51
|
Lleixà J, Martín V, Giorello F, Portillo MC, Carrau F, Beltran G, Mas A. Analysis of the NCR Mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae During Winemaking. Front Genet 2019; 9:747. [PMID: 30687397 PMCID: PMC6338192 DOI: 10.3389/fgene.2018.00747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/31/2018] [Indexed: 01/08/2023] Open
Abstract
There is increasing interest in the use of non-Saccharomyces yeasts in winemaking due to their positive attributes. The non-Saccharomyces yeast Hanseniaspora vineae is an apiculate yeast that has been associated with the production of wine with good fermentation capacity and an increase in aromatic properties. However, this yeast represents a concern in mixed culture fermentation because of its nutrient consumption, especially nitrogen, as its mechanisms of regulation and consumption are still unknown. In this study, we analyzed the nitrogen consumption, as well as the nitrogen catabolism repression (NCR) mechanism, in two genome-sequenced H. vineae strains, using synthetic must fermentations. The use of synthetic must with an established nitrogen content allowed us to study the NCR mechanism in H. vineae, following the amino acid and ammonia consumption, and the expression of genes known to be regulated by the NCR mechanism in S. cerevisiae, AGP1, GAP1, MEP2, and PUT2. H. vineae exhibited a similar amino acid consumption and gene expression profile to S. cerevisiae. However, the wine strain of S. cerevisiae QA23 consumed ammonia and valine more quickly and, in contrast, tyrosine and tryptophan more slowly, than the H. vineae strains. Our results showed a similar behavior of nitrogen regulation in H. vineae and S. cerevisiae, indicating the presence of the NCR mechanism in this Hanseniaspora yeast differentiated before the whole genome duplication event of the Saccharomyces complex. Future study will elucidate if the NCR mechanism is the only strategy used by H. vineae to optimize nitrogen consumption.
Collapse
Affiliation(s)
- Jessica Lleixà
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Valentina Martín
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Facundo Giorello
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Maria C Portillo
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francisco Carrau
- Sección Enología, Food Science and Technology Department, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
52
|
Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040092] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical analysis of grape juice and wine has been performed for over 50 years in a targeted manner to determine a limited number of compounds using Gas Chromatography, Mass-Spectrometry (GC-MS) and High Pressure Liquid Chromatography (HPLC). Therefore, it only allowed the determination of metabolites that are present in high concentration, including major sugars, amino acids and some important carboxylic acids. Thus, the roles of many significant but less concentrated metabolites during wine making process are still not known. This is where metabolomics shows its enormous potential, mainly because of its capability in analyzing over 1000 metabolites in a single run due to the recent advancements of high resolution and sensitive analytical instruments. Metabolomics has predominantly been adopted by many wine scientists as a hypothesis-generating tool in an unbiased and non-targeted way to address various issues, including characterization of geographical origin (terroir) and wine yeast metabolic traits, determination of biomarkers for aroma compounds, and the monitoring of growth developments of grape vines and grapes. The aim of this review is to explore the published literature that made use of both targeted and untargeted metabolomics to study grapes and wines and also the fermentation process. In addition, insights are also provided into many other possible avenues where metabolomics shows tremendous potential as a question-driven approach in grape and wine research.
Collapse
|
53
|
Zhang W, Cheng Y, Li Y, Du G, Xie G, Zou H, Zhou J, Chen J. Adaptive Evolution Relieves Nitrogen Catabolite Repression and Decreases Urea Accumulation in Cultures of the Chinese Rice Wine Yeast Strain Saccharomyces cerevisiae XZ-11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9061-9069. [PMID: 29882665 DOI: 10.1021/acs.jafc.8b01313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urea is the major precursor of ethyl carbamate in Chinese rice wine. Although efforts have been made to decrease urea accumulation, few methods can be applied to industrial food production due to potential safety concerns. In this study, adaptive laboratory evolution (ALE) followed by high-throughput screening was used to identify low urea-accumulating strains derived from the industrial Chinese rice wine yeast strain Saccharomyces cerevisiae XZ-11. Three evolved strains were obtained that had 47.9%, 16.6%, and 12.4% lower urea concentrations than the wild-type strain. Comparative genomics analysis revealed that genes involved in carbon and nitrogen metabolism evolved quickly. Transcription levels of genes involved in urea metabolism were dramatically upregulated after ALE. This work describes a novel and safe strategy to improve nitrogen utilization of industrial yeast strains involved in food fermentation. The identified genomic variations may also help direct rational genetic engineering of nitrogen metabolism processes to achieve other goals.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yan Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Yudong Li
- Department of Bioengineering, School of Food Sciences and Biotechnology , Zhejiang Gongshang University , Hangzhou 310018 , China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Guangfa Xie
- College of Shaoxing Rice Wine , Zhejiang Shuren University , Shaoxing 312028 , China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company , 13 Yangjiang Road , Shaoxing , Zhejiang China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
54
|
Sajiki K, Tahara Y, Uehara L, Sasaki T, Pluskal T, Yanagida M. Genetic regulation of mitotic competence in G 0 quiescent cells. SCIENCE ADVANCES 2018; 4:eaat5685. [PMID: 30116786 PMCID: PMC6093628 DOI: 10.1126/sciadv.aat5685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/04/2018] [Indexed: 05/03/2023]
Abstract
Quiescent (G0 phase) cells must maintain mitotic competence (MC) to restart the cell cycle. This is essential for reproduction in unicellular organisms and also for development and cell replacement in higher organisms. Recently, suppression of MC has gained attention as a possible therapeutic strategy for cancer. Using a Schizosaccharomyces pombe deletion-mutant library, we identified 85 genes required to maintain MC during the G0 phase induced by nitrogen deprivation. G0 cells must recycle proteins and RNA, governed by anabolism, catabolism, transport, and availability of small molecules such as antioxidants. Protein phosphatases are also essential to maintain MC. In particular, Nem1-Spo7 protects the nucleus from autophagy by regulating Ned1, a lipin. These genes, designated GZE (G-Zero Essential) genes, reveal the landscape of genetic regulation of MC.
Collapse
Affiliation(s)
- Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| | - Yuria Tahara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Lisa Uehara
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Toshio Sasaki
- Research Support Imaging Section, OIST, Onna, Okinawa, Japan
| | - Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
- Corresponding author. (K.S.); (M.Y.)
| |
Collapse
|
55
|
Hong J, Brandt N, Abdul-Rahman F, Yang A, Hughes T, Gresham D. An incoherent feedforward loop facilitates adaptive tuning of gene expression. eLife 2018; 7:e32323. [PMID: 29620523 PMCID: PMC5903863 DOI: 10.7554/elife.32323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression.
Collapse
Affiliation(s)
- Jungeui Hong
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
- Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Nathan Brandt
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Farah Abdul-Rahman
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| | - Ally Yang
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - Tim Hughes
- Banting and Best Department of Medical Research, Donnelly CentreUniversity of TorontoTorontoCanada
| | - David Gresham
- Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUnited States
| |
Collapse
|
56
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
57
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
58
|
Brabender M, Hussain MS, Rodriguez G, Blenner MA. Urea and urine are a viable and cost-effective nitrogen source for Yarrowia lipolytica biomass and lipid accumulation. Appl Microbiol Biotechnol 2018; 102:2313-2322. [DOI: 10.1007/s00253-018-8769-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022]
|
59
|
Dhami MK, Hartwig T, Fukami T. Genetic basis of priority effects: insights from nectar yeast. Proc Biol Sci 2017; 283:rspb.2016.1455. [PMID: 27708148 DOI: 10.1098/rspb.2016.1455] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/07/2016] [Indexed: 01/15/2023] Open
Abstract
Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects.
Collapse
Affiliation(s)
- Manpreet K Dhami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
60
|
More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in Saccharomyces cerevisiae. Genetics 2017; 208:207-227. [PMID: 29113979 DOI: 10.1534/genetics.117.300457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 01/20/2023] Open
Abstract
Gln3 is responsible for Nitrogen Catabolite Repression-sensitive transcriptional activation in the yeast Saccharomyces cerevisiae In nitrogen-replete medium, Gln3 is cytoplasmic and NCR-sensitive transcription is repressed. In nitrogen-limiting medium, in cells treated with TorC1 inhibitor, rapamycin, or the glutamine synthetase inhibitor, methionine sulfoximine (Msx), Gln3 becomes highly nuclear and NCR-sensitive transcription derepressed. Previously, nuclear Gln3 localization was concluded to be mediated by a single nuclear localization sequence, NLS1. Here, we show that nuclear Gln3-Myc13 localization is significantly more complex than previously appreciated. We identify three Gln3 sequences, other than NLS1, that are highly required for nuclear Gln3-Myc13 localization. Two of these sequences exhibit characteristics of monopartite (K/R-Rich NLS) and bipartite (S/R NLS) NLSs, respectively. Mutations altering these sequences are partially epistatic to a ure2Δ. The third sequence, the Ure2 relief sequence, exhibits no predicted NLS homology and is only necessary when Ure2 is present. Substitution of the basic amino acid repeats in the Ure2 relief sequence or phosphomimetic aspartate substitutions for the serine residues between them abolishes nuclear Gln3-Myc13 localization in response to both limiting nitrogen and rapamycin treatment. In contrast, Gln3-Myc13 responses are normal in parallel serine-to-alanine substitution mutants. These observations suggest that Gln3 responses to specific nitrogen environments likely occur in multiple steps that can be genetically separated. At least one general step that is associated with the Ure2 relief sequence may be prerequisite for responses to the specific stimuli of growth in poor nitrogen sources and rapamycin inhibition of TorC1.
Collapse
|
61
|
Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil KR. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst 2017; 5:345-357.e6. [PMID: 28964698 PMCID: PMC5660601 DOI: 10.1016/j.cels.2017.09.002] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023]
Abstract
Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community. In nitrogen-rich environments, Saccharomyces cerevisiae adjusts its metabolism by secreting a pool of metabolites, especially amino acids, and thereby enables survival of Lactobacillus plantarum and Lactococcus lactis. Quantity of the available nitrogen sources and the status of nitrogen catabolite repression pathways jointly modulate this niche creation. We demonstrate how nitrogen overflow by yeast benefits L. plantarum in grape juice, and contributes to emergence of mutualism with L. lactis in a medium with lactose. Our results illustrate how metabolic decisions of an individual species can benefit others.
Collapse
Affiliation(s)
- Olga Ponomarova
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Daniel C Sévin
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Michael Mülleder
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH-Zürich, Zürich 8093, Switzerland
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, The Francis Crick Institute, London, NW1 1AT, UK
| | | |
Collapse
|
62
|
McNerney MP, Styczynski MP. Small molecule signaling, regulation, and potential applications in cellular therapeutics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [PMID: 28960879 DOI: 10.1002/wsbm.1405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Small molecules have many important roles across the tree of life: they regulate processes from metabolism to transcription, they enable signaling within and between species, and they serve as the biochemical building blocks for cells. They also represent valuable phenotypic endpoints that are promising for use as biomarkers of disease states. In the context of engineering cell-based therapeutics, they hold particularly great promise for enabling finer control over the therapeutic cells and allowing them to be responsive to extracellular cues. The natural signaling and regulatory functions of small molecules can be harnessed and rewired to control cell activity and delivery of therapeutic payloads, potentially increasing efficacy while decreasing toxicity. To that end, this review considers small molecule-mediated regulation and signaling in bacteria. We first discuss some of the most prominent applications and aspirations for responsive cell-based therapeutics. We then describe the transport, signaling, and regulation associated with three classes of molecules that may be exploited in the engineering of therapeutic bacteria: amino acids, fatty acids, and quorum-sensing signaling molecules. We also present examples of existing engineering efforts to generate cells that sense and respond to levels of different small molecules. Finally, we discuss future directions for how small molecule-mediated regulation could be harnessed for therapeutic applications, as well as some critical considerations for the ultimate success of such endeavors. WIREs Syst Biol Med 2018, 10:e1405. doi: 10.1002/wsbm.1405 This article is categorized under: Biological Mechanisms > Cell Signaling Biological Mechanisms > Metabolism Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
63
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res 2017; 17:3934655. [PMID: 28810701 DOI: 10.1093/femsyr/fox046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Bruno Fedrizzi
- Wine Science Programme, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Gardner
- Wine Science Programme, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
64
|
Burgard J, Valli M, Graf AB, Gasser B, Mattanovich D. Biomarkers allow detection of nutrient limitations and respective supplementation for elimination in Pichia pastoris fed-batch cultures. Microb Cell Fact 2017; 16:117. [PMID: 28693509 PMCID: PMC5504661 DOI: 10.1186/s12934-017-0730-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/28/2017] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Industrial processes for recombinant protein production challenge production hosts, such as the yeast Pichia pastoris, on multiple levels. During a common P. pastoris fed-batch process, cells experience strong adaptations to different metabolic states or suffer from environmental stresses due to high cell density cultivation. Additionally, recombinant protein production and nutrient limitations are challenging in these processes. RESULTS Pichia pastoris producing porcine carboxypeptidase B (CpB) was cultivated in glucose or methanol-limited fed-batch mode, and the cellular response was analyzed using microarrays. Thereby, strong transcriptional regulations in transport-, regulatory- and metabolic processes connected to sulfur, phosphorus and nitrogen metabolism became obvious. The induction of these genes was observed in both glucose- and methanol- limited fed batch cultivations, but were stronger in the latter condition. As the transcriptional pattern was indicative for nutrient limitations, we performed fed-batch cultivations where we added the respective nutrients and compared them to non-supplemented cultures regarding cell growth, productivity and expression levels of selected biomarker genes. In the non-supplemented reference cultures we observed a strong increase in transcript levels of up to 89-fold for phosphorus limitation marker genes in the late fed-batch phase. Transcript levels of sulfur limitation marker genes were up to 35-fold increased. By addition of (NH4)2SO4 or (NH4)2HPO4, respectively, we were able to suppress the transcriptional response of the marker genes to levels initially observed at the start of the fed batch. Additionally, supplementation had also a positive impact on biomass generation and recombinant protein production. Supplementation with (NH4)2SO4 led to 5% increase in biomass and 52% higher CpB activity in the supernatant, compared to the non-supplemented reference cultivations. In (NH4)2HPO4 supplemented cultures 9% higher biomass concentrations and 60% more CpB activity were reached. CONCLUSIONS Transcriptional analysis of P. pastoris fed-batch cultivations led to the identification of nutrient limitations in the later phases, and respective biomarker genes for indication of limitations. Supplementation of the cultivation media with those nutrients eliminated the limitations on the transcriptional level, and was also shown to enhance productivity of a recombinant protein. The biomarker genes are versatily applicable to media and process optimization approaches, where tailor-made solutions are envisioned.
Collapse
Affiliation(s)
- Jonas Burgard
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Minoska Valli
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B. Graf
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- School of Bioengineering, University of Applied Sciences FH Campus Vienna, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
65
|
Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3-GENES GENOMES GENETICS 2017; 7:1693-1705. [PMID: 28592651 PMCID: PMC5473750 DOI: 10.1534/g3.117.042127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
Collapse
|
66
|
Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G. Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0031-2016. [PMID: 28256189 PMCID: PMC11687466 DOI: 10.1128/microbiolspec.funk-0031-2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/25/2022] Open
Abstract
To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.
Collapse
Affiliation(s)
- Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| | - Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian Rutherford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Chaoyang Xue
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, Newark, NJ 07103
| | - Griet Van Zeebroeck
- VIB-KU Leuven Center for Microbiology KU Leuven, Flanders, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
67
|
Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica. mSphere 2017; 2:mSphere00038-17. [PMID: 28217743 PMCID: PMC5311114 DOI: 10.1128/msphere.00038-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Nitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast Y. lipolytica to determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method. Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCE Nitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast Y. lipolytica to determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.
Collapse
|
68
|
Chen X, Wang Z, Guo X, Liu S, He X. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J Biotechnol 2017; 242:83-91. [DOI: 10.1016/j.jbiotec.2016.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
|
69
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
70
|
Characterization of the Candida albicans Amino Acid Permease Family: Gap2 Is the Only General Amino Acid Permease and Gap4 Is an S-Adenosylmethionine (SAM) Transporter Required for SAM-Induced Morphogenesis. mSphere 2016; 1:mSphere00284-16. [PMID: 28028545 PMCID: PMC5177730 DOI: 10.1128/msphere.00284-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans. Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCECandida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans.
Collapse
|
71
|
Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Sci Rep 2016; 6:33970. [PMID: 27659668 PMCID: PMC5034280 DOI: 10.1038/srep33970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
72
|
In Vivo Analysis of NH 4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth. Appl Environ Microbiol 2016; 82:6831-6845. [PMID: 27637876 DOI: 10.1128/aem.01547-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h-1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms.IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of compartmentalization in the vacuole. Additionally, metabolomic analysis results were used to calculate the thermodynamic driving forces in the central N metabolism reactions, revealing that the main reactions in the central N metabolism are far from equilibrium. Using proteomics approaches, we were able to identify major changes, not only in N metabolism, but also in C metabolism and regulation.
Collapse
|
73
|
Wu D, Li X, Lu J, Chen J, Xie G, Zhang L. The overexpression ofDUR1,2and deletion ofCAR1in an industrialSaccharomyces cerevisiaestrain and effects on nitrogen catabolite repression in Chinese rice wine production. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
- Industrial Technology Research Institute of Jiangnan University in Suqian; Suqian China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| | - Guangfa Xie
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
- Industrial Technology Research Institute of Jiangnan University in Suqian; Suqian China
- National Engineering Research Centre for Chinese Rice Wine; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing People's Republic of China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; Wuxi People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi People's Republic of China
- School of Biotechnology; Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
74
|
Wu WS, Hsieh YC, Lai FJ. YCRD: Yeast Combinatorial Regulation Database. PLoS One 2016; 11:e0159213. [PMID: 27392072 PMCID: PMC4938206 DOI: 10.1371/journal.pone.0159213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF’s experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| | - Yen-Chen Hsieh
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Fu-Jou Lai
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
75
|
Formation of ethyl carbamate in Goji wines: Effect of Goji fruit composition. Food Sci Biotechnol 2016; 25:921-927. [PMID: 30263355 DOI: 10.1007/s10068-016-0151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 10/21/2022] Open
Abstract
Ethyl carbamate (EC) is a multisite carcinogen widely occurring in alcoholic beverages. In this investigation, solid-phase extraction combined with gas chromatography mass spectrometry was employed to determine EC contents during the fermentation and storage processes, and the effects of Goji varieties on its formation were also examined. The results indicated that natural and potential EC contents were significantly affected by the varied composition of Goji fruits. The analysis of chemical properties showed differences in hundred-grain weight, water contents, amino acids, and nitrogen-to-carbon ratio for Goji berries. Citrulline was completely degraded although it is routinely considered as a non-preferred nitrogen for yeasts. Due to compositional differences, Goji wines accumulated distinct urea levels that positively correlated with the potential EC contents. Furthermore, the temperature in both the production processes highly influenced EC formation. These results contribute to a more comprehensive understanding of EC formation, and in turn, controlling EC in the Goji wine matrix.
Collapse
|
76
|
Tebung WA, Choudhury BI, Tebbji F, Morschhäuser J, Whiteway M. Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae. Curr Biol 2016; 26:1677-1687. [PMID: 27321996 DOI: 10.1016/j.cub.2016.04.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
Metabolic pathways are largely conserved in eukaryotes, but the transcriptional regulation of these pathways can sometimes vary between species; this has been termed "rewiring." Recently, it has been established that in the Saccharomyces lineage starting from Naumovozyma castellii, genes involved in allantoin breakdown have been genomically relocated to form the DAL cluster. The formation of the DAL cluster occurred along with the loss of urate permease (UAP) and urate oxidase (UOX), reducing the requirement for oxygen and bypassing the candidate Ppr1 inducer, uric acid. In Saccharomyces cerevisiae, this allantoin catabolism cluster is regulated by the transcription factor Dal82, which is not present in many of the pre-rearrangement fungal species. We have used ChIP-chip analysis, transcriptional profiling of an activated Ppr1 protein, bioinformatics, and nitrogen utilization studies to establish that in Candida albicans the zinc cluster transcription factor Ppr1 controls this allantoin catabolism regulon. Intriguingly, in S. cerevisiae, the Ppr1 ortholog binds the same DNA motif (CGG(N6)CCG) as in C. albicans but serves as a regulator of pyrimidine biosynthesis. This transcription factor rewiring appears to have taken place at the same phylogenetic step as the formation of the rearranged DAL cluster. This transfer of the control of allantoin degradation from Ppr1 to Dal82, together with the repositioning of Ppr1 to the regulation of pyrimidine biosynthesis, may have resulted from a switch to a metabolism that could exploit hypoxic conditions in the lineage leading to N. castellii and S. cerevisiae.
Collapse
Affiliation(s)
- Walters Aji Tebung
- Chemistry and Biochemistry Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Baharul I Choudhury
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, 97070 Würzburg, Germany
| | - Malcolm Whiteway
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
77
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
78
|
Milias-Argeitis A, Oliveira AP, Gerosa L, Falter L, Sauer U, Lygeros J. Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection. PLoS Comput Biol 2016; 12:e1004784. [PMID: 26967983 PMCID: PMC4788432 DOI: 10.1371/journal.pcbi.1004784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/02/2016] [Indexed: 12/03/2022] Open
Abstract
Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments. Here we attempt mechanistic modeling of the transcriptional network formed by the four GATA-factor proteins, a well-studied system of central importance for nitrogen-source regulation of transcription in the yeast Saccharomyces cerevisiae. To resolve ambiguities in the network organization, we encoded a set of five interactions hypothesized in the literature into a set of 32 mathematical models, and employed Bayesian model selection to identify the most plausible set of interactions based on dynamic gene expression data. The top-ranking model was validated on newly generated GFP reporter dynamic data and was subsequently used to gain a better understanding of how yeast cells organize their transcriptional response to dynamic changes of nitrogen sources. Our work constitutes a necessary and important step towards obtaining a holistic view of the yeast nitrogen regulation mechanisms; on the computational side, it provides a demonstration of how powerful Monte Carlo techniques can be creatively combined and used to address the great challenges of large-scale dynamical system inference. Gene regulatory networks underlie all key processes that enable a cell to maintain long-term homeostasis in a changing environment. Understanding the structure and function of complex gene networks is an experimentally difficult and error-prone procedure. Mechanistic mathematical modeling promises to alleviate these problems, as we demonstrate here for the yeast GATA-factor network, the central controller of the cellular response to nitrogen source quality. Despite years of targeted studies, the interaction pattern of this network is still not known precisely. To resolve several still-remaining ambiguities, we generated a set of alternative mathematical models, and compared them against each other using Bayesian model selection based on dynamic gene expression data. The top-ranking model was then validated on a separate, newly generated dataset. Our work thus provides new insights to the mechanism of nitrogen regulation in yeast, while at the same time overcoming some key computational inference problems for large models in systems biology.
Collapse
Affiliation(s)
| | | | - Luca Gerosa
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
79
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
80
|
The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:21603. [PMID: 26899143 PMCID: PMC4761935 DOI: 10.1038/srep21603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348-375 and 366-510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae.
Collapse
|
81
|
Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol 2016; 428:1681-99. [PMID: 26908221 DOI: 10.1016/j.jmb.2016.02.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Macroautophagy is an evolutionarily conserved dynamic pathway that functions primarily in a degradative manner. A basal level of macroautophagy occurs constitutively, but this process can be further induced in response to various types of stress including starvation, hypoxia and hormonal stimuli. The general principle behind macroautophagy is that cytoplasmic contents can be sequestered within a transient double-membrane organelle, an autophagosome, which subsequently fuses with a lysosome or vacuole (in mammals, or yeast and plants, respectively), allowing for degradation of the cargo followed by recycling of the resulting macromolecules. Through this basic mechanism, macroautophagy has a critical role in cellular homeostasis; however, either insufficient or excessive macroautophagy can seriously compromise cell physiology, and thus, it needs to be properly regulated. In fact, a wide range of diseases are associated with dysregulation of macroautophagy. There has been substantial progress in understanding the regulation and molecular mechanisms of macroautophagy in different organisms; however, many questions concerning some of the most fundamental aspects of macroautophagy remain unresolved. In this review, we summarize current knowledge about macroautophagy mainly in yeast, including the mechanism of autophagosome biogenesis, the function of the core macroautophagic machinery, the regulation of macroautophagy and the process of cargo recognition in selective macroautophagy, with the goal of providing insights into some of the key unanswered questions in this field.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
82
|
Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth. Appl Microbiol Biotechnol 2016; 100:3255-65. [DOI: 10.1007/s00253-015-7273-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 11/30/2022]
|
83
|
Bernard A, Jin M, Xu Z, Klionsky DJ. A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 2015; 11:2114-2122. [PMID: 26649943 DOI: 10.1080/15548627.2015.1099796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autophagy is a pathway mediating vacuolar degradation and recycling of proteins and organelles, which plays crucial roles in cellular physiology. To ensure its proper cytoprotective function, the induction and amplitude of autophagy are tightly regulated, and defects in its regulation are associated with various diseases. Transcriptional control of autophagy is a critical aspect of autophagy regulation, which remains largely unexplored. In particular, very few transcription factors involved in the activation or repression of autophagy-related gene expression have been characterized. To identify such regulators, we analyzed the expression of representative ATG genes in a large collection of DNA-binding mutant deletion strains in growing conditions as well as after nitrogen or glucose starvation. This analysis identified several proteins involved in the transcriptional control of ATG genes. Further analyses showed a correlation between variations in expression and autophagy magnitude, thus identifying new positive and negative regulators of the autophagy pathway. By providing a detailed analysis of the regulatory network of the ATG genes our study paves the way for future research on autophagy regulation and signaling.
Collapse
Affiliation(s)
- Amélie Bernard
- a Life Sciences Institute , and the Department of Molecular ; Cellular and Developmental Biology; University of Michigan ; Ann Arbor , MI USA
| | - Meiyan Jin
- a Life Sciences Institute , and the Department of Molecular ; Cellular and Developmental Biology; University of Michigan ; Ann Arbor , MI USA
| | - Ziheng Xu
- a Life Sciences Institute , and the Department of Molecular ; Cellular and Developmental Biology; University of Michigan ; Ann Arbor , MI USA
| | - Daniel J Klionsky
- a Life Sciences Institute , and the Department of Molecular ; Cellular and Developmental Biology; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
84
|
Wu D, Li X, Lu J, Chen J, Zhang L, Xie G. Constitutive expression of theDUR1,2gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiol Lett 2015; 363:fnv214. [DOI: 10.1093/femsle/fnv214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 11/12/2022] Open
|
85
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine. Genetics 2015; 201:989-1016. [PMID: 26333687 PMCID: PMC4649666 DOI: 10.1534/genetics.115.177725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Karthik Shanmuganatham
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
86
|
Zhao X, Zou H, Du G, Chen J, Zhou J. Effects of nitrogen catabolite repression-related amino acids on the flavour of rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company; 13 Yangjiang Road Shaoxing Zhengjiang 312000 China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi Jiangsu 214122 China
- Synergetic Innovation Centre of Food Safety and Nutrition; 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
87
|
Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:121-7. [DOI: 10.1016/j.jbiosc.2014.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/27/2014] [Accepted: 12/18/2014] [Indexed: 01/30/2023]
|
88
|
Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 2015. [DOI: 10.1007/s00253-015-6810-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
89
|
Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation. G3 (BETHESDA, MD.) 2015; 5:1625-38. [PMID: 26024867 PMCID: PMC4528319 DOI: 10.1534/g3.115.019307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 11/28/2022]
Abstract
The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Fabienne Vierendeels
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Evelyne Dubois
- Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie Université Libre de Bruxelles, Brussels B1070, Belgium
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
90
|
Oliveira AP, Dimopoulos S, Busetto AG, Christen S, Dechant R, Falter L, Haghir Chehreghani M, Jozefczuk S, Ludwig C, Rudroff F, Schulz JC, González A, Soulard A, Stracka D, Aebersold R, Buhmann JM, Hall MN, Peter M, Sauer U, Stelling J. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome. Mol Syst Biol 2015; 11:802. [PMID: 25888284 PMCID: PMC4422559 DOI: 10.15252/msb.20145475] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.
Collapse
Affiliation(s)
- Ana Paula Oliveira
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sotiris Dimopoulos
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | | | - Stefan Christen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Reinhard Dechant
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Szymon Jozefczuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Christina Ludwig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Florian Rudroff
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Juliane Caroline Schulz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | | | - Alexandre Soulard
- Biozentrum, University of Basel, Basel, Switzerland UMR5240 MAP, Université Lyon 1, Villeurbanne, France
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| | | | | | - Matthias Peter
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| |
Collapse
|
91
|
Leu1 plays a role in iron metabolism and is required for virulence in Cryptococcus neoformans. Fungal Genet Biol 2014; 75:11-9. [PMID: 25554701 DOI: 10.1016/j.fgb.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/27/2014] [Accepted: 12/20/2014] [Indexed: 01/28/2023]
Abstract
Amino acid biosynthetic pathways that are absent in mammals are considered an attractive target for antifungal therapy. Leucine biosynthesis is one such target pathway, consisting of a five-step conversion process starting from the valine precursor 2-keto-isovalerate. Isopropylmalate dehydrogenase (Leu1) is an Fe-S cluster protein that is required for leucine biosynthesis in the model fungus Saccharomyces cerevisiae. The human pathogenic fungus Cryptococcus neoformans possesses an ortholog of S. cerevisiae Leu1, and our previous transcriptome data showed that the expression of LEU1 is regulated by iron availability. In this study, we characterized the role of Leu1 in iron homeostasis and the virulence of C. neoformans. We found that deletion of LEU1 caused leucine auxotrophy and that Leu1 may play a role in the mitochondrial-cytoplasmic Fe-S cluster balance. Whereas cytoplasmic Fe-S protein levels were not affected, mitochondrial Fe-S proteins were up-regulated in the leu1 mutant, suggesting that Leu1 mainly influences mitochondrial iron metabolism. The leu1 mutant also displayed increased sensitivity to oxidative stress and cell wall/membrane disrupting agents, which may have been caused by mitochondrial dysfunction. Furthermore, the leu1 mutant was deficient in capsule formation and showed attenuated virulence in a mouse inhalation model of cryptococcosis. Overall, our results indicate that Leu1 plays a role in iron metabolism and is required for virulence in C. neoformans.
Collapse
|
92
|
Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae. Genetics 2014; 199:455-74. [PMID: 25527290 DOI: 10.1534/genetics.114.173831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation.
Collapse
|
93
|
Abstract
Lipid droplets (LDs) are intracellular structures that regulate neutral lipid homeostasis. In mammals, LD synthesis is inhibited by rapamycin, a known inhibitor of the mTORC1 pathway. In Saccharomyces cerevisiae, LD dynamics are modulated by the growth phase; however, the regulatory pathways involved are unknown. Therefore, we decided to study the role of the TORC1 pathway on LD metabolism in S. cerevisiae. Interestingly, rapamycin treatment resulted in a fast LD replenishment and growth inhibition. The discovery that osmotic stress (1 M sorbitol) also induced LD synthesis but not growth inhibition suggested that the induction of LDs in yeast is not a secondary response to reduced growth. The induction of LDs by rapamycin was due to increased triacylglycerol but not sterol ester synthesis. Induction was dependent on the TOR downstream effectors, the PP2A-related phosphatase Sit4p and the regulatory protein Tap42p. The TORC1-controlled transcriptional activators Gln3p, Gat1p, Rtg1p, and Rtg3p, but not Msn2p and Msn4p, were required for full induction of LDs by rapamycin. Furthermore, we show that the deletion of Gln3p and Gat1p transcription factors, which are activated in response to nitrogen availability, led to abnormal LD dynamics. These results reveal that the TORC1 pathway is involved in neutral lipid homeostasis in yeast.
Collapse
|
94
|
Li Y, Zhang W, Zheng D, Zhou Z, Yu W, Zhang L, Feng L, Liang X, Guan W, Zhou J, Chen J, Lin Z. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation. Genome Biol Evol 2014; 6:2516-26. [PMID: 25212861 PMCID: PMC4202337 DOI: 10.1093/gbe/evu201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains.
Collapse
Affiliation(s)
- Yudong Li
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiping Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Daoqiong Zheng
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenwen Yu
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Zhang
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lifang Feng
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xinle Liang
- Department of Bioengineering, School of Food Sciences and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wenjun Guan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University Department of Ecology and Evolutionary Biology, Rice University
| |
Collapse
|
95
|
Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 2014; 289:25010-20. [PMID: 25063813 DOI: 10.1074/jbc.m114.574335] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary conserved TOR complex 1 (TORC1) activates cell growth in response to nutrients. In yeast, TORC1 responds to the nitrogen source via a poorly understood mechanism. Leucine, and perhaps other amino acids, activates TORC1 via the small GTPases Gtr1 and Gtr2, orthologs of the mammalian Rag GTPases. Here we investigate the activation of TORC1 by the nitrogen source and how this might be related to TORC1 activation by Gtr/Rag. The quality of the nitrogen source, as defined by its ability to promote growth and glutamine accumulation, directly correlates with its ability to activate TORC1 as measured by Sch9 phosphorylation. Preferred nitrogen sources stimulate rapid, sustained Sch9 phosphorylation and glutamine accumulation. Inhibition of glutamine synthesis reduces TORC1 activity and growth. Poor nitrogen sources stimulate rapid but transient Sch9 phosphorylation. A Gtr1 deficiency prevents the transient stimulation of TORC1 but does not affect the sustained TORC1 activity in response to good nitrogen sources. These findings suggest that the nitrogen source must be converted to glutamine, the preferred nitrogen source in yeast, to sustain TORC1 activity. Furthermore, sustained TORC1 activity is independent of Gtr/Rag. Thus, the nitrogen source and Gtr/Rag activate TORC1 via different mechanisms.
Collapse
Affiliation(s)
- Daniele Stracka
- From the Biozentrum, University of Basel, 4056 Basel, Switzerland and
| | - Szymon Jozefczuk
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Florian Rudroff
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael N Hall
- From the Biozentrum, University of Basel, 4056 Basel, Switzerland and
| |
Collapse
|
96
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Cooper TG. A domain in the transcription activator Gln3 specifically required for rapamycin responsiveness. J Biol Chem 2014; 289:18999-9018. [PMID: 24847055 DOI: 10.1074/jbc.m114.563668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nitrogen-responsive control of Gln3 localization is implemented through TorC1-dependent (rapamycin-responsive) and TorC1-independent (nitrogen catabolite repression-sensitive and methionine sulfoximine (Msx)-responsive) regulatory pathways. We previously demonstrated amino acid substitutions in a putative Gln3 α-helix(656-666), which are required for a two-hybrid Gln3-Tor1 interaction, also abolished rapamycin responsiveness of Gln3 localization and partially abrogated cytoplasmic Gln3 sequestration in cells cultured under nitrogen-repressive conditions. Here, we demonstrate these three characteristics are not inextricably linked together. A second distinct Gln3 region (Gln3(510-589)) is specifically required for rapamycin responsiveness of Gln3 localization, but not for cytoplasmic Gln3 sequestration under repressive growth conditions or relocation to the nucleus following Msx addition. Aspartate or alanine substitution mutations throughout this region uniformly abolish rapamycin responsiveness. Contained within this region is a sequence with a predicted propensity to form an α-helix(583-591), one side of which consists of three hydrophobic amino acids flanked by serine residues. Substitution of aspartate for even one of these serines abolishes rapamycin responsiveness and increases rapamycin resistance without affecting either of the other two Gln3 localization responses. In contrast, alanine substitutions decrease rapamycin resistance. Together, these data suggest that targets in the C-terminal portion of Gln3 required for the Gln3-Tor1 interaction, cytoplasmic Gln3 sequestration, and Gln3 responsiveness to Msx addition and growth in poor nitrogen sources are distinct from those needed for rapamycin responsiveness.
Collapse
Affiliation(s)
- Rajendra Rai
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Jennifer J Tate
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Karthik Shanmuganatham
- the Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| | - Terrance G Cooper
- From the Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 and
| |
Collapse
|
97
|
Treu L, Campanaro S, Nadai C, Toniolo C, Nardi T, Giacomini A, Valle G, Blondin B, Corich V. Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances. Appl Microbiol Biotechnol 2014; 98:4119-35. [DOI: 10.1007/s00253-014-5679-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/28/2022]
|
98
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
99
|
Wang P, Sun J, Li X, Wu D, Li T, Lu J, Chen J, Xie G. Contribution of citrulline to the formation of ethyl carbamate during Chinese rice wine production. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:587-92. [DOI: 10.1080/19440049.2013.878869] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics 2014; 101:102-12. [PMID: 24530623 DOI: 10.1016/j.jprot.2014.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/28/2013] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.
Collapse
Affiliation(s)
- Shaohui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Jianwei Fu
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|