51
|
Starrett GJ, Tisza MJ, Welch NL, Belford AK, Peretti A, Pastrana DV, Buck CB. Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol 2021; 7:veaa055. [PMID: 34646575 PMCID: PMC8502044 DOI: 10.1093/ve/veaa055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.
Collapse
Affiliation(s)
| | - Michael J Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Nicole L Welch
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Anna K Belford
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Alberto Peretti
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
52
|
El-Sharkawy LY, Brough D, Freeman S. Inhibiting the NLRP3 Inflammasome. Molecules 2020; 25:E5533. [PMID: 33255820 PMCID: PMC7728307 DOI: 10.3390/molecules25235533] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes are protein complexes which are important in several inflammatory diseases. Inflammasomes form part of the innate immune system that triggers the activation of inflammatory cytokines interleukin (IL)-1β and IL-18. The inflammasome most studied in sterile inflammation and non-communicable disease is the NLRP3 inflammasome. Upon activation by diverse pathogen or disease associated signals, NLRP3 nucleates the oligomerization of an adaptor protein ASC forming a platform (the inflammasome) for the recruitment and activation of the protease caspase-1. Active caspase-1 catalyzes the processing and release of IL-1β and IL-18, and via cleavage of the pore forming protein gasdermin D can drive pyroptotic cell death. This review focuses on the structural basis and mechanism for NLRP3 inflammasome signaling in the context of drug design, providing chemical structures, activities, and clinical potential of direct inflammasome inhibitors. A cryo-EM structure of NLRP3 bound to NEK7 protein provides structural insight and aids in the discovery of novel NLRP3 inhibitors utilizing ligand-based or structure-based approaches.
Collapse
Affiliation(s)
- Lina Y. El-Sharkawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK;
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK;
| |
Collapse
|
53
|
Electroacupuncture Improves Cognitive Function in Senescence-Accelerated P8 (SAMP8) Mice via the NLRP3/Caspase-1 Pathway. Neural Plast 2020; 2020:8853720. [PMID: 33204250 PMCID: PMC7657681 DOI: 10.1155/2020/8853720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background. Clinically, electroacupuncture (EA) is the most common therapy for aging-related cognitive impairment (CI). However, the underlying pathomechanism remains unidentified. The aims of this study were to observe the effect of EA on cognitive function and explore the potential mechanism by which EA acts on the NLRP3/caspase-1 signaling pathway. Main Methods. Thirty male SAMP8 mice were randomly divided into the model, the 2 Hz EA and 10 Hz EA groups. Ten male SAMR1 mice were assigned to the control group. Cognitive function was assessed through the Morris water maze test. Hippocampal morphology and cell death were observed by HE and TUNEL staining, respectively. The serum IL-1β, IL-6, IL-18, and TNF-α levels were measured by ELISA. Hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-18, Aβ, and tau proteins were detected by Western blotting. Key Findings. Cognitive function, hippocampal morphology, and TUNEL-positive cell counts were improved by both EA frequencies. The serum IL-1β, IL-6, IL-18, and TNF-α levels were decreased by EA treatment. However, 10 Hz EA reduced the number of TUNEL-positive cells in the CA1 region and serum IL-1β and IL-6 levels more effectively than 2 Hz EA. NLRP3/caspase-1 pathway-related proteins were significantly downregulated by EA, but 2 Hz EA did not effectively reduce ASC protein expression. Interestingly, both EA frequencies failed to reduce the expression of Aβ and tau proteins. Significance. The effects of 10 Hz EA at the GV20 and ST36 acupoints on the NLRP3/caspase-1 signaling pathway may be a mechanism by which this treatment relieves aging-related CI in mice.
Collapse
|
54
|
Peng D, Li J, Deng Y, Zhu X, Zhao L, Zhang Y, Li Z, Ou S, Li S, Jiang Y. Sodium para-aminosalicylic acid inhibits manganese-induced NLRP3 inflammasome-dependent pyroptosis by inhibiting NF-κB pathway activation and oxidative stress. J Neuroinflammation 2020; 17:343. [PMID: 33203418 PMCID: PMC7670624 DOI: 10.1186/s12974-020-02018-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background The activation of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent pyroptosis has been shown to play a vital role in the pathology of manganese (Mn)-induced neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has a positive effect on the treatment of manganism. However, the mechanism is still unclear. We hypothesized that PAS-Na might act through NLRP3. Methods The microglial cell line BV2 and male Sprague-Dawley rats were used to investigate the impacts of PAS-Na on Mn-induced NLRP3 inflammasome-dependent pyroptosis. The related protein of the NF-κB pathway and NLRP3-inflammasome-dependent pyroptosis was detected by western blot. The reactive oxygen species and mitochondrial membrane potential were detected by immunofluorescence staining and flow cytometry. The activation of microglia and the gasdermin D (GSDMD) were detected by immunofluorescence staining. Results Our results showed that Mn treatment induced oxidative stress and activated the NF-κB pathway by increasing the phosphorylation of p65 and IkB-α in BV2 cells and in the basal ganglia of rats. PAS-Na could alleviate Mn-induced oxidative stress damage by inhibiting ROS generation, increasing mitochondrial membrane potential and ATP levels, thereby reducing the phosphorylation of p65 and IkB-α. Besides, Mn treatment could activate the NLRP3 pathway and promote the secretion of IL-18 and IL-1β, mediating pyroptosis in BV2 cells and in the basal ganglia and hippocampus of rats. But an inhibitor of NF-κb (JSH-23) treatment could significantly reduce LDH release, the expression of NLRP3 and Cleaved CASP1 protein and IL-1β and IL-18 mRNA level in BV2 cells. Interestingly, the effect of PAS-Na treatment in Mn-treated BV2 cells is similar to those of JSH-23. Besides, immunofluorescence results showed that PAS-Na reduced the increase number of activated microglia, which stained positively for GSDMD. Conclusion PAS-Na antagonized Mn-induced NLRP3 inflammasome dependent pyroptosis through inhibiting NF-κB pathway activation and oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02018-6.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Junyan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Xiaojuan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Yuwen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Shiyan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Shuang-yong Road No.22, Nanning, 530021, Guangxi, China.
| |
Collapse
|
55
|
Carty M, Guy C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol 2020; 183:114316. [PMID: 33152343 DOI: 10.1016/j.bcp.2020.114316] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors (PRRs) and inflammasomes are a key part of the anti-viral innate immune system as they detect conserved viral pathogen-associated molecular patterns (PAMPs). A successful host response to viral infections critically depend on the initial activation of PRRs by viruses, mainly by viral DNA and RNA. The signalling pathways activated by PRRs leads to the expression of pro-inflammatory cytokines, to recruit immune cells, and type I and type III interferons which leads to the induction of interferon stimulated genes (ISG), powerful virus restriction factors that establish the "antiviral state". Inflammasomes contribute to anti-viral responses through the maturation of interleukin (IL)-1 and IL-18 and through triggering pyroptotic cell death. The activity of the innate immune system along with the adaptive immune response normally leads to successful virus elimination, although disproportionate innate responses contribute to viral pathology. In this review we will discuss recent insights into the influence of PRR activation and inflammasomes on viral infections and what this means for the mammalian host. We will also comment on how specific PRRs and inflammasomes may be relevant to how SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, interacts with host innate immunity.
Collapse
Affiliation(s)
- Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
56
|
Tomani JCD, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L, Frederich M, Muganga R, Souopgui J. The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules 2020; 25:molecules25204693. [PMID: 33066442 PMCID: PMC7587372 DOI: 10.3390/molecules25204693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome and/or its components is associated with the physio-pathogenesis of many respiratory diseases including asthma, COPD (chronic obstructive pulmonary disease), SARS Cov-2 (severe acute respiratory syndrome coronavirus 2), and in several autoimmune diseases. Hibiscus noldeae Baker f. has been widely reported to be traditionally used in the treatment of different ailments, some of which are of inflammatory background such as asthma, wounds, headache, etc. However, the claims have not been supported by evidence at the molecular and functional levels. Here, we report on the bio-guided fractionation of H. noldeae and assessment of the inhibitory properties of some fractions and purified compounds on NLRP3 inflammasome and Interleukin 6 (IL-6). The activation of the NLRP3 inflammasome was determined by detecting the activity of caspase-1 and the production of Interleukin 1β (IL-1β) in Lipopolysaccharide (LPS) and ATP-stimulated Tamm-Horsfall Protein 1 (THP-1) macrophages, while the production of IL-6 was studied in LPS-stimulated RAW264.7 mouse macrophages. It was observed that hexane and ethyl acetate fractions of the crude extract of the aerial parts of H. noldeae, as well as caffeic acid, isoquercetin, and ER2.4 and ER2.7 fractions revealed significant inhibitory effects on Caspase-1 activities, and on IL-1β and IL-6 production. The ER2.4 and ER2.7 fractions downregulated the production of IL-1β and IL-6, in a similar range as the caspase-1 inhibitor AC-YVAD-CHO and the drug Dexamethasone, both used as controls, respectively. Overall, our work does provide the very first scientific based evidence for Hibiscus noldeae anti-inflammatory effects and widespread use by traditional healers in Rwanda for a variety of ailments.
Collapse
Affiliation(s)
- Jean Claude Didelot Tomani
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
| | - Vedaste Kagisha
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Alembert Tiabou Tchinda
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 6163, Cameroon;
| | - Olivia Jansen
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Allison Ledoux
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Luc Vanhamme
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
| | - Michel Frederich
- Laboratory of Pharmacognosy, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, B36, 4000 Liège, Belgium; (O.J.); (A.L.); (M.F.)
| | - Raymond Muganga
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286 Kigali, Rwanda; (J.C.D.T.); (V.K.); (R.M.)
| | - Jacob Souopgui
- Department of Molecular Biology, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Gosselies, Belgium;
- Correspondence: ; Tel.: +32-2-650-9936
| |
Collapse
|
57
|
Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, Budden KF, Choi JP, Kohonen-Corish M, El-Omar EM, Yang IA, Hansbro PM. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol 2020; 108:925-935. [PMID: 33405294 DOI: 10.1002/jlb.3mr0720-472rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jaesung P Choi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Maija Kohonen-Corish
- Woolcock Institute of Medical Research and Faculty of Science, University of Technology Sydney, Garvan Institute of Medical Research and St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Ian A Yang
- The Prince Charles Hospital and The University of Queensland, Brisbane, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
58
|
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48:1043-1056. [PMID: 32710488 PMCID: PMC7754492 DOI: 10.1111/ceo.13834] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023]
Abstract
Age‐related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non‐exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress‐induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.
Collapse
Affiliation(s)
- Shreya Somasundaran
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
59
|
NLRP12- and NLRC4-mediated corneal epithelial pyroptosis is driven by GSDMD cleavage accompanied by IL-33 processing in dry eye. Ocul Surf 2020; 18:783-794. [PMID: 32735949 DOI: 10.1016/j.jtos.2020.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
PURPOSE Dry eye disease (DED) is a common and multifactor-induced autoimmune ocular surface disease. Environmental factors, such as desiccating stress (DS) and hyperosmolarity, affect the corneal epithelium to induce ocular surface inflammation in DED. We aimed to explore the potential mechanisms by which innate immunity and pyroptosis are initiated in the mucosal epithelium in response to environmental stress. METHODS Experimental dry eye was established in C57BL/6 J mice and genetic mice on the background of C57BL/6 J mice by subcutaneous injection of scopolamine and exposure to a desiccating environment. SDHCEC cell line was subjected to hyperosmolarity stress (450 mOsM). The phenol red thread tear test and corneal epithelial defects evaluation were used as assessments of severity of DED. RNA-sequencing, quantitative real-time PCR, western blotting and immunofluorescence staining were performed in this study. RESULTS Loss-of-function studies indicated that genetic deletion of GSDMD alleviates DS-induced corneal epithelium defects, and GSDMD is needed for IL-33 processing. We further found that NLRP12 collaborates with NLRC4 inflammasome to initiate GSDMD-dependent pyroptosis, which requires TLR4-induced caspase-8 (CASP8) activation in the mucosal corneal epithelium in response to DS. CONCLUSIONS These findings provide compelling evidence that GSDMD-dependent pyroptosis plays a pivotal role in DED. A novel mechanism involving NLRP12 and NLRC4 inflammasomes-induced GSDMD-dependent pyroptosis, accompanied by IL-33 processing is responsible for ocular surface epithelial defects in response to environmental stress. GSDMD is required for IL-33 processing and the subsequent amplification of inflammatory cascades. These findings reveal novel therapeutic targets for treating DED.
Collapse
|
60
|
Lieberman J, Wu H, Kagan JC. Gasdermin D activity in inflammation and host defense. Sci Immunol 2020; 4:4/39/eaav1447. [PMID: 31492708 DOI: 10.1126/sciimmunol.aav1447] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
Abstract
The mechanisms underlying the release of interleukin-1 (IL-1) family cytokines from phagocytes have been the subject of intense investigations for more than 30 years. The absence of an amino-terminal secretion signal from members of this family suggests a previously unknown mechanism of protein secretion that transfers cytosolic IL-1 directly across the plasma membrane into the extracellular space. The pore-forming protein gasdermin D (GSDMD) has emerged as the conduit for IL-1 secretion from the cytosol, serving to induce the release of IL-1 from living (hyperactive) or dead (pyroptotic) cells. In this Review, we discuss the mechanism by which GSDMD pore formation is regulated by the activity of inflammatory caspases, which are commonly associated with inflammasomes. We discuss how GSDMD promotes IL-1 release from hyperactive or pyroptotic cells, with a specific focus on defining how these distinct cell fates associated with GSDMD activity can be regulated. Last, the physiological consequences of GSDMD activity and therapeutic potential of targeting this pore-forming protein are discussed, which highlight the abundance of questions that remain to be answered by the community.
Collapse
Affiliation(s)
- Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
61
|
Yu P, Li Y, Li Y, Miao Z, Peppelenbosch MP, Pan Q. Guanylate-binding protein 2 orchestrates innate immune responses against murine norovirus and is antagonized by the viral protein NS7. J Biol Chem 2020; 295:8036-8047. [PMID: 32354743 DOI: 10.1074/jbc.ra120.013544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Noroviruses are the main causative agents of acute viral gastroenteritis, but the host factors that restrict their replication remain poorly identified. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPases that exert broad antiviral activity and are important mediators of host defenses against viral infections. Here, we show that both IFN-γ stimulation and murine norovirus (MNV) infection induce GBP2 expression in murine macrophages. Results from loss- and gain-of-function assays indicated that GBP2 is important for IFN-γ-dependent anti-MNV activity in murine macrophages. Ectopic expression of MNV receptor (CD300lf) in human HEK293T epithelial cells conferred susceptibility to MNV infection. Importantly, GBP2 potently inhibited MNV in these human epithelial cells. Results from mechanistic dissection experiments revealed that the N-terminal G domain of GBP2 mediates these anti-MNV effects. R48A and K51A substitutions in GBP2, associated with loss of GBP2 GTPase activity, attenuated the anti-MNV effects of GBP2. Finally, we found that nonstructural protein 7 (NS7) of MNV co-localizes with GBP2 and antagonizes the anti-MNV activity of GBP2. These findings reveal that GBP2 is an important mediator of host defenses against murine norovirus.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
62
|
Lipopolysaccharide restricts murine norovirus infection in macrophages mainly through NF-kB and JAK-STAT signaling pathway. Virology 2020; 546:109-121. [PMID: 32452409 DOI: 10.1016/j.virol.2020.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
The inflammasome machinery has recently been recognized as an emerging pillar of innate immunity. However, little is known regarding the interaction between the classical interferon (IFN) response and inflammasome activation in response to norovirus infection. We found that murine norovirus (MNV-1) infection induces the transcription of IL-1β, a hallmark of inflammasome activation, which is further increased by inhibition of IFN response, but fails to trigger the release of mature IL-1β. Interestingly, pharmacological inflammasome inhibitors do not affect viral replication, but slightly reverse the inflammasome activator lipopolysaccharide (LPS)-mediated inhibition of MNV replication. LPS efficiently stimulates the transcription of IFN-β through NF-ĸB, which requires the transcription factors IRF3 and IRF7. This activates downstream antiviral IFN-stimulated genes (ISGs) via the JAK-STAT pathway. Moreover, inhibition of NF-ĸB and JAK-STAT signaling partially reverse LPS-mediated anti-MNV activity, suggesting additional antiviral mechanisms activated by NF-ĸB. This study reveals additional insight in host defense against MNV infection.
Collapse
|
63
|
Chen H, Deng Y, Gan X, Li Y, Huang W, Lu L, Wei L, Su L, Luo J, Zou B, Hong Y, Cao Y, Liu Y, Chi W. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma. Mol Neurodegener 2020; 15:26. [PMID: 32295623 PMCID: PMC7161290 DOI: 10.1186/s13024-020-00372-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute glaucoma, characterized by a sudden elevation in intraocular pressure (IOP) and retinal ganglion cells (RGCs) death, is a major cause of irreversible blindness worldwide that lacks approved effective therapies, validated treatment targets and clear molecular mechanisms. We sought to explore the potential molecular mechanisms underlying the causal link between high IOP and glaucomatous RGCs death. METHODS A murine retinal ischemia/ reperfusion (RIR) model and an in vitro oxygen and glucose deprivation/reoxygenation (OGDR) model were used to investigate the pathogenic mechanisms of acute glaucoma. RESULTS Our findings reveal a novel mechanism of microglia-induced pyroptosis-mediated RGCs death associated with glaucomatous vision loss. Genetic deletion of gasdermin D (GSDMD), the effector of pyroptosis, markedly ameliorated the RGCs death and retinal tissue damage in acute glaucoma. Moreover, GSDMD cleavage of microglial cells was dependent on caspase-8 (CASP8)-hypoxia-inducible factor-1α (HIF-1α) signaling. Mechanistically, the newly identified nucleotide-binding leucine-rich repeat-containing receptor (NLR) family pyrin domain-containing 12 (NLRP12) collaborated with NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing protein 4 (NLRC4) downstream of the CASP8-HIF-1α axis, to elicit pyroptotic processes and interleukin-1β (IL-1β) maturation through caspase-1 activation, facilitating pyroptosis and neuroinflammation in acute glaucoma. Interestingly, processing of IL-1β in turn magnified the CASP8-HIF-1α-NLRP12/NLRP3/NLRC4-pyroptosis circuit to accelerate inflammatory cascades. CONCLUSIONS These data not only indicate that the collaborative effects of NLRP12, NLRP3 and NLRC4 on pyroptosis are responsible for RGCs death, but also shed novel mechanistic insights into microglial pyroptosis, paving novel therapeutic avenues for the treatment of glaucoma-induced irreversible vision loss through simultaneously targeting of pyroptosis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yang Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoliang Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yonghao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Lishi Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jiawen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yanhua Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karoslinska Institute, 17177, Stockholm, Sweden
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
64
|
Abstract
Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA; , ,
| | | |
Collapse
|
65
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
66
|
Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: The role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci 2019; 240:117138. [PMID: 31809715 DOI: 10.1016/j.lfs.2019.117138] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 01/06/2023]
Abstract
Pyroptosis is a form of cell death mediated by gasdermin D (GSDMD); it is characterised by NLRP3 inflammasome activation, caspase activation, cell membrane pore formation, and the release of interleukin-1β and interleukin-18. NLRP3 inflammasome activation plays a central role in pyroptosis. Recent research has suggested that NLRP3 inflammasome activation may be involved in the occurrence and development of diabetes mellitus and its associated complications. This finding provided the impetus for us to clarify the significance of pyroptosis in diabetes. In this review, we summarise the current understanding of the molecular mechanisms involved in pyroptosis, as well as recent advances in the role of NLRP3 inflammasome activation and pyroptosis in the development of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Zi-Wei Yu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Jing Zhang
- Department of Endocrinology, The Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Xin Li
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Wang
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu-Hong Fu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
67
|
Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Front Immunol 2019; 10:2608. [PMID: 31781110 PMCID: PMC6857005 DOI: 10.3389/fimmu.2019.02608] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins—including chromatin and ribonucleoproteins—are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
68
|
Yumnamcha T, Devi TS, Singh LP. Auranofin Mediates Mitochondrial Dysregulation and Inflammatory Cell Death in Human Retinal Pigment Epithelial Cells: Implications of Retinal Neurodegenerative Diseases. Front Neurosci 2019; 13:1065. [PMID: 31649499 PMCID: PMC6795687 DOI: 10.3389/fnins.2019.01065] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Photoreceptor degeneration occurs in various retinal diseases including age-related macular degeneration (AMD), Retinitis pigmentosa (RP), and diabetic retinopathy (DR). However, molecular mechanisms are not fully understood yet. The retinal pigment epithelium (RPE) forms the outer blood retinal barrier (oBRB) and supplies glucose, oxygen and nutrients from the fenestrated choriocapillaris to photoreceptors for visual function. Therefore, RPE dysfunction leads to photoreceptor injury/death and progression of blinding eye diseases. This study aims to understand the role of the thioredoxin (Trx) and its reductase (TrxR) redox signaling in human RPE dysfunction and cell death mechanism(s) in an in vitro system. Methods A human RPE cell line (APRE-19) was cultured in DMEM/F12 medium and treated with auranofin (AF - 4 μM, an inhibitor of TrxR) for 4 and 24 h. Mitochondrial and lysosomal function, cellular oxidative stress and NLRP3 inflammasome activity were measured using cell assays, Western blotting, and confocal microscopy. Antioxidants and anti-inflammatory compounds were tested for blocking AF effects on RPE damage. Cell death mechanisms (LDH release to culture media) were determined using necroptosis, ferroptosis and pyroptosis inhibitors. P < 0.05 was considered significant in statistical analysis. Results Auranofin causes mitochondrial dysfunction (Δψm↓ and ATP↓), oxidative stress (H2O2↑) and mitophagic flux to lysosomes. Furthermore, the lysosomal enzyme (cathepsin L) activity is reduced while that of pro-inflammatory caspase-1 (NLRP3 inflammasome) is enhanced in ARPE-19. These effects of AF on ARPE-19 are inhibited by antioxidant N-acetylcysteine (5 mM, NAC) and significantly by a combination of SS31 (mitochondrial antioxidant) and anti-inflammatory drugs (amlexanox and tranilast). AF also causes cell death as measured by cytosolic LDH release/leakage, which is not inhibited by either ferrostatin-1 or necrostatin-1 (ferroptosis and necroptosis inhibitors, respectively). Conversely, AF-induced LDH release is significantly reduced by MCC950 and Ac-YVAD-cmk (NLRP3 and Caspase-1 inhibitors, respectively), suggesting a pro-inflammatory cell death by pyroptosis. Conclusion The Trx/TrxR redox system is critical for RPE function and viability. We previously showed that thioredoxin-interacting protein (TXNIP) is strongly induced in DR inhibiting the Trx/TrxR system and RPE dysfunction. Therefore, our results suggest that the TXNIP-Trx-TrxR redox pathway may participate in RPE dysfunction in DR and other retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Takhellembam Swornalata Devi
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|