocallimastix, and Fibrobacter. Abundance of major genes coding for hemicellulose digestion was higher than cellulose mainly including GH8, GH10, GH16, GH26, and GH30, and these enzymes were produced by members of the genera Fibrobacter, Ruminococcus, and Clostridium. Oligosaccharides were mainly of the GH1, GH2, GH3, and GH31 types and were associated with the genera Prevotella and Piromyces. Our results strengthen metatranscriptomic evidence in support of the understanding of the microbial community and plant polysaccharide response to changes in the feed type and host animal. The study also establishes these specific microbial consortia procured from triticale straw group can be used further for efficient plant biomass hydrolysis.
Collapse
|
58
|
Perlman D, Martínez-Álvaro M, Moraïs S, Altshuler I, Hagen LH, Jami E, Roehe R, Pope PB, Mizrahi I. Concepts and Consequences of a Core Gut Microbiota for Animal Growth and Development. Annu Rev Anim Biosci 2021; 10:177-201. [PMID: 34941382 DOI: 10.1146/annurev-animal-013020-020412] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal microbiomes are occasionally considered as an extension of host anatomy, physiology, and even their genomic architecture. Their compositions encompass variable and constant portions when examined across multiple hosts. The latter, termed the core microbiome, is viewed as more accommodated to its host environment and suggested to benefit host fitness. Nevertheless, discrepancies in its definitions, characteristics, and importance to its hosts exist across studies. We survey studies that characterize the core microbiome, detail its current definitions and available methods to identify it, and emphasize the crucial need to upgrade and standardize the methodologies among studies. We highlight ruminants as a case study and discuss the link between the core microbiome and host physiology and genetics, as well as potential factors that shape it. We conclude with main directives of action to better understand the host-core microbiome axis and acquire the necessary insights into its controlled modulation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daphne Perlman
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Marina Martínez-Álvaro
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| | - Ianina Altshuler
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway;
| | - Live H Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Rainer Roehe
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC (Scotland's Rural College), Edinburgh, Scotland, United Kingdom
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway; .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Be'er-Sheva, Israel;
| |
Collapse
|
59
|
The Impact of Pre-Slaughter Fasting on the Ruminal Microbial Population of Commercial Angus Steers. Microorganisms 2021; 9:microorganisms9122625. [PMID: 34946226 PMCID: PMC8709334 DOI: 10.3390/microorganisms9122625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Diet impacts the composition of the ruminal microbiota; however, prior to slaughter, cattle are fasted, which may change the ruminal microbial ecosystem structure and lead to dysbiosis. The objective of this study was to determine changes occurring in the rumen after pre-slaughter fasting, which can allow harmful pathogens an opportunity to establish in the rumen. Ruminal samples were collected before and after pre-slaughter fasting from seventeen commercial Angus steers. DNA extraction and 16S rRNA gene sequencing were performed to determine the ruminal microbiota, as well as volatile fatty acid (VFA) concentrations. Microbial richness (Chao 1 index), evenness, and Shannon diversity index all increased after fasting (p ≤ 0.040). During fasting, the two predominant families Prevotellaceae and Ruminococcaceae decreased (p ≤ 0.029), whereas the remaining minor families increased (p < 0.001). Fasting increased Blautia and Methanosphaera (p ≤ 0.003), while Campylobacter and Treponema tended to increase (p ≤ 0.086). Butyrate concentration tended to decrease (p = 0.068) after fasting. The present findings support that fasting causes ruminal nutrient depletion resulting in dysbiosis, allowing opportunistic pathogens to exploit the void in the ruminal ecological niche.
Collapse
|
60
|
Rabee AE, Kewan KZ, Sabra EA, El Shaer HM, Lamara M. Rumen bacterial community profile and fermentation in Barki sheep fed olive cake and date palm byproducts. PeerJ 2021; 9:e12447. [PMID: 34820187 PMCID: PMC8605757 DOI: 10.7717/peerj.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Rumen bacteria make the greatest contribution to rumen fermentation that enables the host animal to utilize the ingested feeds. Agro-industrial byproducts (AIP) such as olive cake (OC) and date palm byproducts (discarded dates (DD), and date palm fronds (DPF)) represent a practical solution to the deficiency in common feed resources. In this study, thirty-six growing Barki lambs were divided into three groups to evaluate the effect of untraditional diets including the AIP on the growth performance. Subsequently, nine adult Barki rams were used to evaluate the effect of experimental diets on rumen fermentation and rumen bacteria. Three rations were used: common concentrate mixture (S1), common untraditional concentrate mixture including OC and DD (S2), and the same concentrate mixture in S2 supplemented with roughage as DPF enriched with 15% molasses (S3). The animals in S2 group showed higher dry matter intake (DMI) and lower relative growth rate (RGR) as compared to the animals in S1 group. However, the animals in S3 group were the lowest in DMI but achieved RGR by about 87.6% of that in the S1 group. Rumen pH, acetic and butyric acids were more prevalent in animals of S3 group and rumen ammonia (NH3-N), total volatile fatty acids (TVFA), propionic acid were higher in S1. Rumen enzymes activities were higher in S1 group followed by S3 and S2. The bacterial population was more prevalent in S1 and microbial diversity was higher in the S3 group. Principal coordinate analysis revealed clusters associated with diet type and the relative abundance of bacteria varied between sheep groups. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes; whereas, Prevotella, Ruminococcus, and Butyrivibrio were the dominant genera. Results indicate that diet S3 supplemented by OC, DD, and DPF could replace the conventional feed mixture.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Khalid Z Kewan
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Ebrahim A Sabra
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadate City, Menoufia, Egypt
| | - Hassan M El Shaer
- Animal and Poultry Nutrition Department, Desert Research Center, Matariya, Cairo, Egypt
| | - Mebarek Lamara
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Canada
| |
Collapse
|
61
|
Zhao FF, Zhang XZ, Zhang Y, Elmhadi M, Qin YY, Sun H, Zhang H, Wang MZ, Wang HR. Tannic Acid-Steeped Corn Grain Modulates in vitro Ruminal Fermentation Pattern and Microbial Metabolic Pathways. Front Vet Sci 2021; 8:698108. [PMID: 34778425 PMCID: PMC8581138 DOI: 10.3389/fvets.2021.698108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effects of tannic acid (TA)-treated corn on changes in ruminal fermentation characteristics and the composition of the ruminal bacterial community in vitro. Ruminal fluid was obtained from three rumen-fistulated goats fed a 60:40 (forage/concentrate) diet. The batch cultures consisted of 25 ml of strained rumen fluid in 25 ml of an anaerobic buffer containing 0.56 g of ground corn, 0.24 g of soybean meal, 0.10 g of alfalfa, and 0.10 g of oat grass. Ground corn (2 mm) was steeped in an equal quantity (i.e., in a ratio of 1:1, w/v) of water alone (Con), 15 (TA15), 25 (TA25), and 35 g/l (TA35) TA solution for 12 h. After incubation for 24 h, TA-treated corn linearly increased (P <0.05) ruminal pH and the molar proportion of acetate, but linearly reduced (P <0.05) total volatile fatty acids and the molar proportion of butyrate compared with the Con treatment. Illumina MiSeq sequencing was used to investigate the profile changes of the ruminal microbes. A principal coordinates analysis plot based on weighted UniFrac values revealed that the structure of the ruminal bacterial communities in the control group was different from that of the TA-treated corn groups. The results of changes in the rumen bacterial communities showed that TA-treated corn linearly enriched (P <0.05) Rikenellaceae_RC9_gut_group, but linearly reduced (P <0.05) Ruminococcaceae_NK4A214_group, Ruminococcus_2, and unclassified_o__Clostridiales. Functional prediction of ruminal microbiota revealed that the TA-treated corn linearly decreased ruminal microbiota function of utilizing starch through pyruvate metabolism. In conclusion, TA-treated corn can modulate the rumen fermentation characteristics, microbial composition, and metabolic pathways, which may be potentially useful for preventing the occurrence of ruminal acidosis.
Collapse
Affiliation(s)
- F F Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - X Z Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Y Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mawda Elmhadi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Y Y Qin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - H Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Coastal Area, Institute of Agricultural Sciences, Yancheng, China
| | - H Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - M Z Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - H R Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
62
|
Astragalus membranaceus Alters Rumen Bacteria to Enhance Fiber Digestion, Improves Antioxidant Capacity and Immunity Indices of Small Intestinal Mucosa, and Enhances Liver Metabolites for Energy Synthesis in Tibetan Sheep. Animals (Basel) 2021; 11:ani11113236. [PMID: 34827968 PMCID: PMC8614378 DOI: 10.3390/ani11113236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Astragalus membranaceus is a widely used traditional Chinese herb that has been used by humans for hundreds of years. The Qinghai-Tibetan plateau (QTP) is regarded as one of the remaining ‘Green’ places in the world. With the fast-developing intensive livestock production, sustainable and environmentally-friendly practices are required urgently on the QTP. In the current study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT) to reduce the use of chemical veterinary drugs and antibiotics, and to examine the effect on rumen bacteria, the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue, and the liver metabolome responses. Abstract Natural, non-toxic feed additives can potentially replace chemical medications and antibiotics that are offered sheep to improve performance. In the present study, Tibetan sheep were supplemented with the root of Astragalus membranaceus (AMT), a traditional herb used widely in China. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9-month-old) were assigned randomly to one of four levels of supplementary AMT: 0 g/kg (A0), 20 g/kg (A20), 50 g/kg (A50) and 80 g/kg (A80) dry matter intake (DMI). The A50 and A80 groups increased the diversity of rumen bacteria on d 14 and the relative abundances of fiber decomposing bacteria. Supplementary AMT upregulated the metabolism of vitamins, nucleotides, amino acids and glycan, and downregulated the metabolism of lipids and carbohydrates. In addition, supplementary AMT enriched rumen bacteria for drug resistance, and reduced bacteria incurring cell motility. In general, AMT supplementation increased the concentrations of catalase (CAT), superoxide dismutase (SOD) total antioxidant capacity (T-AOC) and secretory immunoglobulin A (sIgA) in the small intestinal mucosa and CAT and SOD in meat tissue. The liver tissue metabolome response showed that AMT in the A80 lambs compared to the A0 lambs upregulated the metabolites for energy synthesis. It was concluded that supplementary A. membranaceus increased the relative abundances of fiber decomposing bacteria and improved the antioxidant capacities and immunity indices of small intestinal mucosa and meat tissue in Tibetan sheep.
Collapse
|
63
|
Hu C, Ding L, Jiang C, Ma C, Liu B, Li D, Degen AA. Effects of Management, Dietary Intake, and Genotype on Rumen Morphology, Fermentation, and Microbiota, and on Meat Quality in Yaks and Cattle. Front Nutr 2021; 8:755255. [PMID: 34859030 PMCID: PMC8632495 DOI: 10.3389/fnut.2021.755255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Traditionally, yaks graze only natural grassland, even in harsh winters. Meat from grazing yaks is considered very healthy; however, feedlot fattening, which includes concentrate, has been introduced. We questioned whether this change in management and diet would have an impact on the rumen and meat quality of yaks. This study examined the morphology, fermentation, and microbiota of the rumen and the quality of meat of three groups of bovines: (1) grazing yaks (GYs, 4-year olds), without dietary supplements; (2) yaks (FYs, 2.5-year olds) feedlot-fattened for 5 months after grazing natural pasture; and (3) feedlot-fattened cattle (FC, Simmental, 2-year olds). This design allowed us to determine the role of diet (with and without concentrate) and genotype (yaks vs. cattle) on variables measured. Ruminal papillae surface area was greater in the FYs than in the GYs (P = 0.02), and ruminal microbial diversity was greater but richness was lesser in the GYs than in the FC and FYs. Concentrations of ruminal volatile fatty acids were greater in the yaks than in the cattle. In addition, both yak groups had higher protein and lower fat contents in meat than the FC. Meat of GY had a lower n6:n3 ratio than FY and FC, and was the only group with a ratio below r, which is recommended for healthy food. Essential amino acids (EAA), as a proportion of total AA and of non-essential AA of yak meat, met WHO criteria for healthy food; whereas FC did not.
Collapse
Affiliation(s)
- Changsheng Hu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Luming Ding
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai University, Xining, China
| | - Cuixia Jiang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chengfang Ma
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Botao Liu
- Gansu Devotion Biotechnology Co., Ltd., Zhangye, China
| | - Donglin Li
- Qinghai Qilian Yida Meat Co., Ltd., Qinghai, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
64
|
Cristobal-Carballo O, McCoard SA, Cookson AL, Laven RA, Ganesh S, Lewis SJ, Muetzel S. Effect of Divergent Feeding Regimes During Early Life on the Rumen Microbiota in Calves. Front Microbiol 2021; 12:711040. [PMID: 34745024 PMCID: PMC8565576 DOI: 10.3389/fmicb.2021.711040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.
Collapse
Affiliation(s)
- Omar Cristobal-Carballo
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Sue A McCoard
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity Team, AgResearch Grasslands, Palmerston North, New Zealand.,School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Richard A Laven
- School of Veterinary Medicine, Massey University, Palmerston North, New Zealand
| | - Siva Ganesh
- Biostatistics Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Sarah J Lewis
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| | - Stefan Muetzel
- Ruminant Nutrition and Physiology Team, AgResearch Grasslands, Palmerston North, New Zealand
| |
Collapse
|
65
|
Gleason CB, Settlage RE, Beckett LM, White RR. Characterizing Effects of Ingredients Differing in Ruminally Degradable Protein and Fiber Supplies on the Ovine Rumen Microbiome Using Next-Generation Sequencing. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.745848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ratio of concentrate to forage within diets is known to alter rumen microbial profiles, but comparatively less information is available on the effect of differing sources of individual nutrients on the microbiome. The objective of this study was to investigate rumen microbial responses to diets composed of protein and fiber sources expected to vary in nutrient degradability. The responses of interest included relative abundances of bacterial taxa as well as estimations of community richness and diversity. Ten ruminally cannulated wethers (Suffolk, Dorset, or Suffolk × Dorset) received four diet treatments consisting of either beet pulp or timothy hay and soybean meal (SBM) or heat-treated soybean meal (HSBM) in a partially replicated 4 × 4 Latin square experiment for 21 days. Timothy hay and beet pulp were expected to provide differing rumen degradabilities of neutral detergent fiber (NDF) while the soybean meals were expected to provide differing rumen degradabilities of crude protein (CP). Solid and liquid samples of rumen contents were collected for microbial DNA isolation and Next-Generation sequencing. Numerous rumen bacterial population shifts were observed due to change in fiber source, with increased abundances (P < 0.05) of fibrolytic populations associated with timothy hay diets compared with beet pulp diets. Conversely, populations of the pectin-degrading genera, Treponema and Lachnospira, increased on the beet pulp treatment (P = 0.015 and P = 0.0049, respectively). Limited impact on bacterial taxa was observed between diets differing in protein source. The Paraprevotellaceae genus YRC22 was observed to increase in abundance on HSBM diets (P = 0.023) and the phylum Spirochaetes tended to be more abundant on SBM than HSBM diets (P = 0.071). Beet pulp decreased rumen bacterial diversity (P = 0.0027) and tended to decrease bacterial species richness (P = 0.051) compared to timothy hay. Our results serve to further underscore the sensitivity of rumen microbes to changes in their preferred substrates, particularly of those associated with fiber degradation.
Collapse
|
66
|
Miller AK, Westlake CS, Cross KL, Leigh BA, Bordenstein SR. The microbiome impacts host hybridization and speciation. PLoS Biol 2021; 19:e3001417. [PMID: 34699520 PMCID: PMC8547693 DOI: 10.1371/journal.pbio.3001417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbial symbiosis and speciation profoundly shape the composition of life's biodiversity. Despite the enormous contributions of these two fields to the foundations of modern biology, there is a vast and exciting frontier ahead for research, literature, and conferences to address the neglected prospects of merging their study. Here, we survey and synthesize exemplar cases of how endosymbionts and microbial communities affect animal hybridization and vice versa. We conclude that though the number of case studies remain nascent, the wide-ranging types of animals, microbes, and isolation barriers impacted by hybridization will likely prove general and a major new phase of study that includes the microbiome as part of the functional whole contributing to reproductive isolation. Though microorganisms were proposed to impact animal speciation a century ago, the weight of the evidence supporting this view has now reached a tipping point.
Collapse
Affiliation(s)
- Asia K. Miller
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Camille S. Westlake
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Karissa L. Cross
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology & Immunology, Nashville, Tennessee, United States of America
| |
Collapse
|
67
|
Rabee AE, Forster R, Sabra EA. Lignocelluloytic activities and composition of bacterial community in the camel rumen. AIMS Microbiol 2021; 7:354-367. [PMID: 34708177 PMCID: PMC8500796 DOI: 10.3934/microbiol.2021022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The camel is well-adapted to utilize the poor-quality forages in the harsh desert conditions as the camel rumen sustains fibrolytic microorganisms, mainly bacteria that are capable of breaking down the lignocellulosic biomass efficiently. Exploring the composition of the bacterial community in the rumen of the camel and quantifying their cellulolytic and xylanolytic activities could lead to understanding and improving fiber fermentation and discovering novel sources of cellulases and xylanases. In this study, Illumina MiSeq sequencing of the V4 region on 16S rRNA was applied to identify the bacterial and archaeal communities in the rumen of three camels fed wheat straw and broom corn. Furthermore, rumen samples were inoculated into bacterial media enriched with xylan and different cellulose sources, including filter paper (FP), wheat straw (WS), and alfalfa hay (AH) to assess the ability of rumen bacteria to produce endo-cellulase and endo-xylanase at different fermentation intervals. The results revealed that the phylum Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community. Also, most of the bacterial community has fibrolytic potential and the dominant bacterial genera were Prevotella, RC9_gut_group, Butyrivibrio, Ruminococcus, Fibrobacteres, and Treponema. The highest xylanase production (884.8 mU/mL) was observed at 7 days. The highest cellulase production (1049.5 mU/mL) was observed when rumen samples were incubated with Alfalfa hay for 7 days.
Collapse
Affiliation(s)
- Alaa Emara Rabee
- Animal and Poultry Nutrition Department, Desert Research Center, Cairo, Egypt
| | - Robert Forster
- Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, AB, Canada
| | - Ebrahim A Sabra
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
68
|
Cholewińska P, Nazar P, Junkuszew A, Smoliński J, Czyż K, Wyrostek A. The Level of Selected Bacterial Phyla on the Skin Surface of Small Ruminants According to the Breed and Species. Animals (Basel) 2021; 11:ani11092734. [PMID: 34573700 PMCID: PMC8472796 DOI: 10.3390/ani11092734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The skin is one of the largest surface organs for animals. The microbiome of the skin plays an important role in protecting the host. The study showed that the environment in which the animals lived and their size could affect the bacterial composition of their skin. Additionally, individual differences between the bacterial composition of the skin were observed, which may indicate the existence of a factor called “individual influence”. Abstract For decades, skin has been assigned the main role of an insulator of the inside of the body from the external environment, but it also plays a role in maintaining homeostasis. In this study, the level of selected bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) was assessed in three sheep breeds (Świniarka sheep, Uhruska sheep and BCP line (synthetic sheep breed; n = 6) and in two breeds of goats (Boer, Saenian; n = 6) living in the same environment and fed on the same feed, where the aim was to identify differences in terms of race, species and individual differences. Significant differences were found in Firmicute, Actinobacteria and Proteobacteria phyla (p ≤ 0.05). Statistically significant and positive correlations were demonstrated between Actinobacteria and Proteobacteria, Proteobacteria and Bacteroidetes or Firmicutes and Bacteroidetes. The obtained results suggest that the species and racial differences in the level of the studied bacterial phyla may also result from the physicochemical differences of the skin surface, as they could exacerbate the variations in humidity, temperature, composition of antimicrobial peptides (AMP) and lipid content. In addition, individual differences were observed, which indicate a similar effect of an individual on the microbiological composition of its organism.
Collapse
Affiliation(s)
- Paulina Cholewińska
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.S.); (K.C.); (A.W.)
- Correspondence:
| | - Paulina Nazar
- Department of Animal Breeding and Agricultural Advisory, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.N.); (A.J.)
| | - Andrzej Junkuszew
- Department of Animal Breeding and Agricultural Advisory, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.N.); (A.J.)
| | - Jakub Smoliński
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.S.); (K.C.); (A.W.)
| | - Katarzyna Czyż
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.S.); (K.C.); (A.W.)
| | - Anna Wyrostek
- Institute of Animal Breeding, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (J.S.); (K.C.); (A.W.)
| |
Collapse
|
69
|
Mizrahi I, Wallace RJ, Moraïs S. The rumen microbiome: balancing food security and environmental impacts. Nat Rev Microbiol 2021; 19:553-566. [PMID: 33981031 DOI: 10.1038/s41579-021-00543-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Ruminants produce edible products and contribute to food security. They house a complex rumen microbial community that enables the host to digest their plant feed through microbial-mediated fermentation. However, the rumen microbiome is also responsible for the production of one of the most potent greenhouse gases, methane, and contributes about 18% of its total anthropogenic emissions. Conventional methods to lower methane production by ruminants have proved successful, but to a limited and often temporary extent. An increased understanding of the host-microbiome interactions has led to the development of new mitigation strategies. In this Review we describe the composition, ecology and metabolism of the rumen microbiome, and the impact on host physiology and the environment. We also discuss the most pertinent methane mitigation strategies that emerged to balance food security and environmental impacts.
Collapse
Affiliation(s)
- Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel.
| | - R John Wallace
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| |
Collapse
|
70
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
71
|
Zhang X, Xu T, Wang X, Geng Y, Zhao N, Hu L, Liu H, Kang S, Xu S. Effect of Dietary Protein Levels on Dynamic Changes and Interactions of Ruminal Microbiota and Metabolites in Yaks on the Qinghai-Tibetan Plateau. Front Microbiol 2021; 12:684340. [PMID: 34434174 PMCID: PMC8381366 DOI: 10.3389/fmicb.2021.684340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
To improve performance and optimize rumen function in yaks (Bos grunniens), further knowledge on the appropriate dietary protein levels for ruminal microbiota and the metabolite profiles of yaks in feedlot feeding is necessary. Current understanding of dietary protein requirements, ruminal microbiota, and metabolites is limited. In this study, yaks were fed a low-protein diet (L; 9.64%), middle low-protein diet (ML; 11.25%), middle high-protein diet (MH; 12.48%), or a high-protein diet (H; 13.87%), and the effects of those diets on changes and interactions in ruminal microbiota and metabolites were investigated. Twenty-four female yaks were selected, and the effects on ruminal microbiota and metabolites were investigated using 16s rRNA gene sequencing and gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS). Diets containing different protein levels changed the composition of the rumen bacterial community, the H group significantly reduced the diversity of ruminal microbiota (p < 0.05), and the number of shared amplicon sequence variants (ASVs) between the H group and the other three groups was lower, suggesting that the ruminal microbiota community fluctuated more with a high-protein diet. In rumen, Bacteroidetes, Firmicutes, and Proteobacteria were the most abundant bacteria at the phylum level, and Bacteroidetes was significantly less abundant in the MH group than in the L and ML groups (p < 0.05). Prevotella_1, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R-7_group had the highest abundance at the genus level. Prevotellaceae was enriched in the low-protein groups, whereas Bacteroidales_BS11_gut_group was enriched in the high-protein groups. Rumen metabolite concentrations and metabolic patterns were altered by dietary protein levels: organic acid metabolites, antioxidant-related metabolites, and some plant-derived metabolites showed variation between the groups. Enrichment analysis revealed that significant changes were concentrated in six pathways, including the citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolism, and butanoate metabolism. Network analysis showed promotion or restraint relationships between different rumen microbiota and metabolites. Overall, the rumen function was higher in the MH group. This study provides a reference for appropriate dietary protein levels and improves understanding of rumen microbes and metabolites.
Collapse
Affiliation(s)
- XiaoLing Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - TianWei Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - XunGang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - YuanYue Geng
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - LinYong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - HongJin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ShengPing Kang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - ShiXiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
72
|
Zhou X, Zhang N, Zhang J, Gu Q, Dong C, Lin B, Zou C. Microbiome and fermentation parameters in the rumen of dairy buffalo in response to ingestion associated with a diet supplemented with cysteamine and hemp seed oil. J Anim Physiol Anim Nutr (Berl) 2021; 106:471-484. [PMID: 34397125 DOI: 10.1111/jpn.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/15/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
In this study, high-throughput gene amplicon sequencing was used to investigate the effects of 6 treatments [2 levels of hemp seed oil (HSO) × 3 levels of cysteamine (CS)] on bacterial and fungal communities in the rumen of 30 crossbred dairy buffalo. Our results indicate that the total numbers of bacterial and fungal taxa were unaffected regardless of diet (p > 0.05), while the total number of archaea was affected (p < 0.05) by the interaction of HSO and CS. Compared with control treatment, microbial composition of archaea was strongly influenced by CS (p < 0.05), while the addition of HSO, CS or both had a weak effect on fungus and bacteria. In addition, there was a significant increase in the lactic acid content with the addition of HSO, and the addition of CS to the feed caused a significant decrease in the ratio of acetic acid to propionic acid, compared with control treatment (p < 0.05). Correlation analysis showed that Acetobacter was significantly positively correlated with the genera Pichia, Klebsiella and Acinetobacter. pH was found to have a significant effect on the methanogens, and total volatile fatty acids (VFA) had a strong correlation with Butyrivibrio. The strong influence of CS on some methanogens shows that it may have potential in the development of methane reduction interventions.
Collapse
Affiliation(s)
- Xiaokang Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Nanji Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qichao Gu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Canjuan Dong
- Zhejiang University Sunny Technology Co., LTD, Hangzhou, China
| | - Bo Lin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Caixia Zou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
73
|
The Impact of Feed Supplementations on Asian Buffaloes: A Review. Animals (Basel) 2021; 11:ani11072033. [PMID: 34359160 PMCID: PMC8300117 DOI: 10.3390/ani11072033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Apart from feeding with forages, dietary supplementation with concentrate and rumen bypass fat is one of the feeding strategies to enhance nutrient availability and improve buffalo performance and productivity. This review paper thoroughly discussed the utilization of concentrate and bypass fat as dietary supplementation in buffalo feeding, and discussed the effects on performance, fermentation characteristics and general health of buffaloes to give better insight about the potential and challenges of dietary supplementation in buffalo diet. Based on the literature studies, it can be summarized that supplementation of concentrate and bypass fat in buffaloes may overcome the nutritional problems and improve the growth performance, health status, rumen environment and carcass traits. Abstract With the increase in the global buffalo herd, the use of supplementation in the ruminant feeding has become an important area for many researchers who are looking for an isocaloric and isonitrogenous diet to improve production parameters. In order to improve the performance of the Asian water buffalo, the optimal balance of all nutrients, including energy and protein, are important as macronutrients. Dietary supplementation is one of the alternatives to enhance the essential nutrient content in the buffalo diet and to improve the rumen metabolism of the animal. Researchers have found that supplementation of concentrate and rumen bypass fat could change growth performance and carcass traits without causing any adverse effects on the buffalo growth. Some studies showed that dry matter intake, body condition score and some blood parameters and hormones related to growth responded positively to concentrate and rumen bypass fat supplementation. In addition, changes of feeding management by adding the supplement to the ruminant basal diet helped to increase the profit of the local farmers due to the increased performance and productivity of the animals. Nevertheless, the effects of dietary supplementation on the performance of ruminants are inconsistent. Thus, its long-term effects on the health and productivity of buffaloes still need to be further investigated.
Collapse
|
74
|
Welch CB, Lourenco JM, Krause TR, Seidel DS, Fluharty FL, Pringle TD, Callaway TR. Evaluation of the Fecal Bacterial Communities of Angus Steers With Divergent Feed Efficiencies Across the Lifespan From Weaning to Slaughter. Front Vet Sci 2021; 8:597405. [PMID: 34268344 PMCID: PMC8275654 DOI: 10.3389/fvets.2021.597405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
Numerous studies have examined the link between the presence of specific gastrointestinal bacteria and the feed efficiency of cattle. However, cattle undergo dietary changes during their productive life which can cause fluctuations in their microbial consortium. The objective of the present study was to assess changes in the fecal microbiome of beef steers genetically selected to be divergent in feedlot feed efficiency, to determine whether differences in their fecal microbiomes could be detected as early as weaning, and continued throughout the rearing process regardless of dietary changes. Fecal samples were collected at weaning, yearling age, and slaughter for a group of 63 steers. Based on their feedlot-finishing performance, the steers were selected and divided into two groups according to their residual feed intake (RFI): efficient steers (low-RFI; n = 7) and inefficient steers (high-RFI; n = 8). To ascertain the fecal microbial consortium and volatile fatty acid (VFA) content, 16S rRNA gene sequencing and VFA analysis were performed. Overall, bacterial evenness and diversity were greater at weaning compared to yearling and slaughter for both efficiency groups (P < 0.001). Feedlot RFI linearly decreased as both Shannon diversity and Ruminococcaceae abundance increased (R2 = 65.6 and 60.7%, respectively). Abundances of Ruminococcaceae, Rikenellaceae, and Christensenellaceae were higher at weaning vs. yearling age and slaughter (P < 0.001); moreover, these families were consistently more abundant in the feces of the low-RFI steers (for most of the timepoints evaluated; P ≤ 0.05), compared to the high-RFI steers. Conversely, abundances of Bifidobacteriaceae were numerically higher in the feces of the high-RFI steers throughout their lifespan. Total VFA concentrations increased at slaughter compared to weaning and yearling for both efficiency groups (P < 0.001). The acetate:propionate ratio decreased linearly (P < 0.001) throughout the life of the steers regardless of their efficiency, reflective of dietary changes. Our results indicate that despite fluctuations due to animal age and dietary changes, specific bacterial families may be correlated with feed efficiency of steers. Furthermore, such differences may be identifiable at earlier stages of the production cycle, potentially as early as weaning.
Collapse
Affiliation(s)
- Christina B Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Taylor R Krause
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Darren S Seidel
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Francis L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - T Dean Pringle
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
75
|
Huang C, Ge F, Yao X, Guo X, Bao P, Ma X, Wu X, Chu M, Yan P, Liang C. Microbiome and Metabolomics Reveal the Effects of Different Feeding Systems on the Growth and Ruminal Development of Yaks. Front Microbiol 2021; 12:682989. [PMID: 34248900 PMCID: PMC8265505 DOI: 10.3389/fmicb.2021.682989] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The change in the feeding system can greatly improve the growth performance of the yak (Bos grunniens), an important livestock species in the plateau region. Here, we comprehensively compared the effects of different feeding systems on the growth performance and ruminal development of yaks, and investigated the effects of ruminal microorganisms and metabolites using the 16S rRNA gene sequencing and liquid chromatograph–mass spectrometer (LC-MS) technologies. We found that compared to traditional grazing feeding, house feeding significantly improved the growth performance (such as average daily gain and net meat weight) and rumen development of the yaks. At the genus level, the abundance of Rikenellaceae RC9 Gut group, Christensenellaceae R-7 group, Lachnospiraceae NK3A20 group, Ruminococcaceae UCG-014, and Prevotellaceae UCG-003 showed significant differences and was closely related to rumen development in the two distinct feeding systems. Also, metabolomics revealed that the change in the feeding system significantly affected the concentration and metabolic pathways of the related rumen metabolites. The metabolites with significant differences were significantly enriched in purine metabolism (xanthine, adenine, inosine, etc.), tyrosine metabolism (L-tyrosine, dopaquinone, etc.), phenylalanine metabolism (dihydro-3-caumaric acid, hippuric acid, etc.), and cAMP signaling pathway [acetylcholine, (-)-epinephrine, etc.]. This study scientifically support the house fattening feeding system for yaks. Also, our results provide new insights into the composition and function of microbial communities that promote ruminal development and in general growth of the yaks.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xixi Yao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
76
|
A Grain-Based SARA Challenge Affects the Composition of Epimural and Mucosa-Associated Bacterial Communities throughout the Digestive Tract of Dairy Cows. Animals (Basel) 2021; 11:ani11061658. [PMID: 34199660 PMCID: PMC8227306 DOI: 10.3390/ani11061658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
The effects of a subacute ruminal acidosis (SARA) challenge on the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract were determined in eight non-lactating Holstein cows. Treatments included feeding a control diet containing 19.6% dry matter (DM) starch and a SARA-challenge diet containing 33.3% DM starch for two days after a 4-day grain step-up. Subsequently, epithelial samples from the rumen and mucosa samples from the duodenum, proximal, middle and distal jejunum, ileum, cecum and colon were collected. Extracted DNA from these samples were analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Distinct clustering patterns for each diet existed for all sites. The SARA challenge decreased microbial diversity at all sites, with the exception of the middle jejunum. The SARA challenge also affected the relative abundances of several major phyla and genera at all sites but the magnitude of these effects differed among sites. In the rumen and colon, the largest effects were an increase in the relative abundance of Firmicutes and a reduction of Bacteroidetes. In the small intestine, the largest effect was an increase in the relative abundance of Actinobacteria. The grain-based SARA challenge conducted in this study did not only affect the composition and cause dysbiosis of epimural microbiota in the rumen, it also affected the mucosa-associated microbiota in the intestines. To assess the extent of this dysbiosis, its effects on the functionality of these microbiota must be determined in future.
Collapse
|
77
|
Jiao P, Ma F, Beauchemin K, AlZahal O, Xie X, Yang W. Effect of mixed live yeast and lactic acid bacteria on in vitro fermentation with varying media pH using a high-grain or high-forage diet. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments were conducted to assess the effects of media pH and mixtures (SCEF) of live yeast [Saccharomyces cerevisiae (SC)] and lactic acid bacteria [Enterococcus faecium (EF)] on gas production (GP), dry matter disappearance (DMD), and volatile fatty acid (VFA) concentrations in batch culture using either high-forage (HF) or high-grain (HG) diets. Diets were evaluated in separate experiments, each as a complete randomized design with 2 (media pH 5.8 and 6.5) × 5 (control, three SCEF, monensin) factorial arrangement of treatments. The SCEF had varying ratios of SC:EF: 0:0 (control), 1.18:1 (SCEF1), 1.25:1 (SCEF2), and 1.32:1 (SCEF3), added on a log10 basis. For the HF diet, supplementation of SCEF had greater GP (P = 0.03) at pH 6.5 and greater DMD (P = 0.03) and VFA concentration (P < 0.01) at pH 5.8 and 6.5 than control. For the HG diet, acetate:propionate (A:P) ratio at pH 6.5 was greater (P = 0.05) for SCEF than control. Increasing ratio of SC to EF in SCEF linearly (P < 0.01) decreased GP and DMD and linearly increased acetate percentage at pH 6.5. These results suggest that optimizing the SC:EF ratio in a mixture of SCEF can help improve rumen fermentation.
Collapse
Affiliation(s)
- P.X. Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - F.C. Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - K.A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - O. AlZahal
- AB Vista Feed Ingredients, Marlborough, Wiltshire SN8 4AN, UK
| | - X.L. Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - W.Z. Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
78
|
Cairo PLG, Nogueira SSC, Altino VS, Vandenheede M, Schroyen M, Taminiau B, Daube G, Gross E, Bindelle J, Nogueira-Filho SLG. Individual differences in behaviour and gut bacteria are associated in collared peccary (Mammalia, Tayassuidae). J Appl Microbiol 2021; 131:2748-2762. [PMID: 33971065 DOI: 10.1111/jam.15133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
AIMS We tested the hypothesis that the behaviour of an individual is associated with the diversity of its gut bacteria, using the collared peccary (Pecari tajacu) as a model. METHODS AND RESULTS In all, 24 adult male collared peccaries received either low- (n = 12) or high-fibre diet (n = 12) to induce contrasting gut fermentation profiles. They were submitted to three short-term challenges, allowing us to rate the animals in a coping-style dimension named 'calmness'. At the end of the experimental period, we collected samples of peccaries' forestomach contents to characterize bacterial diversity. We found a significant positive association between individual 'calmness' z-scores and the bacterial evenness index in gut bacteria (and a similar trend with the Simpson's diversity index), suggesting a more homogeneous bacterial community of calmer individuals. We also found a positive association between fibres digestibility and gut bacterial diversity in the peccaries' forestomach, but no effect of the dietary fibre level. CONCLUSIONS Gut bacteria evenness increases with 'calmness' z-scores, suggesting a more homogeneous bacterial community of calmer individuals, compared with the more heterogeneous of the most distressed ones. Our results also suggest associations between the digestibility of ADF with the gut bacterial diversity indices and with the relative abundance of the Actinobacteria phylum. SIGNIFICANCE AND IMPACT OF THE STUDY Our data showed that the hosts' individual behavioural differences are potentially aligned with gut bacterial diversity. The behaviour-microbiota link is correlated with host feed efficiency and, ultimately, may have implications for animal health and welfare of farm animals.
Collapse
Affiliation(s)
- P L G Cairo
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - S S C Nogueira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdiciplinares em Ecologia e Evolução (INCT IN-TREE), Salvador, Bahia, Brazil
| | - V S Altino
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - M Vandenheede
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - M Schroyen
- Department of AgroBioChem, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - B Taminiau
- Department of Food Sciences, Fundamental and Applied Research of Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - G Daube
- Department of Food Sciences, Fundamental and Applied Research of Animals & Health (FARAH), University of Liège, Liège, Belgium
| | - E Gross
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - J Bindelle
- Department of AgroBioChem/TERRA, Gembloux Agro-Bio Tech, Precision Livestock and Nutrition Unit/AgricultureIsLife, University of Liège, Gembloux, Belgium
| | - S L G Nogueira-Filho
- Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdiciplinares em Ecologia e Evolução (INCT IN-TREE), Salvador, Bahia, Brazil.,Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
79
|
Virgínio Júnior GF, Coelho MG, de Toledo AF, Montenegro H, Coutinho LL, Bittar CMM. The Liquid Diet Composition Affects the Fecal Bacterial Community in Pre-weaning Dairy Calves. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.649468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Feeding a liquid diet to the newborn calf has considerable implications for developing the intestinal microbiota, as its composition can shift the population to a highly adapted microbiota. The present work evaluated 15 Holstein calves individually housed and fed one of the three liquid diets: I – whole milk (n = 5), II – milk replacer (22.9% CP; 16.2% fat; diluted to 14% solids; n = 5) and III – acidified whole milk to pH 4.5 with formic acid (n = 5). All animals received 6 L of liquid diet, divided into two meals, being weaned at week 8 of life. Calves also had free access to water and starter concentrate. After weaning, all calves were grouped on pasture, fed with starter concentrate, and hay ad libitum. The fecal samples were collected at birth (0) and at weeks 1, 2, 4, 8, and 10 of life. The bacterial community was assessed the through sequencing of the V3-V4 region of the 16S rRNA gene on the Illumina MiSeq platform and analyzed using the DADA2 pipeline. Diversity indices were not affected by the liquid diets, but by age (P < 0.001) with weeks 1 and 2 presenting lower diversity, evenness, and richness values. The bacterial community structure was affected by diet, age, and the interaction of these factors (P < 0.01). Twenty-eight bacterial phyla were identified in the fecal samples, and the most predominant phyla were Firmicutes (42.35%), Bacteroidota (39.37%), and Proteobacteria (9.36%). The most prevalent genera were Bacteroides (10.71%), Lactobacillus (8.11%), Alloprevotella (6.20%). Over the weeks, different genera were predominant, with some showing significant differences among treatments. The different liquid diets altered the fecal bacterial community during the pre-weaning period. However, differences in the initial colonization due to different liquid diets are alleviated after weaning, when animals share a common environment and solid diet composition.
Collapse
|
80
|
Li MM, White RR, Guan LL, Harthan L, Hanigan MD. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Anim Microbiome 2021; 3:32. [PMID: 33892824 PMCID: PMC8063335 DOI: 10.1186/s42523-021-00092-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Volatile fatty acids (VFA) generated from ruminal fermentation by microorganisms provide up to 75% of total metabolizable energy in ruminants. Ruminal pH is an important factor affecting the profile and production of VFA by shifting the microbial community. However, how ruminal pH affects the microbial community and its relationship with expression of genes encoding carbohydrate-active enzyme (CAZyme) for fiber degradation and fermentation are not well investigated. To fill in this knowledge gap, six cannulated Holstein heifers were subjected to a continuous 10-day intraruminal infusion of distilled water or a dilute blend of hydrochloric and phosphoric acids to achieve a pH reduction of 0.5 units in a cross-over design. RNA-seq based transcriptome profiling was performed using total RNA extracted from ruminal liquid and solid fractions collected on day 9 of each period, respectively. Results Metatranscriptomic analyses identified 19 bacterial phyla with 156 genera, 3 archaeal genera, 11 protozoal genera, and 97 CAZyme transcripts in sampled ruminal contents. Within these, 4 bacteria phyla (Proteobacteria, Firmicutes, Bacteroidetes, and Spirochaetes), 2 archaeal genera (Candidatus methanomethylophilus and Methanobrevibacter), and 5 protozoal genera (Entodinium, Polyplastron, Isotricha, Eudiplodinium, and Eremoplastron) were considered as the core active microbes, and genes encoding for cellulase, endo-1,4-beta- xylanase, amylase, and alpha-N-arabinofuranosidase were the most abundant CAZyme transcripts distributed in the rumen. Rumen microbiota is not equally distributed throughout the liquid and solid phases of rumen contents, and ruminal pH significantly affect microbial ecosystem, especially for the liquid fraction. In total, 21 bacterial genera, 4 protozoal genera, and 6 genes encoding CAZyme were regulated by ruminal pH. Metabolic pathways participated in glycolysis, pyruvate fermentation to acetate, lactate, and propanoate were downregulated by low pH in the liquid fraction. Conclusions The ruminal microbiome changed the expression of transcripts for biochemical pathways of fiber degradation and VFA production in response to reduced pH, and at least a portion of the shifts in transcripts was associated with altered microbial community structure. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00092-6.
Collapse
Affiliation(s)
- Meng M Li
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA. .,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Robin R White
- Deptartment of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Laura Harthan
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Mark D Hanigan
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
81
|
Islam M, Kim SH, Son AR, Ramos SC, Jeong CD, Yu Z, Kang SH, Cho YI, Lee SS, Cho KK, Lee SS. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals (Basel) 2021; 11:1184. [PMID: 33924248 PMCID: PMC8074768 DOI: 10.3390/ani11041184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023] Open
Abstract
Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Seung Ha Kang
- Faculty of Medicine, Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| |
Collapse
|
82
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
83
|
Bailoni L, Carraro L, Cardin M, Cardazzo B. Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages. Microorganisms 2021; 9:754. [PMID: 33918504 PMCID: PMC8066057 DOI: 10.3390/microorganisms9040754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Seven Italian Simmental cows were monitored during three different physiological stages, namely late lactation (LL), dry period (DP), and postpartum (PP), to evaluate modifications in their metabolically-active rumen bacterial and protozoal communities using the RNA-based amplicon sequencing method. The bacterial community was dominated by seven phyla: Proteobacteria, Bacteroidetes, Firmicutes, Spirochaetes, Fibrobacteres, Verrucomicrobia, and Tenericutes. The relative abundance of the phylum Proteobacteria decreased from 47.60 to 28.15% from LL to DP and then increased to 33.24% in PP. An opposite pattern in LL, DP, and PP stages was observed for phyla Verrucomicrobia (from 0.96 to 4.30 to 1.69%), Elusimicrobia (from 0.32 to 2.84 to 0.25%), and SR1 (from 0.50 to 2.08 to 0.79%). The relative abundance of families Succinivibrionaceae and Prevotellaceae decreased in the DP, while Ruminococcaceae increased. Bacterial genera Prevotella and Treponema were least abundant in the DP as compared to LL and PP, while Ruminobacter and Succinimonas were most abundant in the DP. The rumen eukaryotic community was dominated by protozoal phylum Ciliophora, which showed a significant decrease in relative abundance from 97.6 to 93.9 to 92.6 in LL, DP, and PP, respectively. In conclusion, the physiological stage-dependent dietary changes resulted in a clear shift in metabolically-active rumen microbial communities.
Collapse
Affiliation(s)
- Lucia Bailoni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Universitá 16, 35020 Legnaro, PD, Italy; (L.C.); (M.C.); (B.C.)
| | | | | | | |
Collapse
|
84
|
Gharechahi J, Vahidi MF, Bahram M, Han JL, Ding XZ, Salekdeh GH. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen. THE ISME JOURNAL 2021; 15:1108-1120. [PMID: 33262428 PMCID: PMC8114923 DOI: 10.1038/s41396-020-00837-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Rumen microbiota play a key role in the digestion and utilization of plant materials by the ruminant species, which have important implications for greenhouse gas emission. Yet, little is known about the key taxa and potential gene functions involved in the digestion process. Here, we performed a genome-centric analysis of rumen microbiota attached to six different lignocellulosic biomasses in rumen-fistulated cattle. Our metagenome sequencing provided novel genomic insights into functional potential of 523 uncultured bacteria and 15 mostly uncultured archaea in the rumen. The assembled genomes belonged mainly to Bacteroidota, Firmicutes, Verrucomicrobiota, and Fibrobacterota and were enriched for genes related to the degradation of lignocellulosic polymers and the fermentation of degraded products into short chain volatile fatty acids. We also found a shift from copiotrophic to oligotrophic taxa during the course of rumen fermentation, potentially important for the digestion of recalcitrant lignocellulosic substrates in the physiochemically complex and varying environment of the rumen. Differential colonization of forages (the incubated lignocellulosic materials) by rumen microbiota suggests that taxonomic and metabolic diversification is an evolutionary adaptation to diverse lignocellulosic substrates constituting a major component of the cattle's diet. Our data also provide novel insights into the key role of unique microbial diversity and associated gene functions in the degradation of recalcitrant lignocellulosic materials in the rumen.
Collapse
Affiliation(s)
- Javad Gharechahi
- grid.411521.20000 0000 9975 294XHuman Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhad Vahidi
- grid.473705.20000 0001 0681 7351Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Mohammad Bahram
- grid.6341.00000 0000 8578 2742Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden ,grid.10939.320000 0001 0943 7661Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005 Tartu, Estonia
| | - Jian-Lin Han
- grid.419369.00000 0000 9378 4481Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya ,grid.410727.70000 0001 0526 1937CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193 Beijing, China
| | - Xue-Zhi Ding
- grid.410727.70000 0001 0526 1937Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), 730050 Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- grid.473705.20000 0001 0681 7351Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran ,grid.1004.50000 0001 2158 5405Department of Molecular Sciences, Macquarie University, North Ryde, NSW Australia
| |
Collapse
|
85
|
Islam M, Kim SH, Ramos SC, Mamuad LL, Son AR, Yu Z, Lee SS, Cho YI, Lee SS. Holstein and Jersey Steers Differ in Rumen Microbiota and Enteric Methane Emissions Even Fed the Same Total Mixed Ration. Front Microbiol 2021; 12:601061. [PMID: 33868186 PMCID: PMC8044996 DOI: 10.3389/fmicb.2021.601061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Previous studies have focused on the rumen microbiome and enteric methane (CH4) emissions in dairy cows, yet little is known about steers, especially steers of dairy breeds. In the present study, we comparatively examined the rumen microbiota, fermentation characteristics, and CH4 emissions from six non-cannulated Holstein (710.33 ± 43.02 kg) and six Jersey (559.67 ± 32.72 kg) steers. The steers were fed the same total mixed ration (TMR) for 30 days. After 25 days of adaptation to the diet, CH4 emissions were measured using GreenFeed for three consecutive days, and rumen fluid samples were collected on last day using stomach tubing before feeding (0 h) and 6 h after feeding. CH4 production (g/d/animal), CH4 yield (g/kg DMI), and CH4 intensity (g/kg BW0.75) were higher in the Jersey steers than in the Holstein steers. The lowest pH value was recorded at 6 h after feeding. The Jersey steers had lower rumen pH and a higher concentration of ammonia-nitrogen (NH3-N). The Jersey steers had a numerically higher molar proportion of acetate than the Holstein steers, but the opposite was true for that of propionate. Metataxonomic analysis of the rumen microbiota showed that the two breeds had similar species richness, Shannon, and inverse Simpson diversity indexes. Principal coordinates analysis showed that the overall rumen microbiota was different between the two breeds. Both breeds were dominated by Prevotella ruminicola, and its highest relative abundance was observed 6 h after feeding. The genera Ethanoligenens, Succinivibrio, and the species Ethanoligenens harbinense, Succinivibrio dextrinosolvens, Prevotella micans, Prevotella copri, Prevotella oris, Prevotella baroniae, and Treponema succinifaciens were more abundant in Holstein steers while the genera Capnocytophaga, Lachnoclostridium, Barnesiella, Oscillibacter, Galbibacter, and the species Capnocytophaga cynodegmi, Galbibacter mesophilus, Barnesiella intestinihominis, Prevotella shahii, and Oscillibacter ruminantium in the Jersey steers. The Jersey steers were dominated by Methanobrevibacter millerae while the Holstein steers by Methanobrevibacter olleyae. The overall results suggest that sampling hour has little influence on the rumen microbiota; however, breeds of steers can affect the assemblage of the rumen microbiota and different mitigation strategies may be needed to effectively manipulate the rumen microbiota and mitigate enteric CH4 emissions from these steers.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea.,Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Lovelia L Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Sung-Sil Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, South Korea
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
86
|
Ramos SC, Jeong CD, Mamuad LL, Kim SH, Kang SH, Kim ET, Cho YI, Lee SS, Lee SS. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals (Basel) 2021; 11:838. [PMID: 33809588 PMCID: PMC8002347 DOI: 10.3390/ani11030838] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Effects of changing diet on rumen fermentation parameters, bacterial community composition, and transcriptome profiles were determined in three rumen-cannulated Holstein Friesian cows using a 3 × 4 cross-over design. Treatments include HF-1 (first high-forage diet), HC-1 (first high-concentrate diet), HC-2 (succeeding high-concentrate diet), and HF-2 (second high-forage diet as a recovery period). Animal diets contained Klein grass and concentrate at ratios of 8:2, 2:8, 2:8, and 8:2 (two weeks each), respectively. Ammonia-nitrogen and individual and total volatile fatty acid concentrations were increased significantly during HC-1 and HC-2. Rumen species richness significantly increased for HF-1 and HF-2. Bacteroidetes were dominant for all treatments, while phylum Firmicutes significantly increased during the HC period. Prevotella, Erysipelothrix, and Galbibacter significantly differed between HF and HC diet periods. Ruminococcus abundance was lower during HF feeding and tended to increase during successive HC feeding periods. Prevotellaruminicola was the predominant species for all diets. The RNA sequence analysis revealed the keratin gene as differentially expressed during the HF diet, while carbonic-anhydrase I and S100 calcium-binding protein were expressed in the HC diet. Most of these genes were highly expressed for HC-1 and HC-2. These results suggested that ruminal bacterial community composition, transcriptome profile, and rumen fermentation characteristics were altered by the diet transitions in dairy cows.
Collapse
Affiliation(s)
- Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Chang Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Lovelia L. Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Seung Ha Kang
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| |
Collapse
|
87
|
Hartinger T, Zebeli Q. The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition. J Fungi (Basel) 2021; 7:200. [PMID: 33802104 PMCID: PMC8000393 DOI: 10.3390/jof7030200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023] Open
Abstract
The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of ruminant nutrition research for many years. However, the overwhelming majority of investigations have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources for the host. This review summarizes the current findings on AF and, most importantly, discusses their new application potentials in modern ruminant nutrition. Available data suggest AF can be applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and animal performance, obstacles in large-scale AF cultivation and applicable administration options need to be overcome. At feedstuff level, silage production may benefit from the application of fungal enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding and future research efforts are called for to harness these potentials.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | | |
Collapse
|
88
|
Petri RM, Aditya S, Humer E, Zebeli Q. Effect of an intramammary lipopolysaccharide challenge on the hindgut microbial composition and fermentation of dairy cattle experiencing intermittent subacute ruminal acidosis. J Dairy Sci 2021; 104:5417-5431. [PMID: 33663865 DOI: 10.3168/jds.2020-19496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Feeding grain-rich diets often results in subacute ruminal acidosis (SARA), a condition associated with ruminal dysbiosis and systemic inflammation. Yet, the effect of SARA on hindgut microbiota, and whether this condition is aggravated by exogenous immune stimuli, is less understood. Therefore, the aims of this study were to determine the effects of an intermittent high-grain SARA model on the hindgut microbial community, and to evaluate whether the effects of SARA on the fecal microbiome and fermentation were further affected by an intramammary lipopolysaccharide (LPS) challenge. A total of 18 early-lactating Simmental cows were divided into 3 groups (n = 6); 2 were fed a SARA-inducing feeding regimen (60% concentrate), 1 was fed a control (CON) diet (40% concentrate). On d 30, 1 SARA group (SARA-LPS) and the CON group (CON-LPS) were intramammarily challenged with a single dose of 50 µg of LPS from Escherichia coli O26:B6, whereas the remaining 6 SARA cows (SARA-PLA) received a placebo. Using a longitudinal randomized controlled design, with grouping according to parity and days in milk), statistical analysis was performed with baseline measurements used as a covariate in a mixed model procedure. The SARA-inducing feeding challenge resulted in decreased fecal pH and increased butyrate as a proportion of total short-chain fatty acids in the feces. On d 30, SARA-challenged cows had decreased fecal diversity as shown by the Shannon and Chao1 indices and a decrease in the relative abundance of Euryarchaeota and cellulolytic genera, and numerical increases in the relative abundance of several Firmicutes associated with starch and secondary fermentation. The LPS challenge did not affect the fecal pH and short-chain fatty acids, but increased the Chao1 richness index in an interaction with the SARA challenge, and affected the relative abundance of Verrucomicrobia (1.13%), Actinobacteria (0.19%), and Spirochaetes (0.002%), suggesting an effect on the microbial ecology of the hindgut during SARA conditions. In conclusion, the SARA-inducing feeding regimen promoted important microbial changes at d 30, including reduced diversity and evenness compared with CON, whereas the external LPS challenge led to changes in the microbial community without affecting fecal fermentation properties.
Collapse
Affiliation(s)
- R M Petri
- Agriculture and Agri-Food Canada, Research and Development Centre Sherbrooke, 2000 College Street, Sherbrooke, QC, Canada, J1M 1Z7.
| | - S Aditya
- Faculty of Veterinary Medicine, Brawijaya University, Jl. Mayjen Haryono No. 169, Malang 65145, East Java, Indonesia; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - E Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
89
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
90
|
Khalouei H, Seranatne V, Fehr K, Guo J, Yoon I, Khafipour E, Plaizier J. Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effects of Saccharomyces cerevisiae fermentation products (SCFP) and subacute ruminal acidosis (SARA) on rumen and hindgut fermentation, feed intake, and total tract nutrient digestibilities were determined in 32 lactating Holstein cows between weeks 4 and 9 of lactation. Treatments included control, 14 g·d−1 Diamond V Original XPC™ (SCFPa; Diamond V, Cedar Rapids, IA, USA), 19 g·d−1 NutriTek® (SCFPb-1X; Diamond V), and 38 g·d−1 NutriTek® (SCFPb-2X; Diamond V). During weeks 5 and 8, SARA challenges were conducted by switching from a 18.6% to a 27.9% dry matter (DM) starch diet. This reduced the rumen and feces pH. The durations of the rumen pH below 5.6 during these challenges averaged 175.0, 233.8, 246.9, and 79.3 min·d−1 for the control, SCFPa, SCFPb-1X, and SCFPb-2X treatments, respectively. Hence, SARA was not induced under the SCFPb-2X treatment. The feces pH during the SARA challenges was lowest during SCFPb-2X, suggesting this treatment shifted fermentation from the rumen to the hindgut. The SARA challenges reduced the total tract digestibility of DM, neutral detergent fiber digestibility (NDFd), and phosphorus, but tended to increase that of starch. The SCFPb-2X treatment increased the NDFd from 52.7% to 61.8% (P < 0.05). The SCFPb-2X treatment attenuated impacts of SARA.
Collapse
Affiliation(s)
- H. Khalouei
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - V. Seranatne
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - K. Fehr
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J. Guo
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - I. Yoon
- Diamond V, Cedar Rapids, IA 52404, USA
| | - E. Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J.C. Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
91
|
Tamayao P, Ribeiro G, McAllister T, Yang H, Saleem A, Ominski K, Okine E, McGeough E. Effects of post-pyrolysis treated biochars on methane production, ruminal fermentation, and rumen microbiota of a silage-based diet in an artificial rumen system (RUSITEC). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
92
|
Ogata T, Kim YH, Iwamoto E, Masaki T, Ikuta K, Sato S. Comparison of pH and bacterial communities in the rumen and reticulum during fattening of Japanese Black beef cattle. Anim Sci J 2021; 91:e13487. [PMID: 33368874 DOI: 10.1111/asj.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
We used castrated and fistulated Japanese Black beef cattle (n = 9) to measure the pH and bacterial communities in the rumen liquid, rumen solid, and reticulum liquid during early, middle, and late fattening stages (10-14, 15-22, and 23-30 months of age, respectively). The pH was measured in the rumen and reticulum during the last 13 days of each fattening stage and was significantly lower in the rumen at the early and middle fattening stage and in the reticulum during the late stage. Sequencing analysis indicated similar bacterial compositions in the rumen and reticulum liquid fractions and stability of bacterial diversity in the rumen and reticulum liquid fractions and rumen solid fraction. By contrast, major operational taxonomic units (OTUs), such as Ruminococcus bromii strain ATCC 27255 (OTU1, OTU10, and OTU15), were differently correlated to the fermentation parameters among the rumen and reticulum liquid fractions. Therefore, the long-term feeding of Japanese Black beef cattle with a high-concentrate diet might reverse the trend of pH in the rumen and reticulum during the late fattening stage, and the bacterial communities adapted to changes in fermentation by preserving their diversity throughout fattening.
Collapse
Affiliation(s)
- Toru Ogata
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Iwate Prefectural Federation of Agricultural Mutual Aid Association, Morioka, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minami-Awaji, Hyogo, Japan
| | - Shigeru Sato
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate, Japan
| |
Collapse
|
93
|
Wang B, Luo Y, Wang Y, Wang D, Hou Y, Yao D, Tian J, Jin Y. Rumen bacteria and meat fatty acid composition of Sunit sheep reared under different feeding regimens in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1100-1110. [PMID: 32767556 DOI: 10.1002/jsfa.10720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rumen bacteria play a critical role in feed degradation and productivity. This study evaluated the impact of feeding regimen on the rumen microbial populations and fatty acid composition of the meat of sheep. Twenty-four Sunit sheep were raised on a grass pasture from birth to 9 months of age, at which time they were randomly divided into two feeding groups: pasture feeding (PF) and barn feeding (BF). Sheep in the PF group were allowed to graze freely on wild grassland for 3 months. Sheep in the BF group were confined for 3 months to a dry barn, in which they roamed freely with corn straw and corn. RESULTS Sheep in the PF group had greater rumen bacteria diversity. The relative abundances of the genera Butyrivibrio_2, Saccharofermentans and Succiniclasticum were increased, and that of the genus RC9_gut_group was decreased, in the PF compared to the BF sheep. The n-3 polyunsaturated fatty acid contents were greater in meat from PF sheep than from BF sheep. In addition, the α-linolenic acid (C18:3 n-3, ALA) and conjugated linoleic acid (CLA) contents were positively correlated with the abundance of Butyrivibrio_2. CONCLUSION Grazing may improve the diversity of rumen bacteria and increase the proportion of ALA and CLA in sheep meat. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
- Ordos City Food Inspection and Testing Center, Ordos, China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Debao Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
94
|
Stergiadis S, Cabeza-Luna I, Mora-Ortiz M, Stewart RD, Dewhurst RJ, Humphries DJ, Watson M, Roehe R, Auffret MD. Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches. Front Microbiol 2021; 11:590441. [PMID: 33552010 PMCID: PMC7859430 DOI: 10.3389/fmicb.2020.590441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022] Open
Abstract
Milk products are an important component of human diets, with beneficial effects for human health, but also one of the major sources of nutritionally undesirable saturated fatty acids (SFA). Recent discoveries showing the importance of the rumen microbiome on dairy cattle health, metabolism and performance highlight that milk composition, and potentially milk SFA content, may also be associated with microorganisms, their genes and their activities. Understanding these mechanisms can be used for the development of cost-effective strategies for the production of milk with less SFA. This work aimed to compare the rumen microbiome between cows producing milk with contrasting FA profile and identify potentially responsible metabolic-related microbial mechanisms. Forty eight Holstein dairy cows were fed the same total mixed ration under the same housing conditions. Milk and rumen fluid samples were collected from all cows for the analysis of fatty acid profiles (by gas chromatography), the abundances of rumen microbiome communities and genes (by whole-genome-shotgun metagenomics), and rumen metabolome (using 500 MHz nuclear magnetic resonance). The following groups: (i) 24 High-SFA (66.9-74.4% total FA) vs. 24 Low-SFA (60.2-66.6%% total FA) cows, and (ii) 8 extreme High-SFA (69.9-74.4% total FA) vs. 8 extreme Low-SFA (60.2-64.0% total FA) were compared. Rumen of cows producing milk with more SFA were characterized by higher abundances of the lactic acid bacteria Lactobacillus, Leuconostoc, and Weissella, the acetogenic Proteobacteria Acetobacter and Kozakia, Mycobacterium, two fungi (Cutaneotrichosporon and Cyphellophora), and at a lesser extent Methanobrevibacter and the protist Nannochloropsis. Cows carrying genes correlated with milk FA also had higher concentrations of butyrate, propionate and tyrosine and lower concentrations of xanthine and hypoxanthine in the rumen. Abundances of rumen microbial genes were able to explain between 76 and 94% on the variation of the most abundant milk FA. Metagenomics and metabolomics analyses highlighted that cows producing milk with contrasting FA profile under the same diet, also differ in their rumen metabolic activities in relation to adaptation to reduced rumen pH, carbohydrate fermentation, and protein synthesis and metabolism.
Collapse
Affiliation(s)
- Sokratis Stergiadis
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
| | - Irene Cabeza-Luna
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| | - Marina Mora-Ortiz
- School of Agriculture, Policy and Development, Department of Animal Sciences, University of Reading, Animal, Dairy and Food Chain Sciences, Reading, United Kingdom
| | - Robert D. Stewart
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. Dewhurst
- Dairy Research and Innovation Centre, Scotland's Rural College (SRUC), Dumfries, United Kingdom
| | - David J. Humphries
- Centre for Dairy Research, University of Reading, Reading, United Kingdom
| | - Mick Watson
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rainer Roehe
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| | - Marc D. Auffret
- Beef and Sheep Research Centre, Scotland's Rural College (SRUC), Roslin Institute Building, Edinburgh, United Kingdom
| |
Collapse
|
95
|
Wang K, Nan XM, Zhao YG, Tong JJ, Jiang LS, Xiong BH. Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure. J Dairy Sci 2021; 104:2924-2934. [PMID: 33455765 DOI: 10.3168/jds.2020-18974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
We evaluated the effects of propylene glycol (PG) on in vitro ruminal fermentation, methanogenesis, and microbial community structure. A completely randomized design was conducted in the in vitro incubation, and 4 culture PG dose levels (0, 7.5, 15, and 22.5 μL/g of dry matter) were used in the trial. Based on the fermentation results, the control group (0 μL/g of dry matter, CON) and the second treatment group (15.0 μL/g of dry matter, TRT) were chosen for further analysis to explore the effects of PG on the bacterial and archaeal community structure. The concentrations of propanol, propanal, and succinate increased linearly, whereas the concentration of l-lactate decreased linearly as PG doses increased. The molar proportion of propionate demonstrated a linear increase with increasing PG doses. In contrast with propionate, the molar proportion of acetate and butyrate, and acetate-to-propionate ratio decreased linearly with increasing PG doses. The addition of PG markedly decreased methane production without negative effects on nutrient degradability. In the archaeal level, the relative abundance of Methanobrevibacter tended to decrease, but that of Methanomassiliicoccus significantly increased in TRT group. At the bacterial level, the relative abundance of Bacteroidetes and Prevotella in TRT group was numerically higher than that in CON group. The analysis of the Negativicutes class showed that the relative abundance of Succiniclasticum tended to increase, whereas that of Selenomonas tended to decrease in TRT group. These results demonstrated that PG might be used as an inhibitor to mitigate methane emission. However, the small decrease in methane production will limit the application of PG as a methane inhibitor in production practices. Further research is needed to determine whether use together with other inhibitors may improve the effects of PG on the utilization of reducing equivalents ([H]) and methane production.
Collapse
Affiliation(s)
- K Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - X M Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Y G Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J J Tong
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - L S Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China.
| | - B H Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
96
|
Liang J, Zheng W, Zhang H, Zhang P, Cai Y, Wang Q, Zhou Z, Ding Y. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116130. [PMID: 33261966 DOI: 10.1016/j.envpol.2020.116130] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Rumen liquid can effectively degrade lignocellulosic biomass, in which rumen microorganisms play an important role. In this study, transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw was explored. Results showed that rice straw was efficiently hydrolyzed and acidified, and the degradation efficiency of cellulose, hemicellulose and lignin reached 46.2%, 60.4%, and 12.9%, respectively. The concentration of soluble chemical oxygen demand (SCOD) and total volatile fatty acid (VFA) reached 12.9 and 8.04 g L-1. The high-throughput sequencing results showed that structure of rumen bacterial community significantly changed in anaerobic digestion. The Shannon diversity index showed that rumen bacterial diversity decreased by 32.8% on the 5th day of anaerobic digestion. The relative abundance of Prevotella and Fibrobacter significantly increased, while Ruminococcus significantly decreased at the genus level. The Spearman correlation heatmap showed that pH and VFA were the critical factors affecting the rumen bacterial community structure. The function prediction found that rumen bacteria mainly functioned in carbohydrate transport and metabolism, which might contain a large number of lignocellulose degrading enzyme genes. These studies are conducive to the better application of rumen microorganisms in the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenge Zheng
- Beijing General Working Station of Soil and Water Conservation, Beijing, 100036, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, 030801, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiran Ding
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
97
|
Park SY, Lee M, Lim SR, Kwon H, Lee YS, Kim JH, Seo S. Diversity and Antimicrobial Resistance in the Streptococcus bovis/ Streptococcus equinus Complex (SBSEC) Isolated from Korean Domestic Ruminants. Microorganisms 2021; 9:98. [PMID: 33406675 PMCID: PMC7824528 DOI: 10.3390/microorganisms9010098&set/a 837648689+998116719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.
Collapse
Affiliation(s)
- Seon Young Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
| | - Se Ra Lim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Hyemin Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Ye Seul Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
- Correspondence: (J.H.K.); (S.S.); Tel.: +82-(42)-879-8272 (J.H.K.)
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: (J.H.K.); (S.S.); Tel.: +82-(42)-879-8272 (J.H.K.)
| |
Collapse
|
98
|
Diversity and Antimicrobial Resistance in the Streptococcus bovis/Streptococcus equinus Complex (SBSEC) Isolated from Korean Domestic Ruminants. Microorganisms 2021. [DOI: 10.3390/microorganisms9010098
expr 822437316 + 998765163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.
Collapse
|
99
|
Park SY, Lee M, Lim SR, Kwon H, Lee YS, Kim JH, Seo S. Diversity and Antimicrobial Resistance in the Streptococcus bovis/ Streptococcus equinus Complex (SBSEC) Isolated from Korean Domestic Ruminants. Microorganisms 2021; 9:microorganisms9010098. [PMID: 33406675 PMCID: PMC7824528 DOI: 10.3390/microorganisms9010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/12/2023] Open
Abstract
S. bovis/S. equinus complex (SBSEC) includes lactic acid-producing bacteria considered as the causative agent associated with acute rumen lactic acidosis in intensive ruminants. Considering the limited information on the detailed characteristics and diversity of SBSEC in Korea and the emergence of antimicrobial resistance (AMR), we investigated the diversity of SBSEC from domestic ruminants and verified the presence of antimicrobial resistance genes (ARGs) against several antimicrobials with their phenotypic resistance. Among 51 SBSEC isolates collected, two SBSEC members (S. equinus and S. lutetiensis) were identified; sodA-based phylogenetic analyses and comparisons of overall genome relatedness revealed potential plasticity and diversity. The AMR rates of these SBSEC against erythromycin, clindamycin, and tetracycline were relatively lower than those of other SBSEC isolates of a clinical origin. An investigation of the ARGs against those antimicrobials indicated that tetracycline resistance of SBSECs generally correlated with the presence of tet(M)-possessing Tn916-like transposon. However, no correlation between the presence of ARGs and phenotypic resistance to erythromycin and clindamycin was observed. Although a limited number of animals and their SBSEC isolates were examined, this study provides insights into the potential intraspecies biodiversity of ruminant-origin SBSEC and the current status on antimicrobial resistance of the bacteria in the Korean livestock industry.
Collapse
Affiliation(s)
- Seon Young Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
| | - Mingyung Lee
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
| | - Se Ra Lim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Hyemin Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Ye Seul Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (S.Y.P.); (S.R.L.); (H.K.); (Y.S.L.)
- Correspondence: (J.H.K.); (S.S.); Tel.: +82-(42)-879-8272 (J.H.K.)
| | - Seongwon Seo
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: (J.H.K.); (S.S.); Tel.: +82-(42)-879-8272 (J.H.K.)
| |
Collapse
|
100
|
Lee C, Copelin JE, Park T, Mitchell KE, Firkins JL, Socha MT, Luchini D. Effects of diet fermentability and supplementation of 2-hydroxy-4-(methylthio)-butanoic acid and isoacids on milk fat depression: 2. Ruminal fermentation, fatty acid, and bacterial community structure. J Dairy Sci 2020; 104:1604-1619. [PMID: 33358812 DOI: 10.3168/jds.2020-18950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
The experiment was conducted to understand ruminal effects of diet modification during moderate milk fat depression (MFD) and ruminal effects of 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa) and isoacids on alleviating MFD. Five ruminally cannulated cows were used in a 5 × 5 Latin square design with the following 5 dietary treatments (dry matter basis): a high-forage and low-starch control diet with 1.5% safflower oil (HF-C); a low-forage and high-starch control diet with 1.5% safflower oil (LF-C); the LF-C diet supplemented with HMTBa (0.11%; 28 g/d; LF-HMTBa); the LF-C diet supplemented with isoacids [(IA) 0.24%; 60 g/d; LF-IA]; and the LF-C diet supplemented with HMTBa and IA (LF-COMB). The experiment consisted of 5 periods with 21 d per period (14-d diet adaptation and 7-d sampling). Ruminal samples were collected to determine fermentation characteristics (0, 1, 3, and 6 h after feeding), long-chain fatty acid (FA) profile (6 h after feeding), and bacterial community structure by analyzing 16S gene amplicon sequences (3 h after feeding). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) in a Latin square design. Preplanned comparisons between HF-C and LF-C were conducted, and the main effects of HMTBa and IA and their interaction within the LF diets were examined. The LF-C diet decreased ruminal pH and the ratio of acetate to propionate, with no major changes detected in ruminal FA profile compared with HF-C. The α-diversity for LF-C was lower compared with HF-C, and β-diversity also differed between LF-C and HF-C. The relative abundance of bacterial phyla and genera associated indirectly with fiber degradation was influenced by LF-C versus HF-C. As the main effect of HMTBa within the LF diets, HMTBa increased the ratio of acetate to propionate and butyrate molar proportion. Ruminal saturated FA were increased and unsaturated FA concentration were decreased by HMTBa, with minimal changes detected in ruminal bacterial diversity and community. As the main effect of IA, IA supplementation increased ruminal concentration of all branched-chain volatile FA and valerate and increased the percentage of trans-10 C18 isomers in total FA. In addition, α-diversity and the number of functional features were increased for IA. Changes in the abundances of bacterial phyla and genera were minimal for IA. Interactions between HMTBa and IA were observed for ruminal variables and some bacterial taxa abundances. In conclusion, increasing diet fermentability (LF-C vs. HF-C) influenced rumen fermentation and bacterial community structure without major changes in FA profile. Supplementation of HMTBa increased biohydrogenation capacity, and supplemental IA increased bacterial diversity, possibly alleviating MFD. The combination of HMTBa and IA had no associative effects in the rumen and need further studies to understand the interactive mechanism.
Collapse
Affiliation(s)
- C Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| | - J E Copelin
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - T Park
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | | |
Collapse
|