51
|
Sheng Z, Sun Y, Yin Z, Tang K, Cao Z. Advances in computational approaches in identifying synergistic drug combinations. Brief Bioinform 2019; 19:1172-1182. [PMID: 28475767 DOI: 10.1093/bib/bbx047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Accumulated empirical clinical experience, supported by animal or cell line models, has initiated efforts of predicting synergistic combinatorial drugs with more-than-additive effect compared with the sum of the individual agents. Aiming to construct better computational models, this review started from the latest updated data resources of combinatorial drugs, then summarized the reported mechanism of the known synergistic combinations from aspects of drug molecular and pharmacological patterns, target network properties and compound functional annotation. Based on above, we focused on the main in silico strategies recently published, covering methods of molecular modeling, mathematical simulation, optimization of combinatorial targets and pattern-based statistical/learning model. Future thoughts are also discussed related to the role of natural compounds, drug combination with immunotherapy and management of adverse effects. Overall, with particular emphasis on mechanism of action of drug synergy, this review may serve as a rapid reference to design improved models for combinational drugs.
Collapse
Affiliation(s)
- Zhen Sheng
- School of Life Sciences and Technology, Tongji University
| | - Yi Sun
- School of Life Sciences and Technology, Tongji University
| | - Zuojing Yin
- School of Life Sciences and Technology, Tongji University
| | - Kailin Tang
- Advanced Institute of Translational Medicine, Tongji University
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University
| |
Collapse
|
52
|
The search of potential inhibitors of the AcrAB-TolC system of multidrug-resistant Escherichia coli: an in silico approach. Appl Microbiol Biotechnol 2019; 103:6309-6318. [PMID: 31209525 DOI: 10.1007/s00253-019-09954-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 01/07/2023]
Abstract
The number of infections caused by multidrug antibiotic resistance (MDR) species is increasing globally. The efflux pump system, AcrAB-TolC, confers Escherichia coli resistance to many antibiotics and results in poor treatment outcomes. Different rational drug design techniques were employed to search for a safe and effective AcrAB-TolC system inhibitor. Ligand docking was performed to analyze the binding of different ArcB substrates and/or inhibitors in the different AcrAB crystal structure binding sites. The validated docking site using the established docking preferences was used to perform virtual high-throughput screening on a large library of compounds. Domperidone, a known and safe over-the-counter antiemetic drug, was proposed as an effective ArcB inhibitor. Microbiological studies confirmed the computational results and domperidone reversed the resistance to the antibiotics: levofloxacin and ciprofloxacin in the MDR E. coli stains with an effect that surpassed the effect of the known efflux pump inhibitor, reserpine. In addition, it was able to increase both antibiotic effects on susceptible strains. This finding suggests that the antibiotic-domperidone combination can be used clinically to treat infections caused by multidrug-resistant E. coli strains.
Collapse
|
53
|
Uhlenbrock L, Ditz R, Strube J. Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules 2019; 24:molecules24101853. [PMID: 31091783 PMCID: PMC6571845 DOI: 10.3390/molecules24101853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/02/2019] [Accepted: 05/10/2019] [Indexed: 12/02/2022] Open
Abstract
The transition towards a bio-based world is a challenging undertaking. This perspective paper, from an engineering point of view, aims to provide an overview of existing projects and academic disciplines highlighting the potential benefit of increased interdisciplinary exchanges. Furthermore, the current utilization of biomass to produce biogas is discussed, including an economic assessment, showing the need for new strategies of biomass valorization. One solution could be the development of separation processes for the isolation of secondary plant metabolites, which have been especially valuable for pharmaceutical applications, e.g., taxotere ® and artemisinin. The economic feasibility is demonstrated in a case study, evaluating the purification potential of curcuminoids from Curcuma longa L. Subsequently, the conclusion discusses the limitations of large-scale industrial applications and the need for new separation techniques as a step towards a bio-based world.
Collapse
Affiliation(s)
- Lukas Uhlenbrock
- Institute for Separation and Process Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany.
| | - Reinhard Ditz
- Institute for Separation and Process Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany.
| | - Jochen Strube
- Institute for Separation and Process Technology, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|
54
|
Chandar B, Bhattacharya D. Role of Natural Product in Modulation of Drug Transporters and New Delhi Metallo-β Lactamases. Curr Top Med Chem 2019; 19:874-885. [PMID: 30987566 DOI: 10.2174/1871529x19666190415110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 11/22/2022]
Abstract
A rapid growth in drug resistance has brought options for treating antimicrobial resistance to a halt. Bacteria have evolved to accumulate a multitude of genes that encode resistance for a single drug within a single cell. Alternations of drug transporters are one of the causes for the development of resistance in drug interactions. Conversely, the production of enzymes also inactivates most antibiotics. The discovery of newer classes of antibiotics and drugs from natural products is urgently needed. Alternative medicines play an integral role in countries across the globe but many require validation for treatment strategies. It is essential to explore this chemical diversity in order to find novel drugs with specific activities which can be used as alternative drug targets. This review describes the interaction of drugs with resistant pathogens with a special focus on natural product-derived efflux pump and carbapenemase inhibitors.
Collapse
Affiliation(s)
- Brinda Chandar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States
| | - Debdutta Bhattacharya
- ICMRRegional Medical Research Centre (Dept. of Health Research, Govt. of India), Chandrasekharpur, Bhubaneswar, India
| |
Collapse
|
55
|
Structure-based identification of potent VEGFR-2 inhibitors from in vivo metabolites of a herbal ingredient. J Mol Model 2019; 25:98. [PMID: 30904971 DOI: 10.1007/s00894-019-3979-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) is one of the regulatory elements of angiogenesis that is expressed highly in various diseases and is also essential for solid tumor growth. The present study was aimed at identifying potent inhibitors of VEGFR-2 by considering herbal secondary metabolites; as natural molecules are less toxic than synthetic derivatives. A structure-based virtual screening protocol consisting of molecular docking, MM-GBSA and ADME/T analysis was initially used to screen a library of in vivo metabolites of the herbal ingredient. Using a fixed cutoff value, four potent virtual hits were identified from molecular docking, ADME/T and binding affinity calculations, which were considered further for molecular dynamics (MD) simulation to broadly describe the binding mechanisms to VEGFR-2. The results suggested that these molecules have high affinity for the catalytic region of VEGFR-2, and form strong hydrophobic and polar interactions with the amino acids involved in the binding site of ATP and linker regions of the catalytic site. Subsequently, the stability of the docked complexes and binding mechanisms were evaluated by MD simulations, and the energy of binding was calculated through MM-PBSA analysis. The results uncovered two virtual hits, designated ZINC14762520 and ZINC36470466, as VEGFR-2 inhibitors, and suggested that they bind to kinase domain in an ATP-competitive manner. These virtual hits will offer a suitable starting point for the further design of their various analogs, allowing a rational search for more effective inhibitors in the future. Graphical abstract.
Collapse
|
56
|
Brown and Red Seaweeds Serve as Potential Efflux Pump Inhibitors for Drug-Resistant Escherichia coli. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1836982. [PMID: 30713568 PMCID: PMC6332956 DOI: 10.1155/2019/1836982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant pathogens are a significant clinical problem. Efflux pump inhibitors (EPIs) can restore the activities of existing antibiotics by interfering with drug efflux pumps located in bacterial cell membranes. Seaweeds are important sources of biologically active metabolites of natural origin; however, their potential as EPIs remains uninvestigated. Here, functional extracts from the brown seaweeds Laminaria japonica and Sargassum horneri and the red seaweeds Gracilaria sp. and Porphyra dentata were evaluated as potential EPIs against drug-resistant Escherichia coli. All these extracts were found to potentiate the activities of drugs in modulation tests, although not to the same extent. Synergistic effects of the extracts and the drug clarithromycin were observed from the onset of Time-kill assays, with no evidence of bacterial regrowth. Ethidium bromide accumulation studies revealed that the efflux decreased in the presence of each extract, as indicated by the presence of EPIs. Most identified EPIs that have been discovered to date have aromatic structures, and the seaweed extracts were found to contain various terpenes, terpenoids, phenolic compounds, indoles, pyrrole derivatives, alkaloids, and halogenated aromatic compounds. Our study highlights the potential of these compounds of the seaweeds as drug EPIs.
Collapse
|
57
|
Natural Products Extraction of the Future—Sustainable Manufacturing Solutions for Societal Needs. Processes (Basel) 2018. [DOI: 10.3390/pr6100177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The production of plant-based extracts is significantly influenced by traditional techniques and the natural variability of feedstock. For that reason, the discussion of innovative approaches to improve the manufacturing of established products and the development of new products within the regulatory framework is essential to adapt to shifting quality standards. This perspective of members of the DECHEMA/ProcessNet working group on plant-based extracts outlines extraction business models and the regulatory framework regarding the extraction of traditional herbal medicines as complex extracts. Consequently, modern approaches to innovative process design methods like QbD (Quality by Design) and quality control in the form of PAT (Process Analytical Technology) are necessary. Further, the benefit of standardized laboratory equipment combined with physico-chemical predictive process modelling and innovative modular, flexible batch or continuous manufacturing technologies which are fully automated by advanced process control methods are described. A significant reduction of the cost of goods, i.e., by a factor of 4–10, and decreased investments of about 1–5 mil. € show the potential for new products which are in line with market requirements.
Collapse
|
58
|
Blanco P, Sanz-García F, Hernando-Amado S, Martínez JL, Alcalde-Rico M. The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opin Drug Discov 2018; 13:919-931. [PMID: 30198793 DOI: 10.1080/17460441.2018.1514386] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION One of the possibilities for reducing the emergence and spread of antibiotic resistance is the use of anti-resistance compounds capable of resensitizing resistant microorganisms to current antimicrobials. For this purpose, multidrug efflux pumps, whose inhibition may increase bacterial susceptibility to several antibiotics, including macrolides to which Gram-negatives are considered intrinsically resistant, have emerged as suitable targets. Areas covered: In the current review, the authors discuss different mechanisms that can be exploited for inhibiting multidrug efflux pumps and describe the properties and the potential therapeutic value of already studied efflux pumps inhibitors. Although efforts have already been made to develop these inhibitors, there are currently no good candidates for treating infectious diseases. Consequently, the authors also discuss potential approaches for their development. Expert opinion: Classical anti-resistance drugs such as beta-lactamases inhibitors, while useful, are only purposeful for treating infections caused by beta-lactamase producers. However, inhibitors of multidrug efflux pumps, which are present on all organisms, can sensitize both susceptible and resistant bacteria to antibiotics belonging to several different structural families. Since some efflux pumps are involved in bacterial infections, their inhibition may also reduce the infectivity of Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Paula Blanco
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Fernando Sanz-García
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Sara Hernando-Amado
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - José Luis Martínez
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| | - Manuel Alcalde-Rico
- a Department of Microbial Biotechnology , Centro Nacional de Biotecnología. CSIC , Madrid , Spain
| |
Collapse
|
59
|
Klitgaard RN, Jana B, Guardabassi L, Nielsen KL, Løbner-Olesen A. DNA Damage Repair and Drug Efflux as Potential Targets for Reversing Low or Intermediate Ciprofloxacin Resistance in E. coli K-12. Front Microbiol 2018; 9:1438. [PMID: 30013537 PMCID: PMC6036142 DOI: 10.3389/fmicb.2018.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022] Open
Abstract
Ciprofloxacin is a potent antibacterial drug that is widely used in human clinical applications. As a consequence of its extensive use, resistance has emerged in almost all clinically relevant bacterial species. A mean to combat the observed ciprofloxacin resistance is by reversing it via co-administration of a potentiating compound, also known as a helper drug. Here, we report on the current advances in identifying ciprofloxacin helper drugs, and put them into perspective of our own findings. We searched for potential helper drug targets in Escherichia coli strains with different levels of ciprofloxacin resistance using transcriptomics i.e., RNAseq and by deletion of genes associated with hyper-susceptibility to ciprofloxacin. Differential gene expression analysis of the highly ciprofloxacin resistant uropathogenic E. coli strain, ST131 UR40, treated with a clinically relevant concentration of ciprofloxacin (2 μg/mL), showed that the transcriptome was unaffected. Conversely, genetic screening of 23 single gene deletions in the high-level ciprofloxacin resistant laboratory derived E. coli strain, LM693, led to a significant decrease in the minimal inhibitory concentration for several genes, including genes encoding the AcrAB-TolC efflux pump, SOS-response proteins and the global regulator Fis. In addition, deletion of acrA, tolC, recA, or recC rendered two E. coli strains with intermediate susceptibility to ciprofloxacin fully susceptible according to the CLSI recommended breakpoint. Our results corroborate the AcrAB-TolC efflux pump and the SOS response proteins, RecA and RecC, as potential targets for ciprofloxacin helper drugs in treatment of human bacterial infections caused by E. coli strains with intermediate sensitivity to ciprofloxacin.
Collapse
Affiliation(s)
- Rasmus N Klitgaard
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Bimal Jana
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Nielsen
- Department of Clinical Microbiology, Center for Diagnostics, Rigshospitalet, Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
60
|
Hyphenated 3D-QSAR statistical model-drug repurposing analysis for the identification of potent neuraminidase inhibitor. Cell Biochem Biophys 2018; 76:357-376. [PMID: 29687225 DOI: 10.1007/s12013-018-0844-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/10/2018] [Indexed: 01/30/2023]
Abstract
The Influenza A virus is one of the principle causes of respiratory illness in human. The surface glycoprotein of the influenza virus, neuraminidase (NA), has a vital role in the release of new viral particle and spreads infection in the respiratory tract. It has been long recognized as a valid drug target for influenza A virus infection. Oseltamivir is used as a standard drug of choice for the treatment of influenza. However, the emergence of mutants with novel mutations has increased the resistance to potent NA inhibitor. In the present investigation, we have employed computer-assisted combinatorial techniques in the screening of 8621 molecules from Drug Bank to find potent NA inhibitors. A three-dimensional pharmacophore model was generated from the previously reported 28 carbocylic influenza NA inhibitors along with oseltamivir using PHASE module of Schrödinger Suite. The model generated consists of one hydrogen bond acceptor (A), one hydrogen bond donors (D), one hydrophobic group (H), and one positively charged group (P), ADHP. The hypothesis was further validated for its integrity and significance using enrichment analysis. Subsequently, an atom-based 3D-QSAR model was built using the common pharmacophore hypothesis (CPH). The developed 3D-QSAR model was found to be statistically significant with R2 value of 0.9866 and Q2 value of 0.7629. Further screening was accomplished using three-stage docking process using the Glide algorithm. The resultant lead molecules were examined for its drug-like properties using the Qikprop algorithm. Finally, the calculated pIC50 values of the lead compounds were validated by the AutoQSAR algorithm. Overall, the results from our analysis highlights that lisinopril (DB00722) is predicted to bind better with NA than currently approved drug. In addition, it has the best match in binding geometry conformations with the existing NA inhibitor. Note that the antiviral activity of lisinopril is reported in the literature. However, our paper is the first report on lisinopril activity against influenza A virus infection. These results are envisioned to help design the novel NA inhibitors with an increased antiviral efficacy.
Collapse
|
61
|
In silico quest of selective naphthyl-based CREBBP bromodomain inhibitor. In Silico Pharmacol 2018; 6:1. [PMID: 30607314 DOI: 10.1007/s40203-018-0038-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/02/2018] [Indexed: 10/17/2022] Open
Abstract
The reader proteins like bromodomains have recently gained increased attentions in the area of epigenetic drug discovery, as they are the potent regulators in gene transcription process. Among the other bromodomains, cAMP response element-binding protein (CREB) binding protein or CREBBP bomodomain involved in various cancer progressions and therefore, efforts to develop specific inhibitors of CREBBP bomodomain are of clinical value. In this study, we tried to identify selective CREBBP bromodomain inhibitor, which was accomplished by using molecular docking, free energy calculation and molecular dynamics (MD) simulation studies, considering a series of naphthyl based compounds. The docking procedure was validated by comparing root mean square deviations (RMSDs) of crystallographic complex to docked complex. Favorable electrostatic interactions with the Arg1173 side chain were considered to attain selectivity for CREBBP bromodomain over other human bromodomain subfamilies. We found that naphthyl-based compounds have greater binding affinities towards the CREBBP bromodomain, and formed non-bonded interactions with various side chain residues that are important for bromodomain inhibition. From detailed investigation by induced fit docking, compound 31 was found to have favorable electrostatic interactions with the Arg1173 side chain by forming conventional hydrogen bonds. This result was further confirmed by analyzing hydrogen bond occupancy and bonding distance during the molecular dynamics simulation. We believe that these findings offer useful insight for the designing of target specific new bromodomain inhibitor and also promote further structure guided synthesis of analogues for identification of potent CREBBP bromodomain inhibitors as well as detailed in vitro and in vivo analyses.
Collapse
|
62
|
Kincses A, Varga B, Csonka Á, Sancha S, Mulhovo S, Madureira AM, Ferreira MJU, Spengler G. Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Phytother Res 2018; 32:1039-1046. [PMID: 29464798 DOI: 10.1002/ptr.6042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections.
Collapse
Affiliation(s)
- Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, Szeged, 6720, Hungary
| | - Borisz Varga
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, Szeged, 6720, Hungary
| | - Ákos Csonka
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, Szeged, 6720, Hungary.,Department of Traumatology, Faculty of Medicine, University of Szeged, Semmelweis utca 6, Szeged, 6725, Hungary
| | - Shirley Sancha
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, University of Lisbon, Avenue Professor Gama Pinto, Lisbon, 1649-003, Portugal
| | - Silva Mulhovo
- Mozambican and Ethnoscience Study Center (CEMEC), Faculty of Mathematics and Natural Sciences, Pedagogic University, Lhanguene Campus, Av. de Moçambique, Maputo, 21402161, Mozambique
| | - Ana Margarida Madureira
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, University of Lisbon, Avenue Professor Gama Pinto, Lisbon, 1649-003, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.Ulisboa), Faculty of Pharmacy, University of Lisbon, Avenue Professor Gama Pinto, Lisbon, 1649-003, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, Szeged, 6720, Hungary
| |
Collapse
|
63
|
Yılmaz Ç, Özcengiz G. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 2017; 133:43-62. [DOI: 10.1016/j.bcp.2016.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
|
64
|
Computational modelling of efflux pumps and their inhibitors. Essays Biochem 2017; 61:141-156. [PMID: 28258237 DOI: 10.1042/ebc20160065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is based on the multifarious strategies that bacteria adopt to face antibiotic therapies, making it a key public health concern of our era. Among these strategies, efflux pumps (EPs) contribute significantly to increase the levels and profiles of resistance by expelling a broad range of unrelated compounds - buying time for the organisms to develop specific resistance. In Gram-negative bacteria, many of these chromosomally encoded transporters form multicomponent 'pumps' that span both inner and outer membranes and are driven energetically by a primary or secondary transporter component.One of the strategies to reinvigorate the efficacy of antimicrobials is by joint administration with EP inhibitors (EPI), which either block the substrate binding and/or hinder any of the transport-dependent steps of the pump. In this review, we provide an overview of multidrug-resistance EPs, their inhibition strategies and the relevant findings from the various computational simulation studies reported to date with respect to deciphering the mechanism of action of inhibitors with the purpose of improving their rational design.
Collapse
|
65
|
Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg Med Chem Lett 2017; 27:733-739. [DOI: 10.1016/j.bmcl.2017.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
66
|
Thai KM, Do TN, Nguyen TVP, Nguyen DKT, Tran TD. QSAR Studies on Bacterial Efflux Pump Inhibitors. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.
Collapse
Affiliation(s)
| | - Trong-Nhat Do
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | | | | | |
Collapse
|
67
|
Skariyachan S. Exploring the Potential of Herbal Ligands Toward Multidrug-Resistant Bacterial Pathogens by Computational Drug Discovery. TRANSLATIONAL BIOINFORMATICS AND ITS APPLICATION 2017. [DOI: 10.1007/978-94-024-1045-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
68
|
Inhibitors of multidrug efflux pumps of Pseudomonas aeruginosa from natural sources: An in silico high-throughput virtual screening and in vitro validation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1761-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
69
|
Alibert S, N'gompaza Diarra J, Hernandez J, Stutzmann A, Fouad M, Boyer G, Pagès JM. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol 2016; 13:301-309. [PMID: 27764576 DOI: 10.1080/17425255.2017.1251581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Worrying levels of bacterial resistance have been reported worldwide involving the failure of many available antibiotic treatments. Multidrug resistance (MDR) in Gram-negative bacteria is often ascribed to the presence of multiple and different resistance mechanisms in the same strain. RND efflux pumps play a major role and are an attractive target to discover new antibacterial drugs. Areas covered: This review discusses the prevalence of efflux pumps, their overexpression in clinical scenarios, their polyselectivity, their effect on the intracellular concentrations of various antibiotics associated with the alteration of the membrane permeability and their involvement in pathogenicity are discussed. Expert opinion: Efflux pumps are new targets for the development of adjuvant in antibiotic treatments by of efflux pump inhibition. They may allow us to rejuvenate old antibiotics acting on their concentration inside the bacteria and thus potentiating their activity while blocking the release of virulence factors. It is a pharmacodynamic challenge to finalize new combined therapy.
Collapse
Affiliation(s)
- Sandrine Alibert
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Joannah N'gompaza Diarra
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jessica Hernandez
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Aurélien Stutzmann
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Marwa Fouad
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Cairo University , Giza , Egypt
| | - Gérard Boyer
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jean-Marie Pagès
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
70
|
Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 2016; 29:30-46. [PMID: 27912842 DOI: 10.1016/j.drup.2016.09.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
Abstract
Carbapenems, our one-time silver bullet for multidrug resistant bacterial infections, are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Successful expansion of Enterobacteriaceae clonal groups and frequent horizontal gene transfer of carbapenemase expressing plasmids are causing increasing carbapenem resistance. Recent advances in genetic and phenotypic detection facilitate global surveillance of CRE diversity and prevalence. In particular, whole genome sequencing enabled efficient tracking, annotation, and study of genetic elements colocalized with carbapenemase genes on chromosomes and on plasmids. Improved characterization helps detail the co-occurrence of other antibiotic resistance genes in CRE isolates and helps identify pan-drug resistance mechanisms. The novel β-lactamase inhibitor, avibactam, combined with ceftazidime or aztreonam, is a promising CRE treatment compared to current colistin or tigecycline regimens. To halt increasing CRE-associated morbidity and mortality, we must continue quality, cooperative monitoring and urgently investigate novel treatments.
Collapse
Affiliation(s)
- Robert F Potter
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA
| | - Alaric W D'Souza
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences and System Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
71
|
Abstract
Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.
Collapse
|
72
|
Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay. Antimicrob Agents Chemother 2016; 60:1974-83. [PMID: 26824939 DOI: 10.1128/aac.01995-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
In this study, we tested five compounds belonging to a novel series of piperazine arylideneimidazolones for the ability to inhibit the AcrAB-TolC efflux pump. The biphenylmethylene derivative (BM-19) and the fluorenylmethylene derivative (BM-38) were found to possess the strongest efflux pump inhibitor (EPI) activities in the AcrAB-TolC-overproducingEscherichia colistrain 3-AG100, whereas BM-9, BM-27, and BM-36 had no activity at concentrations of up to 50 μM in a Nile red efflux assay. MIC microdilution assays demonstrated that BM-19 at 1/4 MIC (intrinsic MIC, 200 μM) was able to reduce the MICs of levofloxacin, oxacillin, linezolid, and clarithromycin 8-fold. BM-38 at 1/4 MIC (intrinsic MIC, 100 μM) was able to reduce only the MICs of oxacillin and linezolid (2-fold). Both compounds markedly reduced the MIC of rifampin (BM-19, 32-fold; and BM-38, 4-fold), which is suggestive of permeabilization of the outer membrane as an additional mechanism of action. Nitrocefin hydrolysis assays demonstrated that in addition to their EPI activity, both compounds were in fact weak permeabilizers of the outer membrane. Moreover, it was found that BM-19, BM-27, BM-36, and BM-38 acted as near-infrared-emitting fluorescent membrane probes, which allowed for their use in a combined influx and efflux assay and thus for tracking of the transport of an EPI across the outer membrane by an efflux pump in real time. The EPIs BM-38 and BM-19 displayed the most rapid influx of all compounds, whereas BM-27, which did not act as an EPI, showed the slowest influx.
Collapse
|
73
|
Rafiq Z, Narasimhan S, Vennila R, Vaidyanathan R. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity. Nat Prod Res 2016; 30:2682-2687. [DOI: 10.1080/14786419.2016.1146883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zumaana Rafiq
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Sreevidya Narasimhan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Rosy Vennila
- Institute of Surgical Gastroenterology and Liver Transplantation, Government Stanley Medical College and Hospital, Chennai, India
| | - Rama Vaidyanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
74
|
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 2016; 59:5929-69. [DOI: 10.1021/acs.jmedchem.5b01698] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefanie Wagner
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Stefan Hinsberger
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Cenbin Lu
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Martin Empting
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| |
Collapse
|
75
|
Iyer R, Erwin AL. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye. Res Microbiol 2015; 166:516-24. [PMID: 26117599 DOI: 10.1016/j.resmic.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Infectious Diseases Department, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, USA.
| | - Alice L Erwin
- Infectious Diseases Department, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, USA
| |
Collapse
|
76
|
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377. [PMID: 25972857 PMCID: PMC4412071 DOI: 10.3389/fmicb.2015.00377] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | | | - Shutao Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China
| |
Collapse
|
77
|
Polyphenolic extract from maple syrup potentiates antibiotic susceptibility and reduces biofilm formation of pathogenic bacteria. Appl Environ Microbiol 2015; 81:3782-92. [PMID: 25819960 DOI: 10.1128/aem.00239-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Phenolic compounds are believed to be promising candidates as complementary therapeutics. Maple syrup, prepared by concentrating the sap from the North American maple tree, is a rich source of natural and process-derived phenolic compounds. In this work, we report the antimicrobial activity of a phenolic-rich maple syrup extract (PRMSE). PRMSE exhibited antimicrobial activity as well as strong synergistic interaction with selected antibiotics against Gram-negative clinical strains of Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa. Among the phenolic constituents of PRMSE, catechol exhibited strong synergy with antibiotics as well as with other phenolic components of PRMSE against bacterial growth. At sublethal concentrations, PRMSE and catechol efficiently reduced biofilm formation and increased the susceptibility of bacterial biofilms to antibiotics. In an effort to elucidate the mechanism for the observed synergy with antibiotics, PRMSE was found to increase outer membrane permeability of all bacterial strains and effectively inhibit efflux pump activity. Furthermore, transcriptome analysis revealed that PRMSE significantly repressed multiple-drug resistance genes as well as genes associated with motility, adhesion, biofilm formation, and virulence. Overall, this study provides a proof of concept and starting point for investigating the molecular mechanism of the reported increase in bacterial antibiotic susceptibility in the presence of PRMSE.
Collapse
|
78
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
79
|
Thai KM, Do TN, Nguyen TVP, Nguyen DKT, Tran TD. QSAR Studies on Bacterial Efflux Pump Inhibitors. ACTA ACUST UNITED AC 2015. [DOI: 10.4018/978-1-4666-8136-1.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.
Collapse
Affiliation(s)
| | - Trong-Nhat Do
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | | | | | |
Collapse
|