51
|
Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL. The Trypanosoma brucei flagellum: moving parasites in new directions. Annu Rev Microbiol 2009; 63:335-62. [PMID: 19575562 PMCID: PMC3821760 DOI: 10.1146/annurev.micro.091208.073353] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
African trypanosomes are devastating human and animal pathogens. Trypanosoma brucei rhodesiense and T. b. gambiense subspecies cause the fatal human disease known as African sleeping sickness. It is estimated that several hundred thousand new infections occur annually and the disease is fatal if untreated. T. brucei is transmitted by the tsetse fly and alternates between bloodstream-form and insect-form life cycle stages that are adapted to survive in the mammalian host and the insect vector, respectively. The importance of the flagellum for parasite motility and attachment to the tsetse fly salivary gland epithelium has been appreciated for many years. Recent studies have revealed both conserved and novel features of T. brucei flagellum structure and composition, as well as surprising new functions that are outlined here. These discoveries are important from the standpoint of understanding trypanosome biology and identifying novel drug targets, as well as for advancing our understanding of fundamental aspects of eukaryotic flagellum structure and function.
Collapse
Affiliation(s)
- Katherine S. Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Zakayi P. Kabututu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Jason H. Melehani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
| | - Kent L. Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
| |
Collapse
|
52
|
Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S, Chen JN, Hill KL. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 2008; 457:205-9. [PMID: 19043402 DOI: 10.1038/nature07520] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/30/2008] [Indexed: 11/09/2022]
Abstract
In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Li Z, Umeyama T, Wang CC. The chromosomal passenger complex and a mitotic kinesin interact with the Tousled-like kinase in trypanosomes to regulate mitosis and cytokinesis. PLoS One 2008; 3:e3814. [PMID: 19043568 PMCID: PMC2583928 DOI: 10.1371/journal.pone.0003814] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/04/2008] [Indexed: 12/04/2022] Open
Abstract
Aurora B kinase plays essential roles in mitosis and cytokinesis in eukaryotes. In the procyclic form of Trypanosoma brucei, the Aurora B homolog TbAUK1 regulates mitosis and cytokinesis, phosphorylates the Tousled-like kinase TbTLK1, interacts with two mitotic kinesins TbKIN-A and TbKIN-B and forms a novel chromosomal passenger complex (CPC) with two novel proteins TbCPC1 and TbCPC2. Here we show with time-lapse video microscopy the time course of CPC trans-localization from the spindle midzone in late anaphase to the dorsal side of the cell where the anterior end of daughter cell is tethered, and followed by a glide toward the posterior end to divide the cell, representing a novel mode of cytokinesis in eukaryotes. The three subunits of CPC, TbKIN-B and TbTLK1 interact with one another suggesting a close association among the five proteins. An ablation of TbTLK1 inhibited the subsequent trans-localization of CPC and TbKIN-B, whereas a knockdown of CPC or TbKIN-B disrupted the spindle pole localization of TbTLK1 during mitosis. In the bloodstream form of T. brucei, the five proteins also play essential roles in chromosome segregation and cytokinesis and display subcellular localization patterns similar to that in the procyclic form. The CPC in bloodstream form also undergoes a trans-localization during cytokinesis similar to that in the procyclic form. All together, our results indicate that the five-protein complex CPC-TbTLK1-TbKIN-B plays key roles in regulating chromosome segregation in the early phase of mitosis and that the highly unusual mode of cytokinesis mediated by CPC occurs in both forms of trypanosomes.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Takashi Umeyama
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
54
|
Abstract
In unicellular and multicellular eukaryotes, fast cell motility and rapid movement of material over cell surfaces are often mediated by ciliary or flagellar beating. The conserved defining structure in most motile cilia and flagella is the '9+2' microtubule axoneme. Our general understanding of flagellum assembly and the regulation of flagellar motility has been led by results from seminal studies of flagellate protozoa and algae. Here we review recent work relating to various aspects of protist physiology and cell biology. In particular, we discuss energy metabolism in eukaryotic flagella, modifications to the canonical assembly pathway and flagellum function in parasite virulence.
Collapse
|
55
|
KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. EUKARYOTIC CELL 2008; 7:1941-50. [PMID: 18820079 DOI: 10.1128/ec.00249-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinetoplastid membrane protein 11 (KMP-11) has been identified as a flagellar protein and is conserved among kinetoplastid parasites, but its potential function remains unknown. In a recent study, we identified KMP-11 as a microtubule-bound protein localizing to the flagellum as well as the basal body in both procyclic and bloodstream forms of Trypanosoma brucei (Z. Li, J. H. Lee, F. Chu, A. L. Burlingame, A. Gunzl, and C. C. Wang, PLoS One 3:e2354, 2008). Silencing of KMP-11 by RNA interference inhibited basal body segregation and cytokinesis in both forms and resulted in multiple nuclei of various sizes, indicating a continuous, albeit somewhat defective, nuclear division while cell division was blocked. KMP-11 knockdown in the procyclic form led to severely compromised formation of the new flagellum attachment zone (FAZ) and detachment of the newly synthesized flagellum. However, a similar phenotype was not observed in the bloodstream form depleted of KMP-11. Thus, KMP-11 is a flagellar protein playing critical roles in regulating cytokinesis in both forms of the trypanosomes. Its distinct roles in regulating FAZ formation in the two forms may provide a clue to the different mechanisms of cytokinetic initiation in procyclic and bloodstream trypanosomes.
Collapse
|
56
|
von Bodman SB, Willey JM, Diggle SP. Cell-cell communication in bacteria: united we stand. J Bacteriol 2008; 190:4377-91. [PMID: 18456806 PMCID: PMC2446813 DOI: 10.1128/jb.00486-08] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susanne B von Bodman
- Department of Plant Science, University of Connecticut, Storrs, CT 06269-4163, USA.
| | | | | |
Collapse
|
57
|
Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 2008; 9:255. [PMID: 18510761 PMCID: PMC2453527 DOI: 10.1186/1471-2164-9-255] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania parasites cause a diverse spectrum of diseases in humans ranging from spontaneously healing skin lesions (e.g., L. major) to life-threatening visceral diseases (e.g., L. infantum). The high conservation in gene content and genome organization between Leishmania major and Leishmania infantum contrasts their distinct pathophysiologies, suggesting that highly regulated hierarchical and temporal changes in gene expression may be involved. RESULTS We used a multispecies DNA oligonucleotide microarray to compare whole-genome expression patterns of promastigote (sandfly vector) and amastigote (mammalian macrophages) developmental stages between L. major and L. infantum. Seven per cent of the total L. infantum genome and 9.3% of the L. major genome were differentially expressed at the RNA level throughout development. The main variations were found in genes involved in metabolism, cellular organization and biogenesis, transport and genes encoding unknown function. Remarkably, this comparative global interspecies analysis demonstrated that only 10-12% of the differentially expressed genes were common to L. major and L. infantum. Differentially expressed genes are randomly distributed across chromosomes further supporting a posttranscriptional control, which is likely to involve a variety of 3'UTR elements. CONCLUSION This study highlighted substantial differences in gene expression patterns between L. major and L. infantum. These important species-specific differences in stage-regulated gene expression may contribute to the disease tropism that distinguishes L. major from L. infantum.
Collapse
Affiliation(s)
- Annie Rochette
- Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ralston KS, Hill KL. The flagellum of Trypanosoma brucei: new tricks from an old dog. Int J Parasitol 2008; 38:869-84. [PMID: 18472102 DOI: 10.1016/j.ijpara.2008.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 11/30/2022]
Abstract
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. T. brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Therefore, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9+2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum.
Collapse
Affiliation(s)
- Katherine S Ralston
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
59
|
Smith RA, Gottlieb GS, Anderson DJ, Pyrak CL, Preston BD. Human immunodeficiency virus types 1 and 2 exhibit comparable sensitivities to Zidovudine and other nucleoside analog inhibitors in vitro. Antimicrob Agents Chemother 2008; 52:329-32. [PMID: 17967913 PMCID: PMC2223890 DOI: 10.1128/aac.01004-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/14/2007] [Accepted: 10/23/2007] [Indexed: 11/20/2022] Open
Abstract
Using an indicator cell assay that directly quantifies viral replication, we show that human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2, respectively) exhibit similar sensitivities to 3'-azido-3'-deoxythymidine (zidovudine) as well as other nucleoside analog inhibitors of reverse transcriptase. These data support the use of nucleoside analogs for antiviral therapy of HIV-2 infection.
Collapse
Affiliation(s)
- Robert A Smith
- University of Washington, Department of Pathology, K-046 HSB, Box 357705, 1959 NE Pacific St., Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
60
|
Hammarton TC, Monnerat S, Mottram JC. Cytokinesis in trypanosomatids. Curr Opin Microbiol 2007; 10:520-7. [PMID: 18023244 DOI: 10.1016/j.mib.2007.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/15/2022]
Abstract
The process of cytokinesis, where the cytoplasm of one cell is divided to produce two daughter cells, is intricate in trypanosomatids because of the requirement to replicate and segregate a number of single copy organelles, including the nucleus, kinetoplast, Golgi apparatus, and flagellum. Identifying regulators of the three stages of cytokinesis, initiation, furrow ingression, and abscission is complicated by the fact that cell division in trypanosomatids is easily perturbed and aberrant cells are readily produced during functional characterization of gene products. In this review, we discuss direct and indirect effects on cytokinesis, using Trypanosoma brucei as a model.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place, Glasgow G12 8TA, United Kingdom
| | | | | |
Collapse
|
61
|
Griffiths S, Portman N, Taylor PR, Gordon S, Ginger ML, Gull K. RNA interference mutant induction in vivo demonstrates the essential nature of trypanosome flagellar function during mammalian infection. EUKARYOTIC CELL 2007; 6:1248-50. [PMID: 17513568 PMCID: PMC1951115 DOI: 10.1128/ec.00110-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that trypanosomes compromised in flagellar function are rapidly cleared from infected mice. Analysis of the PFR2 bloodstream RNA interference mutant revealed that defective cell motility occurred prior to cytokinesis failure. This validation provides a paradigm for the flagellum as a target for future assays and interventions against this human pathogen.
Collapse
Affiliation(s)
- Samantha Griffiths
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | |
Collapse
|
62
|
Baron DM, Kabututu ZP, Hill KL. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci 2007; 120:1513-20. [PMID: 17405810 DOI: 10.1242/jcs.004846] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Axonemal dyneins are multisubunit molecular motors that provide the driving force for flagellar motility. Dynein light chain 1 (LC1) has been well studied in Chlamydomonas reinhardtii and is unique among all dynein components as the only protein known to bind directly to the catalytic motor domain of the dynein heavy chain. However, the role of LC1 in dynein assembly and/or function is unknown because no mutants have previously been available. We identified an LC1 homologue (TbLC1) in Trypanosoma brucei and have investigated its role in trypanosome flagellar motility using epitope tagging and RNAi studies. TbLC1 is localized along the length of the flagellum and partitions between the axoneme and soluble fractions following detergent and salt extraction. RNAi silencing of TbLC1 gene expression results in the complete loss of the dominant tip-to-base beat that is a hallmark of trypanosome flagellar motility and the concomitant emergence of a sustained reverse beat that propagates base-to-tip and drives cell movement in reverse. Ultrastructure analysis revealed that outer arm dyneins are disrupted in TbLC1 mutants. Therefore LC1 is required for stable dynein assembly and forward motility in T. brucei. Our work provides the first functional analysis of LC1 in any organism. Together with the recent findings in T. brucei DNAI1 mutants [Branche et al. (2006). Conserved and specific functions of axoneme components in trypanosome motility. J. Cell Sci. 119, 3443-3455], our data indicate functionally specialized roles for outer arm dyneins in T. brucei and C. reinhardtii. Understanding these differences will provide a more robust description of the fundamental mechanisms underlying flagellar motility and will aid efforts to exploit the trypanosome flagellum as a drug target.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
63
|
Hammarton TC. Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol 2007; 153:1-8. [PMID: 17335918 PMCID: PMC1914216 DOI: 10.1016/j.molbiopara.2007.01.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 01/23/2023]
Abstract
Cell division is regulated by intricate and interconnected signal transduction pathways that precisely coordinate, in time and space, the complex series of events involved in replicating and segregating the component parts of the cell. In Trypanosoma brucei, considerable progress has been made over recent years in identifying molecular regulators of the cell cycle and elucidating their functions, although many regulators undoubtedly remain to be identified, and there is still a long way to go with respect to determining signal transduction pathways. However, it is clear that cell cycle regulation in T. brucei is unusual in many respects. Analyses of trypanosome orthologues of conserved eukaryotic cell cycle regulators have demonstrated divergence of their function in the parasite, and a number of other key regulators are missing from T. brucei. Cell cycle regulation differs in different parasite life cycle stages, and T. brucei appears to use different checkpoint control strategies compared to model eukaryotes. It is therefore probable that T. brucei has evolved novel pathways to control its cell cycle.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Division of Infection & Immunity and Wellcome Centre for Molecular Parasitology, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
64
|
Baron DM, Ralston KS, Kabututu ZP, Hill KL. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci 2007; 120:478-91. [PMID: 17227795 DOI: 10.1242/jcs.03352] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cilia and flagella are highly conserved, complex organelles involved in a variety of important functions. Flagella are required for motility of several human pathogens and ciliary defects lead to a variety of fatal and debilitating human diseases. Many of the major structural components of cilia and flagella are known, but little is known about regulation of flagellar beat. Trypanosoma brucei, the causative agent of African sleeping sickness, provides an excellent model for studying flagellar motility. We have used comparative genomics to identify a core group of 50 genes unique to organisms with motile flagella. These genes, referred to as T. brucei components of motile flagella (TbCMF) include 30 novel genes, and human homologues of many of the TbCMF genes map to loci associated with human ciliary diseases. To characterize TbCMF protein function we used RNA interference to target 41 TbCMF genes. Sedimentation assays and direct observation demonstrated clear motility defects in a majority of these knockdown mutants. Epitope tagging, fluorescence localization and biochemical fractionation demonstrated flagellar localization for several TbCMF proteins. Finally, ultrastructural analysis identified a family of novel TbCMF proteins that function to maintain connections between outer doublet microtubules, suggesting that they are the first identified components of nexin links. Overall, our results provide insights into the workings of the eukaryotic flagellum, identify several novel human disease gene candidates, reveal unique aspects of the trypanosome flagellum and underscore the value of T. brucei as an experimental system for studying flagellar biology.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
65
|
Linck RW, Stephens RE. Functional protofilament numbering of ciliary, flagellar, and centriolar microtubules. ACTA ACUST UNITED AC 2007; 64:489-95. [PMID: 17366641 DOI: 10.1002/cm.20202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article discusses the current state of knowledge about the evolutionarily conserved structure of ciliary, flagellar and centriolar microtubules, and formally proposes a functional numbering convention for their protofilaments.
Collapse
Affiliation(s)
- Richard W Linck
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
66
|
Bekker JM, Colantonio JR, Stephens AD, Clarke WT, King SJ, Hill KL, Crosbie RH. Direct interaction of Gas11 with microtubules: Implications for the dynein regulatory complex. ACTA ACUST UNITED AC 2007; 64:461-73. [PMID: 17366626 DOI: 10.1002/cm.20196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.
Collapse
Affiliation(s)
- Janine M Bekker
- Department of Physiological Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Oberholzer M, Bregy P, Marti G, Minca M, Peier M, Seebeck T. Trypanosomes and mammalian sperm: one of a kind? Trends Parasitol 2006; 23:71-7. [PMID: 17174157 DOI: 10.1016/j.pt.2006.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/02/2006] [Accepted: 12/06/2006] [Indexed: 01/20/2023]
Abstract
Flagellar-mediated motility is an indispensable function for cell types as evolutionarily distant as mammalian sperm and kinetoplastid parasites, a large group of flagellated protozoa that includes several important human pathogens. Despite the obvious importance of flagellar motility, little is known about the signalling processes that direct the frequency and wave shape of the flagellar beat, or those that provide the motile cell with the necessary environmental cues that enable it to aim its movement. Similarly, the energetics of the flagellar beat and the problem of a sufficient ATP supply along the entire length of the beating flagellum remain to be explored. Recent proteome projects studying the flagella of mammalian sperm and kinetoplastid parasites have provided important information and have indicated a surprising degree of similarities between the flagella of these two cell types.
Collapse
Affiliation(s)
- Michael Oberholzer
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|