51
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
52
|
A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. Nat Commun 2019; 10:2727. [PMID: 31227708 PMCID: PMC6588558 DOI: 10.1038/s41467-019-10583-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/17/2019] [Indexed: 12/01/2022] Open
Abstract
A fundamental challenge in medical microbiology is to characterize the dynamic protein–protein interaction networks formed at the host–pathogen interface. Here, we generate a quantitative interaction map between the significant human pathogen, Streptococcus pyogenes, and proteins from human saliva and plasma obtained via complementary affinity-purification and bacterial-surface centered enrichment strategies and quantitative mass spectrometry. Perturbation of the network using immunoglobulin protease cleavage, mixtures of different concentrations of saliva and plasma, and different S. pyogenes serotypes and their isogenic mutants, reveals how changing microenvironments alter the interconnectivity of the interaction map. The importance of host immunoglobulins for the interaction with human complement proteins is demonstrated and potential protective epitopes of importance for phagocytosis of S. pyogenes cells are localized. The interaction map confirms several previously described protein–protein interactions; however, it also reveals a multitude of additional interactions, with possible implications for host–pathogen interactions involving other bacterial species. Characterizing host-pathogen protein interactions can help elucidate the molecular basis of bacterial infections. Here, the authors use an integrative proteomics approach to generate a quantitative map of protein interactions between Streptococcus pyogenes and human saliva and plasma.
Collapse
|
53
|
Bencardino D, Di Luca MC, Petrelli D, Prenna M, Vitali LA. High virulence gene diversity in Streptococcus pyogenes isolated in Central Italy. PeerJ 2019; 7:e6613. [PMID: 30918759 PMCID: PMC6431245 DOI: 10.7717/peerj.6613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
Globally, Streptococcus pyogenes poses a continuous burden on human health, causing both self-limiting and life-threatening diseases. Therefore, studying the profile of virulence genes and their combinations is essential to monitor the epidemiology and pathogenic potential of this important species. Thus, the aim of this study was to analyze related genetic features of clinical strains collected in Italy in 2012 in order to obtain a valid picture of their virulence profile that could be compared to similar studies made in other countries approximately in the same period. We conducted emm typing and fibronectin-collagen-T antigen (FCT) region typing in 122 Streptococcus pyogenes strains. Furthermore, several additional virulence genes were screened by polymerase chain reaction. We found correlations between emm types and FCT region profiles. emm1 strains were mainly associated with FCT2 and FCT6, while emm89 and emm12 strains were associated with FCT4. FCT5 was mainly represented in emm4, emm6, and emm75 strains. Significantly, we defined subtypes for each FCT type based on the differences in single and double loci compared to the reference scheme used for the classification of the FCT region. In addition, new FCT-region variants with differences in multiple loci were also recorded. Cluster analysis based on virulence gene profiling showed a non-random distribution within each emm type. This study added new data to existing studies conducted worldwide and revealed new variability scores in circulating Streptococcus pyogenes strains and new assortments in well-established virulence gene signatures.
Collapse
Affiliation(s)
- Daniela Bencardino
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Maria Chiara Di Luca
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Manuela Prenna
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
54
|
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
|
55
|
Ralph AP, Holt DC, Islam S, Osowicki J, Carroll DE, Tong SYC, Bowen AC. Potential for Molecular Testing for Group A Streptococcus to Improve Diagnosis and Management in a High-Risk Population: A Prospective Study. Open Forum Infect Dis 2019; 6:ofz097. [PMID: 31011589 PMCID: PMC6469435 DOI: 10.1093/ofid/ofz097] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 02/01/2023] Open
Abstract
Background In high-burden settings, guidelines recommend antibiotic treatment for all suspected group A Streptococcus (GAS) infections to prevent rheumatic fever and poststreptococcal glomerulonephritis. Highly sensitive rapid GAS tests could reduce unnecessary antibiotic use in these settings. Methods This was a prospective study of the Xpert Xpress Strep A (Cepheid) molecular test compared with culture of throat swab samples collected at a referral hospital in northern Australia. Demographic and clinical data and results of streptococcal serology and culture were collected. Results Of 164 throat swab samples, 145 (88%) were eligible for inclusion; 49 (34%) were molecular test positive and 24 (17%) were culture positive for GAS. The sensitivity, specificity, and positive and negative predictive values for the molecular test versus culture were 100.0%, 79.3%, 48.8%, and 100.0%, respectively. Among 25 samples testing positive with the molecular test and negative with culture, group C or G streptococci were cultured in 2, and a plausible clinical explanation, such as pharyngotonsillitis, or rheumatic fever with positive results of streptococcal serology, was apparent in 19 instances. In 25 patients with rheumatic fever or poststreptococcal glomerulonephritis diagnoses, molecular testing nearly trebled the detection of GAS in throat swab samples, from 3 (12%) detected with culture to 8 (32%) detected with molecular testing. Reasons for “false-positive” molecular test results could include the presence of GAS below the threshold of culture detection or persistence of nonviable organisms after infection. Conclusion Implementation of molecular testing could improve antibiotic use in this high-burden setting. The incremental yield in poststreptococcal syndromes, by which time cultures are negative, has high potential in the diagnostic workup of autoimmune poststreptococcal syndromes and warrants further investigation.
Collapse
Affiliation(s)
- Anna P Ralph
- Menzies School of Health Research, Charles Darwin University.,Division of Medicine, Royal Darwin Hospital, Northern Territory
| | - Deborah C Holt
- Menzies School of Health Research, Charles Darwin University
| | - Sharifun Islam
- Menzies School of Health Research, Charles Darwin University
| | - Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, and Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital, Melbourne.,Department of Paediatrics, University of Melbourne
| | - David E Carroll
- Division of Medicine, Royal Darwin Hospital, Northern Territory
| | - Steven Y C Tong
- Menzies School of Health Research, Charles Darwin University.,Victorian Infectious Disease Service, Royal Melbourne Hospital, and Doherty Department, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Victoria
| | - Asha C Bowen
- Menzies School of Health Research, Charles Darwin University.,Department of Paediatric Infectious Diseases, Perth Children's Hospital.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth
| |
Collapse
|
56
|
Kumar L, Cox CR, Sarkar SK. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 2019; 14:e0210218. [PMID: 30633757 PMCID: PMC6329490 DOI: 10.1371/journal.pone.0210218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Physics, Colorado School of Mines, CO, United States of America
| | - Christopher R. Cox
- Department of Chemistry, Colorado School of Mines, CO, United States of America
| | - Susanta K. Sarkar
- Department of Physics, Colorado School of Mines, CO, United States of America
- * E-mail:
| |
Collapse
|
57
|
Horstmann N, Tran CN, Brumlow C, DebRoy S, Yao H, Nogueras Gonzalez G, Makthal N, Kumaraswami M, Shelburne SA. Phosphatase activity of the control of virulence sensor kinase CovS is critical for the pathogenesis of group A streptococcus. PLoS Pathog 2018; 14:e1007354. [PMID: 30379939 PMCID: PMC6231683 DOI: 10.1371/journal.ppat.1007354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The control of virulence regulator/sensor kinase (CovRS) two-component system is critical to the infectivity of group A streptococcus (GAS), and CovRS inactivating mutations are frequently observed in GAS strains causing severe human infections. CovS modulates the phosphorylation status and with it the regulatory effect of its cognate regulator CovR via its kinase and phosphatase activity. However, the contribution of each aspect of CovS function to GAS pathogenesis is unknown. We created isoallelic GAS strains that differ only by defined mutations which either abrogate CovR phosphorylation, CovS kinase or CovS phosphatase activity in order to test the contribution of CovR phosphorylation levels to GAS virulence, emergence of hypervirulent CovS-inactivated strains during infection, and GAS global gene expression. These sets of strains were created in both serotype M1 and M3 backgrounds, two prevalent GAS disease-causing serotypes, to ascertain whether our observations were serotype-specific. In both serotypes, GAS strains lacking CovS phosphatase activity (CovS-T284A) were profoundly impaired in their ability to cause skin infection or colonize the oropharynx in mice and to survive neutrophil killing in human blood. Further, response to the human cathelicidin LL-37 was abrogated. Hypervirulent GAS isolates harboring inactivating CovRS mutations were not recovered from mice infected with M1 strain M1-CovS-T284A and only sparsely recovered from mice infected with M3 strain M3-CovS-T284A late in the infection course. Consistent with our virulence data, transcriptome analyses revealed increased repression of a broad array of virulence genes in the CovS phosphatase deficient strains, including the genes encoding the key anti-phagocytic M protein and its positive regulator Mga, which are not typically part of the CovRS transcriptome. Taken together, these data establish a key role for CovS phosphatase activity in GAS pathogenesis and suggest that CovS phosphatase activity could be a promising therapeutic target in GAS without promoting emergence of hypervirulent CovS-inactivated strains. Group A streptococcus (GAS), also known as Streptococcus pyogenes, causes a broad array of human infections of varying severity. Tight control of production of virulence factors is critical to GAS pathogenesis, and the control of virulence two-component signaling system (CovRS) is central to this process. The activity of the bifunctional histidine kinase CovS determines the phosphorylation status and thereby the activity of its cognate response regulator CovR. Herein, we sought to determine how varying CovR phosphorylation level (CovR~P) impacts GAS pathophysiology. Using three infection models, we discovered that GAS strains lacking CovS phosphatase activity resulting in high CovR~P levels had markedly impaired infectivity. Transcriptome analysis revealed that the hypovirulent phenotype of CovS phosphatase deficient strains is due to down-regulation of numerous genes encoding GAS virulence factors. We identified repression of additional virulence genes that are typically not controlled by CovR, thus expanding the CovR regulon at high CovR~P concentrations. Our data indicate that phosphatase activity of CovS sensor kinase is crucial for spatiotemporal regulation of GAS virulence gene expression. Thus, we propose that targeting the phosphatase activity of CovS sensor kinase could be a promising novel therapeutic approach to combat GAS disease.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chelcy Brumlow
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Sruti DebRoy
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Graciela Nogueras Gonzalez
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston TX, United States of America
- * E-mail:
| |
Collapse
|
58
|
Broglia L, Materne S, Lécrivain AL, Hahnke K, Le Rhun A, Charpentier E. RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B. RNA Biol 2018; 15:1336-1347. [PMID: 30290721 PMCID: PMC6284565 DOI: 10.1080/15476286.2018.1532253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endoribonuclease Y (RNase Y) is a crucial regulator of virulence in Gram-positive bacteria. In the human pathogen Streptococcus pyogenes, RNase Y is required for the expression of the major secreted virulence factor streptococcal pyrogenic exotoxin B (SpeB), but the mechanism involved in this regulation remains elusive. Here, we demonstrate that the 5′ untranslated region of speB mRNA is processed by several RNases including RNase Y. In particular, we identify two RNase Y cleavage sites located downstream of a guanosine (G) residue. To assess whether this nucleotide is required for RNase Y activity in vivo, we mutated it and demonstrate that the presence of this G residue is essential for the processing of the speB mRNA 5′ UTR by RNase Y. Although RNase Y directly targets and processes speB, we show that RNase Y-mediated regulation of speB expression occurs primarily at the transcriptional level and independently of the processing in the speB mRNA 5′ UTR. To conclude, we demonstrate for the first time that RNase Y processing of an mRNA target requires the presence of a G. We also provide new insights on the speB 5′ UTR and on the role of RNase Y in speB regulation.
Collapse
Affiliation(s)
- Laura Broglia
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Solange Materne
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anne-Laure Lécrivain
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Karin Hahnke
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany
| | - Anaïs Le Rhun
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Emmanuelle Charpentier
- a Max Planck Unit for the Science of Pathogens , Berlin , Germany.,b Department of Regulation in Infection Biology , Max Planck Institute for Infection Biology , Berlin , Germany.,c Institute for Biology , Humboldt University , Berlin , Germany.,d Department of Regulation in Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,e The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
59
|
Laabei M, Ermert D. Catch Me if You Can: Streptococcus pyogenes Complement Evasion Strategies. J Innate Immun 2018; 11:3-12. [PMID: 30269134 DOI: 10.1159/000492944] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The human host has evolved elaborate protection mechanisms to prevent infection from the billions of microorganisms to which it host is exposed and is home. One of these systems, complement, is an evolutionary ancient arm of innate immunity essential for combatting bacterial infection. Complement permits the efficient labelling of bacteria with opsonins, supports phagocytosis, and facilitates phagocyte recruitment to the site of infection through the production of chemoattractants. However, it is by no means perfect, and certain organisms engage in an evolutionary arms race with the host where complement has become a major target to promote immune evasion. Streptococcus pyogenes is a major human pathogen that causes significant morbidity and mortality globally. S. pyogenes is also a member of an elite group of bacterial pathogens possessing a sophisticated arsenal of virulence determinants capable of interfering with complement. In this review, we focus on these complement evasins, their mechanism of action, and their importance in disease progression. Finally, we highlight new therapeutic options for fighting S. pyogenes, by interfering with one of its main mechanisms of complement evasion.
Collapse
|
60
|
Balasubramanian N, Varatharaju G, Shanmugaiah V, Balakrishnan K, Thirunarayan MA. Molecular Cloning and Docking of speB Gene Encoding Cysteine Protease With Antibiotic Interaction in Streptococcus pyogenes NBMKU12 From the Clinical Isolates. Front Microbiol 2018; 9:1658. [PMID: 30131773 PMCID: PMC6091236 DOI: 10.3389/fmicb.2018.01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/03/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes causes a variety of diseases ranging from mild diseases to severe invasive infections which result in significant morbidity and mortality. This study focuses on the antibiotic resistance of S. pyogenes and their interaction with cysteine protease. Around 36 beta-hemolytic isolates were collected from the clinical lab, of which seven isolates (19.4%) were identified as Streptococcus pyogenes. One of the seven isolates was collected from a urinary tract infection, which was identified by antibody agglutination and MALTI-TOF-MS, and it is designated as S. pyogenes NBMKU12. Around 8.3 to 66.6 % of the isolates were found to be resistant to one or more antimicrobial agents, especially, penicillin-G resistance was exhibited by 29.1% of the isolates. In the NBMKU12 isolate, the beta lactem (TEM) gene was detected among the 13 antibiotic genes for which it was tested. Furthermore, when analysis for presence of 13 virulence genes were carried out in NBMKU12 isolate, only speJ and speB were detected. The speB (streptococcal pyrogenic exotoxin B) encoding cysteine protease gene was cloned. This was followed by performing DNA sequencing to understand the putative cysteine protease interaction with antibiotics, inhibitors, and substrate. The speB gene consists of 1197 nucleotides and encodes a protein with multiple domains, including a signal peptide (aa 1-22), an inhibitor region (aa 27-156), and a catalytic cysteine domain (aa 160-367). The signal peptide cleavage site is predicted between Ala22 and Asn23. The putative 398 amino acid residues were found to have a theoretical pI of 8.76 and a molecular mass of 43,204.36 Da. The tested culture supernatants of NBMKU12 isolate exhibited the proteolytic activity against casein, papaya and pineapple used as substrates. The proteolytic activity suggests the expression of speB gene. Molecular docking analysis of cysteine protease showed that erythromycin (bond length 2.41 Å), followed by chloramphenicol (2.51 Å), exhibited a strong interaction; while penicillin-G (3.24 Å) exhibited a weak interaction, and this factor could be considered as a cause for penicillin-G resistance. The present study contributes to a better understanding of speB gene encoding cysteine protease, antibiotic resistance, and their interaction in the isolate, S. pyogenes NBMKU12. The antibiotics and cysteine protease interaction study confirms the resistance or sensitivity of S. pyogenes. Hence, it could be hypothesized that the isolate NBMKU12 is resistant to most of the tested antibiotics, and this resistance might be a cause for mutation.
Collapse
Affiliation(s)
- Natesan Balasubramanian
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Govintharaj Varatharaju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
61
|
Endopeptidase PepO Regulates the SpeB Cysteine Protease and Is Essential for the Virulence of Invasive M1T1 Streptococcus pyogenes. J Bacteriol 2018; 200:JB.00654-17. [PMID: 29378883 DOI: 10.1128/jb.00654-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide range of human infections. The pathogenesis of GAS infections is dependent on the temporal expression of numerous secreted and surface-associated virulence factors that interact with host proteins. Streptococcal pyrogenic exotoxin B (SpeB) is one of the most extensively studied toxins produced by GAS, and the coordinate growth phase-dependent regulation of speB expression is linked to disease severity phenotypes. Here, we identified the endopeptidase PepO as a novel growth phase-dependent regulator of SpeB in the invasive GAS M1 serotype strain 5448. By using transcriptomics followed by quantitative reverse transcriptase PCR and Western blot analyses, we demonstrate through targeted mutagenesis that PepO influences growth phase-dependent induction of speB gene expression. Compared to wild-type and complemented mutant strains, we demonstrate that the 5448ΔpepO mutant strain is more susceptible to killing by human neutrophils and is attenuated in virulence in a murine model of invasive GAS infection. Our results expand the complex regulatory network that is operating in GAS to control SpeB production and suggest that PepO is a virulence requirement during GAS M1T1 strain 5448 infections.IMPORTANCE Despite the continuing susceptibility of S. pyogenes to penicillin, this bacterial pathogen remains a leading infectious cause of global morbidity and mortality. A particular subclone of the M1 serotype (M1T1) has persisted globally for decades as the most frequently isolated serotype from patients with invasive and noninvasive diseases in Western countries. One of the key GAS pathogenicity factors is the potent broad-spectrum cysteine protease SpeB. Although there has been extensive research interest on the regulatory mechanisms that control speB gene expression, its genetic regulation is not fully understood. Here, we identify the endopeptidase PepO as a new regulator of speB gene expression in the globally disseminated M1T1 clone and as being essential for virulence.
Collapse
|
62
|
Babbar A, Itzek A, Pieper DH, Nitsche-Schmitz DP. Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India. Folia Microbiol (Praha) 2018. [DOI: 10.1007/s12223-018-0595-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
63
|
Sumitomo T, Mori Y, Nakamura Y, Honda-Ogawa M, Nakagawa S, Yamaguchi M, Matsue H, Terao Y, Nakata M, Kawabata S. Streptococcal Cysteine Protease-Mediated Cleavage of Desmogleins Is Involved in the Pathogenesis of Cutaneous Infection. Front Cell Infect Microbiol 2018; 8:10. [PMID: 29416987 PMCID: PMC5787553 DOI: 10.3389/fcimb.2018.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB) as a proteolytic factor that cleaves the extracellular domains of desmoglein 1 and 3. In an epicutaneous infection model, lesional skin infected with an speB deletion mutant were significantly smaller as compared to those caused by the wild-type strain. Furthermore, immunohistological analysis indicated cleavage of desmogleins that developed around the invasion site of the wild-type strain. In contrast, the speB mutant was preferentially found on the epidermis surface layer. Taken together, our findings provide evidence that SpeB-mediated degradation of desmosomes has a pathogenic role in development of S. pyogenes cutaneous infection.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yasushi Mori
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Special Care Dentistry, Osaka University Dental Hospital, Osaka, Japan
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mariko Honda-Ogawa
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroyuki Matsue
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
64
|
Abstract
Group A Streptococcus (GAS) is a leading human bacterial pathogen with diverse clinical manifestations. Macrophages constitute a critical first line of host defense against GAS infection, using numerous surface and intracellular receptors such as Toll-like receptors and inflammasomes for pathogen recognition and activation of inflammatory signaling pathways. Depending on the intensity of the GAS infection, activation of these signaling cascades may provide a beneficial early alarm for effective immune clearance, or conversely, may cause hyperinflammation and tissue injury during severe invasive infection. Although traditionally considered an extracellular pathogen, GAS can invade and replicate within macrophages using specific molecular mechanisms to resist phagolysosomal and xenophagic killing. Unraveling GAS-macrophage encounters may reveal new treatment options for this leading agent of infection-associated mortality. [Formula: see text].
Collapse
Affiliation(s)
- J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
65
|
Chen Z, Mashburn-Warren L, Merritt J, Federle MJ, Kreth J. Interference of a speB 5' untranslated region partial deletion with mRNA degradation in Streptococcus pyogenes. Mol Oral Microbiol 2017; 32:390-403. [PMID: 28371435 PMCID: PMC10030001 DOI: 10.1111/omi.12181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 01/28/2023]
Abstract
The 5' untranslated region (5' UTR) of an mRNA molecule embeds important determinants that modify its stability and translation efficiency. In Streptococcus pyogenes, a strict human pathogen, a gene encoding a secreted protease (speB) has a large 5' UTR with unknown functions. Here we describe that a partial deletion of the speB 5' UTR caused a general accumulation of mRNA in the stationary phase, and that the mRNA accumulation was due to retarded mRNA degradation. The phenotype was observed in several M serotypes harboring the partial deletion of the speB 5' UTR. The phenotype was triggered by the production of the truncated speB 5' UTR, but not by the disruption of the intact speB 5' UTR. RNase Y, a major endoribonuclease, was previously shown to play a central role in bulk mRNA turnover in stationary phase. However, in contrast to our expectations, we observed a weaker interaction between the truncated speB 5' UTR and RNase Y compared with the wild-type, which suggests that other unidentified RNA degrading components are required for the pleiotropic effects observed from the speB UTR truncation. Our study demonstrates how S. pyogenes uses distinct mRNA degradation schemes in exponential and stationary growth phases.
Collapse
Affiliation(s)
- Z Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - J Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - M J Federle
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - J Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
66
|
Oehmcke-Hecht S, Nass LE, Wichura JB, Mikkat S, Kreikemeyer B, Fiedler T. Deletion of the L-Lactate Dehydrogenase Gene ldh in Streptococcus pyogenes Leads to a Loss of SpeB Activity and a Hypovirulent Phenotype. Front Microbiol 2017; 8:1841. [PMID: 28983299 PMCID: PMC5613712 DOI: 10.3389/fmicb.2017.01841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes uses lactic acid fermentation for the generation of ATP. Here, we analyzed the impact of a deletion of the L-lactate dehydrogenase gene ldh on the virulence of S. pyogenes M49. While the ldh deletion does not cause a general growth deficiency in laboratory media, the growth in human blood and plasma is significantly hampered. The ldh deletion strain is furthermore less virulent in a Galleria mellonella infection model. We show that the ldh deletion leads to a decrease in the activity of the cysteine protease SpeB, an important secreted virulence factor of S. pyogenes. The reduced SpeB activity is caused by a hampered autocatalytic activation of the SpeB zymogen into the mature SpeB. The missing SpeB activity furthermore leads to increased plasmin activation and a reduced activation of the contact system on the surface of S. pyogenes. All these effects can be reversed when ldh is reintroduced into the mutant via a plasmid. The results demonstrate a previously unappreciated role for LDH in modulation of SpeB maturation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Leif E Nass
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Jan B Wichura
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical CentreRostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| |
Collapse
|
67
|
Pérez-Pascual D, Lunazzi A, Magdelenat G, Rouy Z, Roulet A, Lopez-Roques C, Larocque R, Barbeyron T, Gobet A, Michel G, Bernardet JF, Duchaud E. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms. Front Microbiol 2017; 8:1542. [PMID: 28861057 PMCID: PMC5561996 DOI: 10.3389/fmicb.2017.01542] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.
Collapse
Affiliation(s)
- David Pérez-Pascual
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Aurelie Lunazzi
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Ghislaine Magdelenat
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Zoe Rouy
- Laboratoire d'Analyses Bioinformatiques en Génomique et Métabolisme, Centre National de la Recherche Scientifique (UMR-8030), Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Génomique, GenoscopeEvry, France
| | - Alain Roulet
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Celine Lopez-Roques
- Genotoul Genome & Transcriptome (GeT-PlaGe), Institut National de la Recherche AgronomiqueCastanet-Tolosan, France.,Institut National de la Recherche Agronomique (UAR1209)Castanet-Tolosan, France
| | - Robert Larocque
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Tristan Barbeyron
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Angélique Gobet
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Gurvan Michel
- Laboratoire de Biologie Intégrative des Modèles Marins (UMR 8227), Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Station Biologique de Roscoff, Sorbonne UniversitésRoscoff, France
| | - Jean-François Bernardet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
68
|
Ly AT, Noto JP, Walwyn OL, Tanz RR, Shulman ST, Kabat W, Bessen DE. Differences in SpeB protease activity among group A streptococci associated with superficial, invasive, and autoimmune disease. PLoS One 2017; 12:e0177784. [PMID: 28545045 PMCID: PMC5435240 DOI: 10.1371/journal.pone.0177784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/03/2017] [Indexed: 11/19/2022] Open
Abstract
The secreted cysteine proteinase SpeB is an important virulence factor of group A streptococci (GAS), whereby SpeB activity varies widely among strains. To establish the degree to which SpeB activity correlates with disease, GAS organisms were recovered from patients with pharyngitis, impetigo, invasive disease or acute rheumatic fever (ARF), and selected for analysis using rigorous sampling criteria; >300 GAS isolates were tested for SpeB activity by casein digestion assays, and each GAS isolate was scored as a SpeB-producer or non-producer. Highly significant statistical differences (p < 0.01) in SpeB production are observed between GAS recovered from patients with ARF (41.5% SpeB-non-producers) compared to pharyngitis (20.5%), invasive disease (16.7%), and impetigo (5.5%). SpeB activity differences between pharyngitis and impetigo isolates are also significant, whereas pharyngitis versus invasive isolates show no significant difference. The disproportionately greater number of SpeB-non-producers among ARF-associated isolates may indicate an altered transcriptional program for many rheumatogenic strains and/or a protective role for SpeB in GAS-triggered autoimmunity.
Collapse
Affiliation(s)
- Anhphan T. Ly
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - John P. Noto
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Odaelys L. Walwyn
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Robert R. Tanz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, United States of America
| | - Stanford T. Shulman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, United States of America
| | - William Kabat
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, United States of America
| | - Debra E. Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
69
|
Approaches to Dispersing Medical Biofilms. Microorganisms 2017; 5:microorganisms5020015. [PMID: 28368320 PMCID: PMC5488086 DOI: 10.3390/microorganisms5020015] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilm-associated infections pose a complex problem to the medical community, in that residence within the protection of a biofilm affords pathogens greatly increased tolerances to antibiotics and antimicrobials, as well as protection from the host immune response. This results in highly recalcitrant, chronic infections and high rates of morbidity and mortality. Since as much as 80% of human bacterial infections are biofilm-associated, many researchers have begun investigating therapies that specifically target the biofilm architecture, thereby dispersing the microbial cells into their more vulnerable, planktonic mode of life. This review addresses the current state of research into medical biofilm dispersal. We focus on three major classes of dispersal agents: enzymes (including proteases, deoxyribonucleases, and glycoside hydrolases), antibiofilm peptides, and dispersal molecules (including dispersal signals, anti-matrix molecules, and sequestration molecules). Throughout our discussion, we provide detailed lists and summaries of some of the most prominent and extensively researched dispersal agents that have shown promise against the biofilms of clinically relevant pathogens, and we catalog which specific microorganisms they have been shown to be effective against. Lastly, we discuss some of the main hurdles to development of biofilm dispersal agents, and contemplate what needs to be done to overcome them.
Collapse
|
70
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
71
|
Port GC, Cusumano ZT, Tumminello PR, Caparon MG. SpxA1 and SpxA2 Act Coordinately To Fine-Tune Stress Responses and Virulence in Streptococcus pyogenes. mBio 2017; 8:e00288-17. [PMID: 28351920 PMCID: PMC5371413 DOI: 10.1128/mbio.00288-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes, SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1- mutants were defective for growth under aerobic conditions, while SpxA2- mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1- mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2- mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1- mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2- mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1- attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2- hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2- hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue.IMPORTANCE For many pathogens, it is generally assumed that stress resistance is essential for pathogenesis. For Streptococcus pyogenes, environmental stress is also used as a signal to alter toxin expression. The amount of stress likely informs the bacterium of the strength of the host's defense response, allowing it to adjust its toxin expression to produce the ideal amount of tissue damage, balancing between too little damage, which will result in its elimination, and too much damage, which will debilitate the host. Here we identify components of a genetic circuit involved in stress resistance and toxin expression that has a fine-tuning function in tissue damage. The circuit consists of two versions of the protein SpxA that regulate transcription and are highly similar but have opposing effects on the severity of soft tissue damage. These results will help us understand how virulence is fine-tuned in other pathogens that have two SpxA proteins.
Collapse
Affiliation(s)
- Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Zachary T Cusumano
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Paul R Tumminello
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
72
|
Collin M, Björck L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol Biol 2017; 1535:339-351. [PMID: 27914091 DOI: 10.1007/978-1-4939-6673-8_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endoglycosidase EndoS and the protease IdeS from the human pathogen Streptococcus pyogenes are immunomodulating enzymes hydrolyzing human IgG. IdeS cleaves IgG in the lower hinge region, while EndoS hydrolyzes the conserved N-linked glycan in the Fc region. Both enzymes are remarkably specific for human IgG that after hydrolysis loses most of its effector functions, such as binding to leukocytes and complement activation, all contributing to bacterial evasion of adaptive immunity. However, taken out of their infectious context, we and others have shown that IdeS and EndoS can alleviate autoimmune disease in a number of animal models of antibody-mediated disorders. In this chapter, we will briefly describe the discovery and characterization of these unique enzymes, present the findings from a number of animal models of autoimmunity where the enzymes have been tested, and outline the ongoing clinical testing of IdeS. Furthermore, we will discuss the rationale for further development of IdeS and EndoS into novel pharmaceuticals against diseases where IgG antibodies contribute to the pathology, including, but not restricted to, chronic and acute autoimmunity, transplant rejection, and antidrug antibody reactions.
Collapse
Affiliation(s)
- Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden.
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Biomedical Center B14, SE-221 84, Lund, Sweden
| |
Collapse
|
73
|
Sjögren J, Andersson L, Mejàre M, Olsson F. Generating and Purifying Fab Fragments from Human and Mouse IgG Using the Bacterial Enzymes IdeS, SpeB and Kgp. Methods Mol Biol 2017; 1535:319-329. [PMID: 27914089 DOI: 10.1007/978-1-4939-6673-8_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fab fragments are valuable research tools in various areas of science including applications in imaging, binding studies, removal of Fc-mediated effector functions, mass spectrometry, infection biology, and many others. The enzymatic tools for the generation of Fab fragments have been discovered through basic research within the field of molecular bacterial pathogenesis. Today, these enzymes are widely applied as research tools and in this chapter, we describe methodologies based on bacterial enzymes to generate Fab fragments from both human and mouse IgG. For all human IgG subclasses, the IdeS enzyme from Streptococcus pyogenes has been applied to generate F(ab')2 fragments that subsequently can be reduced under mild conditions to generate a homogenous pool of Fab' fragments. The enzyme Kgp from Porphyromonas gingivalis has been applied to generate intact Fab fragments from human IgG1 and the Fab fragments can be purified using a CH1-specific affinity resin. The SpeB protease, also from S. pyogenes, is able to digest mouse IgGs and has been applied to digest antibodies and Fab fragments can be purified on light chain affinity resins. In this chapter, we describe methodologies that can be used to obtain Fab fragments from human and mouse IgG using bacterial proteases.
Collapse
|
74
|
Sarkar P, Sumby P. Regulatory gene mutation: a driving force behind group a Streptococcus strain- and serotype-specific variation. Mol Microbiol 2016; 103:576-589. [PMID: 27868255 DOI: 10.1111/mmi.13584] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 01/13/2023]
Abstract
Data from multiple bacterial pathogens are consistent with regulator-encoding genes having higher mutation frequencies than the genome average. Such mutations drive both strain- and type- (e.g., serotype, haplotype) specific phenotypic heterogeneity, and may challenge public health due to the potential of variants to circumvent established treatment and/or preventative regimes. Here, using the human bacterial pathogen the group A Streptococcus (GAS; S. pyogenes) as a model organism, we review the types and regulatory-, phenotypic-, and disease-specific consequences of naturally occurring regulatory gene mutations. Strain-specific regulator mutations that will be discussed include examples that transform isolates into hyper-invasive forms by enhancing expression of immunomodulatory virulence factors, and examples that promote asymptomatic carriage of the organism. The discussion of serotype-specific regulator mutations focuses on serotype M3 GAS isolates, and how the identified rewiring of regulatory networks in this serotype may be contributing to a decades old epidemiological association of M3 isolates with particularly severe invasive infections. We conclude that mutation plays an outsized role in GAS pathogenesis and has clinical relevance. Given the phenotypic variability associated with regulatory gene mutations, the rapid examination of these genes in infecting isolates may inform with respect to potential patient complications and treatment options.
Collapse
Affiliation(s)
- Poulomee Sarkar
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
75
|
Uhlmann J, Siemens N, Kai-Larsen Y, Fiedler T, Bergman P, Johansson L, Norrby-Teglund A. Phosphoglycerate Kinase—A Novel Streptococcal Factor Involved in Neutrophil Activation and Degranulation. J Infect Dis 2016; 214:1876-1883. [DOI: 10.1093/infdis/jiw450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
|
76
|
LaRock CN, Todd J, LaRock DL, Olson J, O’Donoghue AJ, Robertson AAB, Cooper MA, Hoffman HM, Nizet V. IL-1β is an innate immune sensor of microbial proteolysis. Sci Immunol 2016; 1:eaah3539. [PMID: 28331908 PMCID: PMC5358671 DOI: 10.1126/sciimmunol.aah3539] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin-1β (IL-1β) is a key proinflammatory cytokine that drives antimicrobial immune responses. IL-1β is aberrantly activated in autoimmune diseases, and IL-1β inhibitors are used as therapeutic agents to treat patients with certain autoimmune disorders. Review of postmarketing surveillance of patients receiving IL-1β inhibitors found a disproportionate reporting of invasive infections by group A Streptococcus (GAS). IL-1β inhibition increased mouse susceptibility to GAS infection, but IL-1β was produced independent of canonical inflammasomes. Newly synthesized IL-1β has an amino-terminal prodomain that blocks signaling activity, which is usually proteolytically removed by caspase-1, a protease activated within the inflammasome structure. In place of host caspases, the secreted GAS cysteine protease SpeB generated mature IL-1β. During invasive infection, GAS isolates may acquire pathoadaptive mutations eliminating SpeB expression to evade detection by IL-1β. Pharmacological IL-1β inhibition alleviates this selective pressure, allowing invasive infection by nonpathoadapted GAS. Thus, IL-1β is a sensor that directly detects pathogen-associated proteolysis through an independent pathway operating in parallel with host inflammasomes. Because IL-1β function is maintained across species, yet cleavage by caspases does not appear to be, detection of microbial proteases may represent an ancestral system of innate immune regulation.
Collapse
Affiliation(s)
- Christopher N. LaRock
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Jordan Todd
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Doris L. LaRock
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Avril A. B. Robertson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hal M. Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
77
|
Siemens N, Chakrakodi B, Shambat SM, Morgan M, Bergsten H, Hyldegaard O, Skrede S, Arnell P, Madsen MB, Johansson L, Juarez J, Bosnjak L, Mörgelin M, Svensson M, Norrby-Teglund A. Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight 2016; 1:e87882. [PMID: 27699220 DOI: 10.1172/jci.insight.87882] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Necrotizing fasciitis caused by group A streptococcus (GAS) is a life-threatening, rapidly progressing infection. At present, biofilm is not recognized as a potential problem in GAS necrotizing soft tissue infections (NSTI), as it is typically linked to chronic infections or associated with foreign devices. Here, we present a case of a previously healthy male presenting with NSTI caused by GAS. The infection persisted over 24 days, and the surgeon documented the presence of a "thick layer biofilm" in the fascia. Subsequent analysis of NSTI patient tissue biopsies prospectively included in a multicenter study revealed multiple areas of biofilm in 32% of the patients studied. Biopsies associated with biofilm formation were characterized by massive bacterial load, a pronounced inflammatory response, and clinical signs of more severe tissue involvement. In vitro infections of a human skin tissue model with GAS NSTI isolates also revealed multilayered fibrous biofilm structures, which were found to be under the control of the global Nra gene regulator. The finding of GAS biofilm formation in NSTIs emphasizes the urgent need for biofilm to be considered as a potential complicating microbiological feature of GAS NSTI and, consequently, emphasizes reconsideration of antibiotic treatment protocols.
Collapse
Affiliation(s)
- Nikolai Siemens
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Srikanth Mairpady Shambat
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Morgan
- Department of Microbiology, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Helena Bergsten
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, Copenhagen, Denmark
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Per Arnell
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin B Madsen
- Department of Intensive Care, Rigshospitalet, Copenhagen, Denmark
| | - Linda Johansson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Julius Juarez
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lidija Bosnjak
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
78
|
Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, Dal'Molin CGO, Palfreyman RW, Nielsen LK, Cooper MA, Morrison M, Hansbro PM, Hugenholtz P. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. MICROBIOME 2016; 4:36. [PMID: 27388460 PMCID: PMC4936053 DOI: 10.1186/s40168-016-0181-2] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our view of host-associated microbiota remains incomplete due to the presence of as yet uncultured constituents. The Bacteroidales family S24-7 is a prominent example of one of these groups. Marker gene surveys indicate that members of this family are highly localized to the gastrointestinal tracts of homeothermic animals and are increasingly being recognized as a numerically predominant member of the gut microbiota; however, little is known about the nature of their interactions with the host. RESULTS Here, we provide the first whole genome exploration of this family, for which we propose the name "Candidatus Homeothermaceae," using 30 population genomes extracted from fecal samples of four different animal hosts: human, mouse, koala, and guinea pig. We infer the core metabolism of "Ca. Homeothermaceae" to be that of fermentative or nanaerobic bacteria, resembling that of related Bacteroidales families. In addition, we describe three trophic guilds within the family, plant glycan (hemicellulose and pectin), host glycan, and α-glucan, each broadly defined by increased abundance of enzymes involved in the degradation of particular carbohydrates. CONCLUSIONS "Ca. Homeothermaceae" representatives constitute a substantial component of the murine gut microbiota, as well as being present within the human gut, and this study provides important first insights into the nature of their residency. The presence of trophic guilds within the family indicates the potential for niche partitioning and specific roles for each guild in gut health and dysbiosis.
Collapse
Affiliation(s)
- Kate L Ormerod
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Joshua N Daly
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Jeremy D Parsons
- QFAB Bioinformatics, The University of Queensland, Brisbane, Australia
| | - Cristiana G O Dal'Molin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Robin W Palfreyman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Mark Morrison
- Microbial Biology and Metagenomics, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
79
|
Cao C, Zhang F, Ji M, Pei F, Fan X, Shen H, Wang Q, Yang W, Wang Y. Development of a loop-mediated isothermal amplification method for rapid detection of streptococcal pyrogenic exotoxin B. Toxicon 2016; 117:53-8. [DOI: 10.1016/j.toxicon.2016.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
|
80
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
81
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
82
|
Streptococcal pyrogenic exotoxin B inhibits apoptotic cell clearance by macrophages through protein S cleavage. Sci Rep 2016; 6:26026. [PMID: 27181595 PMCID: PMC4867609 DOI: 10.1038/srep26026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/25/2016] [Indexed: 11/08/2022] Open
Abstract
Clearance of apoptotic cells by macrophages plays an important role in maintaining tissue homeostasis. Previous study indicated that streptococcal pyrogenic exotoxin B (SPE B) reduces phagocytic activity in group A streptococcus (GAS) infection. Here, we demonstrate that SPE B causes an inhibitory effect on protein S-mediated phagocytosis. In the presence of SPE B, serum- and purified protein S-mediated phagocytosis of apoptotic cells were significantly inhibited. The binding abilities of protein S to apoptotic cells were decreased by treatment with SPE B. Bacterial culture supernatants from GAS NZ131 strain also caused a reduction of protein S binding to apoptotic cells, but speB mutant strain did not. SPE B directly cleaved protein S in vitro and in vivo, whereas a lower level of cleavage occurred in mice infected with a speB isogenic mutant strain. SPE B-mediated initial cleavage of protein S caused a disruption of phagocytosis, and also resulted in a loss of binding ability of protein S-associated C4b-binding protein to apoptotic cells. Taken together, these results suggest a novel pathogenic role of SPE B that initiates protein S degradation followed by the inhibition of apoptotic cell clearance by macrophages.
Collapse
|
83
|
Arzanlou M. Inhibition of streptococcal pyrogenic exotoxin B using allicin from garlic. Microb Pathog 2016; 93:166-71. [PMID: 26911644 DOI: 10.1016/j.micpath.2016.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is an important virulence factor of group A streptococci (GAS) and inactivation of SpeB results in the significantly decreased virulence of the bacterium. The protein is secreted as an inactive zymogen of 40 KDa (SpeBz) and undergoes proteolytic truncation to result in a 28 KDa mature active protease (SpeBm). In this study the effect of allicin on the proteolytic activity of SpeBm was evaluated using azocasein assay. Allicin neutralized the SpeBm proteolytic activity in a concentration dependent manner (IC50 = 15.71 ± 0.45 μg/ml). The loss of activity was completely reversed by subsequent treatment with a reducing agent, dithiothreitol (DTT; 10 mM final concentration), suggesting that allicin likely inhibits the SpeBm by forming a disulfide linkage with an active thiol group in its active site. This mechanism of action was further confirmed with the fact that DTT did not reverse the SpeBm activity in the presence of E-64, a cysteine protease-specific inhibitor, which works specially by forming a thioether linkage with free sulfhydryl groups in enzymes active site. The MIC of allicin against GAS was found to be 32 μg/ml. Exposure of GAS culture to allicin (25 μg/ml) inhibited maturation of SpeBz to the SpeBm. In conclusion, the results of this study suggest that allicin inhibits the maturation of SpeBz and proteolytic activity of SpeBm and could be a potential therapeutic agent for the treatment of GAS infections.
Collapse
Affiliation(s)
- Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5618953141, Iran.
| |
Collapse
|
84
|
Lane MD, Seelig B. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity. Protein Expr Purif 2016; 121:66-72. [PMID: 26773742 DOI: 10.1016/j.pep.2016.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures.
Collapse
Affiliation(s)
- Michael D Lane
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
85
|
Sjögren J, Olsson F, Beck A. Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 2016; 141:3114-25. [DOI: 10.1039/c6an00071a] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody subunits LC, Fd and Fc/2, generated by IdeS digestion has been applied in analytical methodologies to characterize antibody quality attributes such as glycosylation, oxidation, deamidation, and identity.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre
- St Julien-en-Genevois
- France
| |
Collapse
|
86
|
Dinis M, Plainvert C, Longo M, Guignot J, Gabriel C, Poyart C, Fouet A. Group A Streptococcus emm3 strains induce early macrophage cell death. Pathog Dis 2015; 74:ftv124. [PMID: 26702632 DOI: 10.1093/femspd/ftv124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 01/05/2023] Open
Abstract
Group A Streptococcus (GAS) infections present high morbidity and mortality rates and consequently remain a significant health problem. The emm3 isolates induce more severe pathologies than all others. In this study, we tested, on a collection of invasive and non-invasive emm3 clinical isolates, whether in that genotype the invasive status of the strains affects the innate immune response. We show that phagocytosis is dependent on the invasiveness of the isolates. Interestingly, all emm3 isolates compromise macrophage integrity, already noticeable 1 h after infection. Inflammatory modulators (IL-6, TNF-α and IFN-β) are nevertheless detected during at least 6 h post-infection. This is a likely consequence of the macrophages not being all infected. The efficient and rapid induction of macrophage death could explain the virulence of the emm3 strains.
Collapse
Affiliation(s)
- Márcia Dinis
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Céline Plainvert
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Magalie Longo
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Julie Guignot
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Christelle Gabriel
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France
| | - Claire Poyart
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France Hôpitaux Universitaires Paris Centre, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Agnès Fouet
- INSERM U 1016, Institut Cochin, Unité FRM 'Barrières et Pathogènes' F-75014 Paris, France CNRS UMR 8104, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, F-75014 Paris, France Centre National de Référence des Streptocoques, F-75014 Paris, France
| |
Collapse
|
87
|
Persson H, Söderberg JJ, Vindebro R, Johansson BP, von Pawel-Rammingen U. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition. Mol Immunol 2015; 68:176-84. [DOI: 10.1016/j.molimm.2015.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
|
88
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
89
|
Insufficient Acidification of Autophagosomes Facilitates Group A Streptococcus Survival and Growth in Endothelial Cells. mBio 2015; 6:e01435-15. [PMID: 26419882 PMCID: PMC4611045 DOI: 10.1128/mbio.01435-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen, and its invasion via blood vessels is critically important in serious events such as bacteremia or multiorgan failure. Although GAS was identified as an extracellular bacterium, the internalization of GAS into nonphagocytic cells may provide a strategy to escape from immune surveillance and antibiotic killing. However, GAS has also been reported to induce autophagy and is efficiently killed within lysosome-fused autophagosomes in epithelial cells. In this study, we show that GAS can replicate in endothelial cells and that streptolysin O is required for GAS growth. Bacterial replication can be suppressed by altering GAS gene expression in an acidic medium before internalization into endothelial cells. The inhibitory effect on GAS replication can be reversed by treatment with bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase. Compared with epithelial cells in which acidification causes autophagy-mediated clearance of GAS, there was a defect in acidification of GAS-containing vesicles in endothelial cells. Consequently, endothelial cells fail to maintain low pH in GAS-containing autophagosomes, thereby permitting GAS replication inside LAMP-1- and LC3-positive vesicles. Furthermore, treatment of epithelial cells with bafilomycin A1 resulted in defective GAS clearance by autophagy, with subsequent bacterial growth intracellularly. Therefore, low pH is a key factor for autophagy-mediated suppression of GAS growth inside epithelial cells, while defective acidification of GAS-containing vesicles results in bacterial growth in endothelial cells. Previous reports showed that GAS can induce autophagy and is efficiently killed within lysosome-fused autophagosomes in epithelial cells. In endothelial cells, in contrast, induction of autophagy is not sufficient for GAS killing. In this study, we provide the first evidence that low pH is required to prevent intracellular growth of GAS in epithelial cells and that this mechanism is defective in endothelial cells. Treatment of GAS with low pH altered GAS growth rate and gene expression of virulence factors and resulted in enhanced susceptibility of GAS to intracellular lysosomal killing. Our findings reveal the existence of different mechanisms of host defense against GAS invasion between epithelial and endothelial cells.
Collapse
|
90
|
Lannergård J, Kristensen BM, Gustafsson MCU, Persson JJ, Norrby-Teglund A, Stålhammar-Carlemalm M, Lindahl G. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein. Microbiologyopen 2015; 4:774-89. [PMID: 26175306 PMCID: PMC4618610 DOI: 10.1002/mbo3.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack.
Collapse
Affiliation(s)
- Jonas Lannergård
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | - Gunnar Lindahl
- Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
91
|
Bessen DE, McShan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H. Molecular epidemiology and genomics of group A Streptococcus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:393-418. [PMID: 25460818 PMCID: PMC4416080 DOI: 10.1016/j.meegid.2014.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | - W Michael McShan
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Scott V Nguyen
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
92
|
Generic determinants of Streptococcus colonization and infection. INFECTION GENETICS AND EVOLUTION 2015; 33:361-70. [DOI: 10.1016/j.meegid.2014.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 11/20/2022]
|
93
|
Kant S, Agarwal S, Pancholi P, Pancholi V. TheStreptococcus pyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol Microbiol 2015; 97:515-40. [DOI: 10.1111/mmi.13047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sashi Kant
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Shivani Agarwal
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Preeti Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Vijay Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| |
Collapse
|
94
|
Lamb LEM, Sriskandan S, Tan LKK. Bromine, bear-claw scratch fasciotomies, and the Eagle effect: management of group A streptococcal necrotising fasciitis and its association with trauma. THE LANCET. INFECTIOUS DISEASES 2015; 15:109-21. [PMID: 25541175 DOI: 10.1016/s1473-3099(14)70922-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Necrotising fasciitis is a rare, but potentially fatal, soft-tissue infection. Historical depictions of the disease have been described since classical times and were mainly recorded in wartime reports of battle injuries. Although several different species of bacteria can cause necrotising fasciitis, perhaps the most widely known is group A streptococcus (GAS). Infection control, early surgical debridement, and antibiotic therapy are now the central tenets of the clinical management of necrotising fasciitis; these treatment approaches all originate from those used in wars in the past 150 years. We review reports from the 19th century, early 20th century, and mid-20th century onwards to show how the management of necrotising fasciitis has progressed in parallel with prevailing scientific thought and medical practice. Historically, necrotising fasciitis has often, but not exclusively, been associated with penetrating trauma. However, along with a worldwide increase in invasive GAS disease, recent reports have cited cases of necrotising fasciitis following non-combat-related injuries or in the absence of antecedent events. We also investigate the specific association between GAS necrotising fasciitis and trauma. In the 21st century, molecular biology has improved our understanding of GAS pathogenesis, but has not yet affected attributable mortality.
Collapse
Affiliation(s)
- Lucy E M Lamb
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK
| | - Shiranee Sriskandan
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK
| | - Lionel K K Tan
- Department of Medicine, Imperial College London, Hammersmith Campus, Hammersmith Hospital, London, UK.
| |
Collapse
|
95
|
LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3047-54. [PMID: 25701232 DOI: 10.1016/j.bbamem.2015.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 02/06/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Medicine and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
96
|
Kuo CF, Tsao N, Cheng MH, Yang HC, Wang YC, Chen YP, Lin KJ. Application of the C3-binding motif of streptococcal pyrogenic exotoxin B to protect mice from invasive group a streptococcal infection. PLoS One 2015; 10:e0117268. [PMID: 25629609 PMCID: PMC4309557 DOI: 10.1371/journal.pone.0117268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen that produces several extracellular exotoxins to facilitate invasion and infection. Streptococcal pyrogenic exotoxin B (SPE B) has been demonstrated to be an important virulence factor of GAS. Our previous studies indicate that SPE B cleaves complement 3 (C3) and inhibits the activation of complement pathways. In this study, we constructed and expressed recombinant fragments of SPE B to examine the C3-binding site of SPE B. Using enzyme-linked immunosorbent assays and pull-down assays, we found that the C-terminal domain, containing amino-acid residues 345–398, of SPE B was the major binding site of human serum C3. We further identified a major, Ala376-Pro398, and a minor C3-binding motif, Gly346-Gly360, that both mediated the binding of C3 complement. Immunization with the C3-binding motifs protected mice against challenge with a lethal dose of non-invasive M49 strain GAS but not invasive M1 strains. To achieve higher efficiency against invasive M1 GAS infection, a combination of synthetic peptides derived from C-terminal epitope of streptolysin S (SLSpp) and from the major C3-binding motif of SPE B (PP6, Ala376-Pro398) was used to elicit specific immune response to those two important streptococcal exotoxins. Death rates and the severity of skin lesions decreased significantly in PP6/SLSpp-immunized mice that were infected with invasive M1 strains of GAS. These results indicate a combination of the C3-binding motif of SPE B and the protective epitope of SLS could be used as a subunit vaccine against invasive M1 strains group A streptococcal infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung City, Taiwan
- * E-mail:
| | - Nina Tsao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Miao-Hui Cheng
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Hsiu-Chen Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Chieh Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Ying-Pin Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Kai-Jen Lin
- Department of Pathology, E-DA Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
97
|
Jimenez JC, Federle MJ. Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 2014; 4:127. [PMID: 25309879 PMCID: PMC4162386 DOI: 10.3389/fcimb.2014.00127] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.
Collapse
Affiliation(s)
- Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
98
|
Saeki Y, Ishihara K. Infection-immunity liaison: pathogen-driven autoimmune-mimicry (PDAIM). Autoimmun Rev 2014; 13:1064-9. [PMID: 25182200 DOI: 10.1016/j.autrev.2014.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022]
Abstract
Autoimmunity causes pathological conditions resulting in autoimmune diseases (ADs). Although autoimmunity is a mystery, immunological dogma suggests that autoreactive cell reactivation (ACR) breaks self-tolerance and induces autoimmunity. Thus, ACR is a royal pathway for ADs. Cumulative evidence implicates environmental factors as secondary triggers of ADs in the genetically susceptible hosts. Infection is the most likely trigger. Although several mechanisms have been proposed to explain how infectious agents trigger ADs, ACR is assumed to be an essential pathway. Here, by showing some exemplary ADs, we propose two novel pathways, "molecular modification pathway" and "hyper-immune-inflammatory response pathway", which induce AD-like conditions directly by infectious agents without ACR. These AD-like conditions are actually not true "ADs" according to the current definition. Therefore, we define them as "pathogen-driven autoimmune-mimicry (PDAIM)". Confirming PDAIM will open perspectives in developing novel fundamental and non-immunosuppressive therapies for ADs. The idea should also provide novel insights into both the mechanisms of autoimmunity and the pathogenesis of ADs.
Collapse
Affiliation(s)
- Yukihiko Saeki
- Department of Clinical Research, National Hospital Organization (NHO) Osaka Minami Medical Center, 2-1 Kidohigashi-machi, Kawachinagano City, Osaka 586-8521, Japan.
| | - Katsuhiko Ishihara
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| |
Collapse
|
99
|
The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 2014; 14:675-82. [PMID: 24331465 DOI: 10.1016/j.chom.2013.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
Autophagy is reported to be an important innate immune defense against the intracellular bacterial pathogen Group A Streptococcus (GAS). However, the GAS strains examined to date belong to serotypes infrequently associated with human disease. We find that the globally disseminated serotype M1T1 clone of GAS can evade autophagy and replicate efficiently in the cytosol of infected cells. Cytosolic M1T1 GAS (strain 5448), but not M6 GAS (strain JRS4), avoids ubiquitylation and recognition by the host autophagy marker LC3 and ubiquitin-LC3 adaptor proteins NDP52, p62, and NBR1. Expression of SpeB, a streptococcal cysteine protease, is critical for this process, as an isogenic M1T1 ΔspeB mutant is targeted to autophagy and attenuated for intracellular replication. SpeB degrades p62, NDP52, and NBR1 in vitro and within the host cell cytosol. These results uncover a proteolytic mechanism utilized by GAS to escape the host autophagy pathway that may underpin the success of the M1T1 clone.
Collapse
|
100
|
Abstract
Autophagy is important for innate defense against intracellular bacteria, such as Group A Streptococcus (GAS). In this issue of Cell Host & Microbe, Barnett et al. (2013) demonstrate that the globally disseminated serotype M1T1 clone of GAS can evade autophagy via streptococcal cysteine protease SpeB-mediated degradation of ubiquitin-LC3 adaptor proteins.
Collapse
|