51
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
52
|
Abstract
Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability.
Collapse
Affiliation(s)
| | - Heather N Richardson
- Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
53
|
Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake. Neuropharmacology 2020; 173:108114. [DOI: 10.1016/j.neuropharm.2020.108114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
|
54
|
Vandegrift BJ, Hilderbrand ER, Satta R, Tai R, He D, You C, Chen H, Xu P, Coles C, Brodie MS, Lasek AW. Estrogen Receptor α Regulates Ethanol Excitation of Ventral Tegmental Area Neurons and Binge Drinking in Female Mice. J Neurosci 2020; 40:5196-5207. [PMID: 32482639 PMCID: PMC7329299 DOI: 10.1523/jneurosci.2364-19.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/25/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Elevations in estrogen (17β-estradiol, E2) are associated with increased alcohol drinking by women and experimentally in rodents. E2 alters the activity of the dopamine system, including the VTA and its projection targets, which plays an important role in binge drinking. A previous study demonstrated that, during high E2 states, VTA neurons in female mice are more sensitive to ethanol excitation. However, the mechanisms responsible for the ability of E2 to enhance ethanol sensitivity of VTA neurons have not been investigated. In this study, we used selective agonists and antagonists to examine the role of ER subtypes (ERα and ERβ) in regulating the ethanol sensitivity of VTA neurons in female mice and found that ERα promotes the enhanced ethanol response of VTA neurons. We also demonstrated that enhancement of ethanol excitation requires the activity of the metabotropic glutamate receptor, mGluR1, which is known to couple with ERα at the plasma membrane. To investigate the behavioral relevance of these findings, we administered lentivirus-expressing short hairpin RNAs targeting either ERα or ERβ into the VTA and found that knockdown of each receptor in the VTA reduced binge-like ethanol drinking in female, but not male, mice. Reducing ERα in the VTA had a more dramatic effect on binge-like drinking than reducing ERβ, consistent with the ability of ERα to alter ethanol sensitivity of VTA neurons. These results provide important insight into sex-specific mechanisms that drive excessive alcohol drinking.SIGNIFICANCE STATEMENT Estrogen has potent effects on the dopamine system and increases the vulnerability of females to develop addiction to substances, such as alcohol. We investigated the mechanisms by which estrogen increases the response of neurons in the VTA to ethanol. We found that activation of the ERα increased the ethanol-induced excitation of VTA neurons. 17β-Estradiol-mediated enhancement of ethanol-induced excitation required the metabotropic glutamate receptor mGluR1. We also demonstrated that ERs in the VTA regulate binge-like alcohol drinking by female, but not male, mice. The influence of ERs on binge drinking in female mice suggests that treatments for alcohol use disorder in women may need to account for this sex difference.
Collapse
Affiliation(s)
- Bertha J Vandegrift
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | | | - Rosalba Satta
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Rex Tai
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Donghong He
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Chang You
- Department of Physiology and Biophysics
| | - Hu Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Pingwen Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Cassandre Coles
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Mark S Brodie
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| |
Collapse
|
55
|
Jacobs AJ, Roskam AL, Hummel FM, Ronan PJ, Gorres-Martens BK. Exercise improves high-fat diet- and ovariectomy-induced insulin resistance in rats with altered hepatic fat regulation. Curr Res Physiol 2020; 3:11-19. [PMID: 34746816 PMCID: PMC8562195 DOI: 10.1016/j.crphys.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
A high-fat diet (HFD) and loss of endogenous estrogens increases the risk for type 2 diabetes (T2D) and insulin resistance. Although exercise is known to prevent and manage insulin resistance, the cellular mechanisms remain largely unknown, especially in the context of a combined HFD and endogenous estrogen loss via ovariectomy (OVX). This study uses female Wistar rats to assess the effect of diet, endogenous estrogens, an exercise on insulin resistance, serum hormones, hepatic AMPK, hepatic regulators of fat metabolism, and expression of signaling molecules of the brain reward pathway. The combination of the HFD/OVX increased the homeostatic model assessment of insulin resistance (HOMA-IR), the glucose-insulin (G-I) index, and the serum adiponectin and leptin values, and exercise decreased these factors. The combination of the HFD/OVX decreased hepatic pAMPK, and exercise restored hepatic pAMPK, an important regulator of fat and glucose metabolism. Furthermore, consumption of the HFD by rats with intact ovaries (and endogenous estrogens) did not result in these drastic changes compared to intact rats fed a standard diet, suggesting that the presence of estrogens provides whole body benefits. Additionally, the HFD decreased the hepatic protein expression of acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), two proteins involved in de novo lipid synthesis and increased the hepatic protein expression of lipoprotein lipase (LPL), a protein involved in fat storage. Finally, exercise increased mRNA expression of the dopamine D2 receptor and tyrosine hydroxylase in the dopaminergic neuron cell body region of the ventral tegmental area, which is a key component of the brain reward pathway. Overall, this study demonstrates that exercise prevents insulin resistance even when a HFD is combined with OVX, despite hepatic changes in ACC, FAS, and LPL.
Collapse
Affiliation(s)
| | - Adam L Roskam
- Chemistry Department, Mount Marty College, Yankton, SD, USA
| | - Faith M Hummel
- Biology Department, Black Hills State University, Spearfish, SD, USA
| | - Patrick J Ronan
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Psychiatry and Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
56
|
Connelly KL, Wolsh CC, Barr JL, Bauder M, Hausch F, Unterwald EM. Sex differences in the effect of the FKBP5 inhibitor SAFit2 on anxiety and stress-induced reinstatement following cocaine self-administration. Neurobiol Stress 2020; 13:100232. [PMID: 33344688 PMCID: PMC7739032 DOI: 10.1016/j.ynstr.2020.100232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023] Open
Abstract
Cocaine use and withdrawal prompt stress system responses. Stress and the negative affective state produced by cocaine withdrawal are major triggers for relapse. FKBP5 is a co-chaperone of the glucocorticoid receptor and regulates HPA axis negative feedback. The role of FKBP5 in cocaine-related behaviors has not been studied. The FKBP5 inhibitor SAFit2 was used to examine the role of FKBP5 in anxiety-like behavior during early cocaine withdrawal and in stress-induced reinstatement following cocaine self-administration in male and female rats. Withdrawal from cocaine self-administration resulted in heightened anxiety-like behavior in female rats, which was significantly attenuated by SAFit2 administration. SAFit2 pretreatment prior to stress-induced reinstatement to cocaine seeking significantly reduced active lever presses of males. In female rats, SAFit2 administration prevented stress-induced reinstatement for rats in metestrus or diestrus, but not proestrus or estrus phases at the time of reinstatement. These data suggest an important role for FKBP5 in stress-related behaviors following cocaine self-administration, particularly in females.
Collapse
Affiliation(s)
- Krista L Connelly
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Cassandra C Wolsh
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Jeffrey L Barr
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| | - Michael Bauder
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287, Darmstadt, Germany
| | - Felix Hausch
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287, Darmstadt, Germany
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad St. Philadelphia, PA, 19140, USA
| |
Collapse
|
57
|
Kokane SS, Perrotti LI. Sex Differences and the Role of Estradiol in Mesolimbic Reward Circuits and Vulnerability to Cocaine and Opiate Addiction. Front Behav Neurosci 2020; 14:74. [PMID: 32508605 PMCID: PMC7251038 DOI: 10.3389/fnbeh.2020.00074] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although both men and women become addicted to drugs of abuse, women transition to addiction faster, experience greater difficulties remaining abstinent, and relapse more often than men. In both humans and rodents, hormonal cycles are associated with females' faster progression to addiction. Higher concentrations and fluctuating levels of ovarian hormones in females modulate the mesolimbic reward system and influence reward-directed behavior. For example, in female rodents, estradiol (E2) influences dopamine activity within the mesolimbic reward system such that drug-directed behaviors that are normally rewarding and reinforcing become enhanced when circulating levels of E2 are high. Therefore, neuroendocrine interactions, in part, explain sex differences in behaviors motivated by drug reward. Here, we review sex differences in the physiology and function of the mesolimbic reward system in order to explore the notion that sex differences in response to drugs of abuse, specifically cocaine and opiates, are the result of molecular neuroadaptations that differentially develop depending upon the hormonal state of the animal. We also reconsider the notion that ovarian hormones, specifically estrogen/estradiol, sensitize target neurons thereby increasing responsivity when under the influence of either cocaine or opiates or in response to exposure to drug-associated cues. These adaptations may ultimately serve to guide the motivational behaviors that underlie the factors that cause women to be more vulnerable to cocaine and opiate addiction than men.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
58
|
Schacht JP, Anton RF, McNamara PJ, Im Y, King AC. The dopamine transporter VNTR polymorphism moderates the relationship between acute response to alcohol and future alcohol use disorder symptoms. Addict Biol 2019; 24:1109-1118. [PMID: 30230123 DOI: 10.1111/adb.12676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is a genetically influenced disease with peak onset in young adulthood. Identification of factors that predict whether AUD symptoms will diminish or persist after young adulthood is a critical public health need. King and colleagues previously reported that acute response to alcohol predicted future AUD symptom trajectory. Genes associated with brain dopamine signaling, which underlies alcohol's rewarding effects, might influence this finding. This study analyzed whether variation at a variable number tandem repeat polymorphism in DAT1/SLC6A3, the gene encoding the dopamine transporter, moderated the predictive relationships between acute response to alcohol and future AUD symptoms among participants enrolled in the Chicago Social Drinking Project (first two cohorts). Heavy-drinking young adults (N = 197) completed an alcohol challenge, in which acute response (liking, wanting, stimulation, and sedation) was measured. Alcohol use disorder symptoms were assessed over the following 6 years. DAT1 genotype significantly moderated the interactions between follow-up time and alcohol liking (P = 0.006) and wanting (P = 0.006) in predicting future AUD symptoms. These predictive effects were strongest among participants who carried the DAT1 9-repeat allele, previously associated with enhanced striatal dopamine tone relative to the 10-repeat allele. Exploratory analyses indicated that DAT1 effects on the relationship between alcohol liking and AUD symptoms appeared stronger for females (n = 79) than males (n = 118) (P = 0.0496). These data suggest that heavy-drinking DAT1 9-repeat allele carriers who display high alcohol-induced reward in young adulthood may be predisposed to persistent AUD symptoms and support combining genotypic and phenotypic information to predict future AUD risk.
Collapse
Affiliation(s)
- Joseph P. Schacht
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Raymond F. Anton
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Patrick J. McNamara
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago; Chicago Illinois USA
| | - Yeongbin Im
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston South Carolina USA
| | - Andrea C. King
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago; Chicago Illinois USA
| |
Collapse
|
59
|
Estrogen receptor 1 gene variants and estradiol activities in alcohol dependence. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:301-307. [PMID: 30677468 DOI: 10.1016/j.pnpbp.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alcohol use disorders inflict a great individual and societal burden. Although sex hormone effects have been implicated in alcohol dependence, research has mostly neglected estrogen activities and female alcohol-dependent patients. Here, we investigated associations of estrogen receptor 1 (ESR1) genetics and serum estradiol activities with aspects of alcohol dependence. METHOD Serum estradiol activities of early-abstinent alcohol-dependent in-patients (n[♂] = 113, n[♀] = 87) were followed for at median 5 days and compared with healthy controls (n[♂] = 133, n[♀] = 107). All participants were genotyped for five ESR1 single nucleotide polymorphisms (rs6902771, rs11155819, rs6557171, rs2982683, rs2982712). RESULTS Bioavailable estradiol levels decreased during withdrawal treatment (P[♂] < .001, P[♀] = .011). Male patients with an increase of bioavailable estradiol during withdrawal showed fewer days to (P = .033) and more alcohol-related readmissions (P < .05) during the 12-month follow-up. Higher estradiol and estradiol-to-testosterone activities were significantly related to liver, muscle, and cell count damage in male patients. Estradiol-to-testosterone activities in female patients were lower compared to female controls (total P = .013, bioavailable P = .009). Moreover, the ESR1 genotypes jointly separated alcohol-dependent patients from controls (P = .037). CONCLUSION Our findings support the role of ESR1 genetics in alcohol dependence and show for the first time that estradiol activities may sex-specifically predict alcohol-related sequelae and outcome following in-patient withdrawal treatment.
Collapse
|
60
|
Smithers HE, Terry JR, Brown JT, Randall AD. Sex-associated differences in excitability within the bed nucleus of the stria terminalis are reflective of cell-type. Neurobiol Stress 2019; 10:100143. [PMID: 30937349 PMCID: PMC6430407 DOI: 10.1016/j.ynstr.2018.100143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic brain region which plays a key role in stress, anxiety, and anxiety-related disorders. Human females have an increased susceptibility to anxiety-related disorders, however the physiological basis of this is not fully understood. Here we examined the effect of the oestrous cycle and sex on the electrophysiological properties of Type I and Type II cells in the anterolateral area of the BNST (BNSTALG) in unstressed animals. There was no significant effect of oestrous cycle on any of the parameters examined in either cell type. Compared to males, the female cohort had lower capacitance in Type I cells while having a higher capacitance in Type II cells. Type II cells also displayed decreased excitability in the female cohort. In order to confirm the effect of these populations on stress and anxiety, a correlation with behaviour on the elevated zero maze was carried out. We observed that increased excitability in Type II neurons correlated with a decrease in anxiety-like behaviour. These sex-specific differences in excitability may contribute to altered susceptibility to anxiety-related disorders.
Collapse
Affiliation(s)
- Hannah E. Smithers
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - John R. Terry
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Living Systems Institute, EX4 4QD, UK
| | - Jonathan T. Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Andrew D. Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, EX4 4PS, UK
| |
Collapse
|
61
|
Song Z, Yang H, Peckham EM, Becker JB. Estradiol-Induced Potentiation of Dopamine Release in Dorsal Striatum Following Amphetamine Administration Requires Estradiol Receptors and mGlu5. eNeuro 2019; 6:ENEURO.0446-18.2019. [PMID: 30766916 PMCID: PMC6374122 DOI: 10.1523/eneuro.0446-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Estradiol potentiates behavioral sensitization to cocaine as well as self-administration of cocaine and other drugs of abuse in female rodents. Furthermore, stimulated dopamine (DA) in the dorsolateral striatum (DLS) is rapidly enhanced by estradiol, and it is hypothesized that this enhanced DA release mediates the more rapid escalation of drug taking seen in females, compared with males. The mechanisms mediating the effect of estradiol to enhance stimulated DA release were investigated in this study. Using in vivo microdialysis and high performance liquid chromatography coupled with electrochemical detection, we first examined the effect of estradiol on amphetamine-induced DA increase in the DLS of ovariectomized rats. We then tested whether the potentiation of this DA increase could be blocked by the estradiol receptor antagonist, ICI 182,780 (ICI), or an antagonist to the metabotropic glutamate receptor subtype 5 (mGlu5), 2-methyl-6-(phenylethynyl)pyridine (MPEP). There is evidence that estradiol receptors collaborate with mGlu5 within caveoli in DLS and mGlu5 is hypothesized to mediate many of the effects of estradiol in the addiction processes in females. Our data show that estradiol enhances the DA response to amphetamine. Either ICI or MPEP prevented the effect of estradiol to enhance DA release. Importantly, our results also showed that neither ICI or MPEP alone is able to influence the DA response to amphetamine when estradiol is not administrated, suggesting that ICI and MPEP act via estradiol receptors. Together, our findings demonstrate that estradiol potentiates amphetamine-stimulated DA release in the DLS and this effect requires both estradiol receptors and mGlu5.
Collapse
Affiliation(s)
- Zhimin Song
- Molecular and Behavioral Neuroscience Institute
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Science, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, California 90095
| | | | - Jill B. Becker
- Molecular and Behavioral Neuroscience Institute
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
62
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
63
|
Hilderbrand ER, Lasek AW. Estradiol enhances ethanol reward in female mice through activation of ERα and ERβ. Horm Behav 2018; 98:159-164. [PMID: 29305887 PMCID: PMC5829002 DOI: 10.1016/j.yhbeh.2018.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 11/16/2022]
Abstract
Alcohol use disorder (AUD) manifests differently in men and women, but little is known about sex differences in the brain's response to ethanol. It is known that the steroid hormone 17β-estradiol (E2) regulates voluntary ethanol consumption in female rodents. However, the role of E2 as a regulator of ethanol reward has not been investigated. In this study, we tested for the effects of E2 and agonists selective for the classical estrogen receptors, ERα and ERβ, on ethanol reward in ovariectomized (OVX) mice using the conditioned place preference (CPP) test. E2 enhanced ethanol CPP and, while specific activation of either receptor alone had no effect, co-activation of ERα and ERβ also enhanced ethanol CPP, suggesting that E2 enhances ethanol reward in female mice through actions at both ERα and ERβ. These results have implications for sex differences in the development of AUD, suggesting that women may find ethanol more rewarding than men because of higher circulating E2 levels.
Collapse
Affiliation(s)
- Elisa R Hilderbrand
- Graduate Program in Neuroscience, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States.
| |
Collapse
|
64
|
Satta R, Hilderbrand ER, Lasek AW. Ovarian Hormones Contribute to High Levels of Binge-Like Drinking by Female Mice. Alcohol Clin Exp Res 2018; 42:286-294. [PMID: 29205408 DOI: 10.1111/acer.13571] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the incidence of binge drinking by women has increased. Binge drinking is detrimental to women's health, yet the biological mechanisms that promote excessive drinking by women are not well understood. One method of assessing binge-like ethanol (EtOH) consumption in mice is the drinking in the dark (DID) test, in which mice drink sufficient EtOH to achieve intoxication. In this study, we directly compared male, female, and ovariectomized (OVX) mice for DID and tested whether 17β-estradiol (E2) contributes to DID. We also measured whether DID varies throughout the estrous cycle and whether repeated intermittent DID impacts the estrous cycle. METHODS Male, female, and OVX C57BL/6J mice were tested for DID for 2 hours per day on days 1 to 3 and for 4 hours on day 4 using a single bottle containing 20% EtOH. To measure the effects of E2 on DID, OVX mice were treated with estradiol benzoate (EB) or vehicle daily starting 2 weeks prior to the drinking test and throughout the DID procedure. In a separate group of experiments, EtOH consumption and estrous cycle phase were measured in freely cycling mice that were drinking EtOH or water 5 days per week for 2 or 6 weeks. RESULTS Female mice consumed more EtOH than male and OVX mice. Treatment with EB increased EtOH consumption by OVX mice compared with vehicle-treated controls. However, EtOH intake did not vary across the estrous cycle, nor did long-term DID alter the estrous cycle. CONCLUSIONS These results demonstrate that ovarian hormones, specifically E2, contribute to increased EtOH consumption by female mice in the DID test. Although ovarian hormones contribute to this behavior, EtOH consumption is not affected by estrous cycle phase in freely cycling mice. This study provides a framework for understanding the factors that contribute to binge drinking in females.
Collapse
Affiliation(s)
- Rosalba Satta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Elisa R Hilderbrand
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|