51
|
Controlled delivery of glial cell line-derived neurotrophic factor enhances motor nerve regeneration. J Hand Surg Am 2010; 35:2008-17. [PMID: 21035963 DOI: 10.1016/j.jhsa.2010.08.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/13/2010] [Accepted: 08/18/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine the effect of a motor-specific neurotrophic factor, glial-derived neurotrophic factor (GDNF) on motor nerve regeneration. METHODS We used a nerve conduit filled with a fibrin-based delivery system that provided controlled release of GDNF during nerve regeneration. The motor branch of the rat femoral nerve was used to assess motor nerve regeneration across a 5-mm gap. Four experimental groups (n = 4 to n = 8) were evaluated. These included GDNF with the fibrin-based delivery system (GDNF-DS), fibrin alone, empty conduit (negative control), and nerve isograft (positive control). Nerves were harvested at 5 weeks for analysis by histomorphometry and electron microscopy. RESULTS At 5 mm distal to the conduit or isografts, the GDNF-DS group was not significantly different from the nerve isograft group in the following histomorphometric measures: total nerve fibers, percentage of neural tissue, and nerve density. Both the GDNF-DS and isograft groups had significantly more fibers and a higher percentage of neural tissue than fibrin alone and empty conduit groups. There were no differences in fiber width among all groups. By electron microscopy, the GDNF-DS and isograft groups also demonstrated more organized nerve architecture than the fibrin alone and empty conduit groups. CONCLUSIONS The delivery of GDNF from the fibrin-based delivery system promotes motor nerve regeneration at a level similar to an isograft in the femoral motor nerve model. This study gives insight into the potential beneficial role of GDNF in the treatment of motor nerve injuries.
Collapse
|
52
|
Biazar E, Khorasani MT, Montazeri N, Pourshamsian K, Daliri M, Rezaei M, Jabarvand M, Khoshzaban A, Heidari S, Jafarpour M, Roviemiab Z. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomedicine 2010; 5:839-52. [PMID: 21042546 PMCID: PMC2963930 DOI: 10.2147/ijn.s11883] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Department of Chemistry, Islamic Azad University-Tonekabon Branch, Iran.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Deumens R, Bozkurt A, Meek MF, Marcus MAE, Joosten EAJ, Weis J, Brook GA. Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol 2010; 92:245-76. [PMID: 20950667 DOI: 10.1016/j.pneurobio.2010.10.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/30/2010] [Accepted: 10/05/2010] [Indexed: 02/06/2023]
Abstract
Peripheral nerve injuries that induce gaps larger than 1-2 cm require bridging strategies for repair. Autologous nerve grafts are still the gold standard for such interventions, although alternative treatments, as well as treatments to improve the therapeutic efficacy of autologous nerve grafting are generating increasing interest. Investigations are still mostly experimental, although some clinical studies have been undertaken. In this review, we aim to describe the developments in bridging technology which aim to replace the autograft. A multi-disciplinary approach is of utmost importance to develop and optimise treatments of the most challenging peripheral nerve injuries.
Collapse
Affiliation(s)
- Ronald Deumens
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
54
|
Park SC, Oh SH, Seo TB, Namgung U, Kim JM, Lee JH. Ultrasound-stimulated peripheral nerve regeneration within asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. J Biomed Mater Res B Appl Biomater 2010; 94:359-366. [PMID: 20552617 DOI: 10.1002/jbm.b.31659] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently, we developed a novel method to fabricate a nerve guide conduit (NGC) with asymmetrical pore structure and hydrophilicity using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method. From the animal study using a rat model (sciatic nerve defect of rat), we recognized that the unique PLGA/Pluronic F127 tube provided good environments for nerve regeneration. In this study, we applied low-intensity pulsed ultrasound as a simple and noninvasive stimulus at the PLGA/F127 NGC-implanted site transcutaneously in rats to investigate the feasibility of ultrasound for the enhanced nerve regeneration through the tube. The nerve regeneration behaviors within the ultrasound-stimulated PLGA/Pluronic F127 NGCs were compared with the NGCs without the ultrasound treatment as well as normal nerve by histological and immunohistochemical observations. It was observed that the PLGA/Pluronic F127 tube-implanted group applied with the ultrasound had more rapid nerve regeneration behavior (approximately 0.71 mm/day) than the tube-implanted group without the ultrasound treatment (approximately 0.48 mm/day). The ultrasound-treated tube group also showed greater neural tissue area as well as larger axon diameter and thicker myelin sheath than the tube group without the ultrasound treatment, indicating better nerve regeneration. The better nerve regeneration behavior in the our NGC/ultrasound system may be caused by the synergistic effect of the asymmetrically porous PLGA/Pluronic F127 tube with unique properties (selective permeability, hydrophilicity, and structural stability, which can provide good environment for nerve regeneration) and physical stimulus (stimulation of the Schwann cells and activation of the neurotrophic factors).
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Advanced Materials, Hannam University, Daejeon 305-811, South Korea
| | | | | | | | | | | |
Collapse
|
55
|
Panaite PA, Barakat-Walter I. Thyroid hormone enhances transected axonal regeneration and muscle reinnervation following rat sciatic nerve injury. J Neurosci Res 2010; 88:1751-63. [PMID: 20127814 DOI: 10.1002/jnr.22344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Collapse
|
56
|
Okamoto H, Hata KI, Kagami H, Okada K, Ito Y, Narita Y, Hirata H, Sekiya I, Otsuka T, Ueda M. Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs. J Biomed Mater Res A 2010; 92:859-68. [PMID: 19280630 DOI: 10.1002/jbm.a.32421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autologous nerve graft is the most commonly applied treatment for the patients with peripheral nerve defect, while application is limited because of tissue availability and unfavorable donor site morbidity. To overcome this problem, peripheral nerve regeneration using a nerve conduit has been studied. Especially, nerve conduit using biodegradable materials has been considered promising. In this study, a potential of collagen nerve conduit has been studied with special reference to the regenerating process of a peripheral nerve. Twelve adult female Beagle dogs weighting 10-12 kg were used. The peroneal nerve was cut to make a 30-mm defect. The nerve defect was bridged by the collagen artificial nerve conduit. Comprehensive functional, electrophysiological, morphometrical, and histological analyses were performed until one year after operation. The wet weight of tibialis anterior muscles was only 32.4% of the healthy side at 24 weeks, which was recovered to 77.4% at 52 weeks after denervation. Electrophysiological evaluation of tibialis anterior muscle belly showed polyphasic wave at 52 weeks after implantation, which was almost half amplitude as compared with that of control. The diameters of myelinated nerve fibers thickened day by day, and the average diameter was 5.16 microm at PFN, 3.91 microm at CG, and 3.75 microm at DFN, and average thickness of myelin sheath was 0.94 microm at PFN, 0.46 microm at CG, and 0.55 microm at DFN after 52 weeks. The distribution of myelinated nerve fiber size in the 52 weeks group was distinctly bimodal with the major peak at approximately 2-4 microm and the minor peak at 10-12 microm. These findings were consistent with the distribution of the normal nerve fiber. This study proves the feasibility of the collagen artificial nerve conduit for promoting nerve regeneration, raises new possibilities of seeking alternatives to autograft for nerve repair. The results from this study showed detailed process of morphological, electrophysiological, and functional recovery of the regenerated nerve, which would provide scientific background for this novel therapy.
Collapse
Affiliation(s)
- Hideki Okamoto
- Department of Orthopaedic Surgery, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Amado S, Rodrigues JM, Luís AL, Armada-da-Silva PAS, Vieira M, Gartner A, Simões MJ, Veloso AP, Fornaro M, Raimondo S, Varejão ASP, Geuna S, Maurício AC. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair. J Neuroeng Rehabil 2010; 7:7. [PMID: 20149260 PMCID: PMC2829579 DOI: 10.1186/1743-0003-7-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 02/11/2010] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.
Collapse
Affiliation(s)
- Sandra Amado
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto (UP), Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Mehrotra S, Lynam D, Maloney R, Pawelec KM, Tuszynski MH, Lee I, Chan C, Sakamoto J. Time Controlled Protein Release from Layer-by-Layer Assembled Multilayer Functionalized Agarose Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2010; 20:247-258. [PMID: 20200599 PMCID: PMC2830720 DOI: 10.1002/adfm.200901172] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Axons of the adult central nervous system exhibit an extremely limited ability to regenerate after spinal cord injury. Experimentally generated patterns of axon growth are typically disorganized and randomly oriented. Support of linear axonal growth into spinal cord lesion sites has been demonstrated using arrays of uniaxial channels, templated with agarose hydrogel, and containing genetically engineered cells that secrete brain-derived neurotrophic factor (BDNF). However, immobilizing neurotrophic factors secreting cells within a scaffold is relatively cumbersome, and alternative strategies are needed to provide sustained release of BDNF from templated agarose scaffolds. Existing methods of loading the drug or protein into hydrogels cannot provide sustained release from templated agarose hydrogels. Alternatively, here it is shown that pH-responsive H-bonded poly(ethylene glycol)(PEG)/poly(acrylic acid)(PAA)/protein hybrid layer-by-layer (LbL) thin films, when prepared over agarose, provided sustained release of protein under physiological conditions for more than four weeks. Lysozyme, a protein similar in size and isoelectric point to BDNF, is released from the multilayers on the agarose and is biologically active during the earlier time points, with decreasing activity at later time points. This is the first demonstration of month-long sustained protein release from an agarose hydrogel, whereby the drug/protein is loaded separately from the agarose hydrogel fabrication process.
Collapse
Affiliation(s)
- Sumit Mehrotra
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| | - Daniel Lynam
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| | - Ryan Maloney
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| | - Kendell M. Pawelec
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| | - Mark H. Tuszynski
- Director-Center for Neural Repair, Department of Neurosciences, University of California, San Diego 92093, CA (USA)
| | - Ilsoon Lee
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
- Department of Biochemistry and Molecular Biology Michigan State University East Lansing, Michigan 48824, MI (USA)
| | - Jeffrey Sakamoto
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, MI (USA)
| |
Collapse
|
59
|
Meek MF, Den Dunnen WFA. Porosity of the wall of a Neurolac nerve conduit hampers nerve regeneration. Microsurgery 2009; 29:473-8. [PMID: 19308952 DOI: 10.1002/micr.20642] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One way to improve nerve regeneration and bridge longer nerve gaps may be the use of semipermeable/porous conduits. With porosity less biomaterial is used for the nerve conduit. We evaluated the short-term effects of porous Neurolac nerve conduits for in vivo peripheral nerve regeneration. In 10 male Black Hooded rats, a gap of 10 mm was bridged by a porous Neurolac nerve conduit. Evaluation point ranged from 3 to 12 weeks. The sciatic nerve function was not measurable due to automutilation and flexion contractures. The gait-stance duration showed no improvement with time, indicating a disturbed walking pattern. The nerve guides showed very fast degradation with swelling, fragmentation, and collapse. Furthermore, a severe foreign body reaction occurred. Nerve regeneration was severely hampered. This study showed no beneficial effects of porous Neurolac nerve conduits when compared with previous findings with nonporous copolymeric nerve guides of a slightly different composition.
Collapse
Affiliation(s)
- Marcel F Meek
- Department of Plastic and Hand Surgery, Scheper Hospital, Boermarkeweg 60, Emmen, The Netherlands. marcelfmeek@hotmail. com
| | | |
Collapse
|
60
|
Ribeiro-Resende VT, Koenig B, Nichterwitz S, Oberhoffner S, Schlosshauer B. Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials 2009; 30:5251-9. [PMID: 19632717 DOI: 10.1016/j.biomaterials.2009.07.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
Peripheral human nerves fail to regenerate across longer tube implants (>2 cm), most likely because implants lack the microarchitecture of native nerves, including bands of Büngner. Bands of Büngner comprise longitudinally aligned Schwann cell strands that guide selectively regrowing axons. We aim to optimize tubular implants by integrating artificial bands of Büngner. Three principle strategies for inducing the formation of bands of Büngner were investigated: (a) an aligned extracellular matrix, (b) polarizing differentiation factors, and (c) microstructured biomaterial filaments. In vitro oriented collagen and a combination of differentiation factors (NGF, neuregulin-1, TGF-beta) induced Schwann cell alignment to some extent. The most pronounced Schwann cell alignment was evident on ultrathin, endless poly-epsilon-caprolactone (PCL) filaments with longitudinal microgrooves. Precoated PCL filaments proved to be non-cytotoxic, displayed good cell attachment, and supported Schwann cell proliferation as well as guided axonal outgrowth. In vitro on PCL filaments Schwann cells displayed a polarized expression of the cell adhesion molecule L1 similar to that seen in vivo in bands of Büngner after sciatic nerve crush in adult rats. In summary, the integration of bioengineered bands of Büngner based on microstructured polymer filaments in nerve conduits promises to be the most valuable approach to initiating a more efficient regeneration across longer nerve lesions.
Collapse
Affiliation(s)
- Victor T Ribeiro-Resende
- NMI Naturwissenschaftliches und Medizinisches, Institut an der Universität Tübingen, Markwiesenstr. 55, D-72770 Reutlingen, Germany
| | | | | | | | | |
Collapse
|
61
|
Sun M, Downes S. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1181-1192. [PMID: 19132511 DOI: 10.1007/s10856-008-3671-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
Abstract
In this study, the physicochemical properties of microporous poly (epsilon-caprolactone) (PCL) films and a composite material made of PCL and polylactic acid (PLA) blend were tested. Fabricated by solvent casting using dichloromethane, these ultra-thin films (60 +/- 5 microm in thickness) have a novel double-sided surface topography, i.e. a porous surface with pores 1-10 microm in diameter and a relatively smooth surface with nano-scaled texture. Porous surfaces were found to be associated with increased protein adsorption and the treatment of these polyester scaffolds with NaOH rendered them more hydrophilic. Differential Scanning Calorimetry (DSC) showed that the incorporation of PLA reduced the crystallinity of the original homopolymer. Chemical changes were investigated by means of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Average surface roughness (Ra), hydrophilicity/hydrophobicity and mechanical properties of these materials were also assessed for the suitability of these materials as nerve conduits.
Collapse
Affiliation(s)
- Mingzhu Sun
- Department of Engineering and Physical Sciences, Materials Science Centre, The University of Manchester, Manchester, UK
| | | |
Collapse
|
62
|
Luís AL, Rodrigues JM, Geuna S, Amado S, Shirosaki Y, Lee JM, Fregnan F, Lopes MA, Veloso AP, Ferreira AJ, Santos JD, Armada-Da-silva PAS, Varejão ASP, Maurício AC. Use of PLGA 90:10 scaffolds enriched with in vitro-differentiated neural cells for repairing rat sciatic nerve defects. Tissue Eng Part A 2009; 14:979-93. [PMID: 18447635 DOI: 10.1089/ten.tea.2007.0273] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) nerve tube guides, made of a novel proportion (90:10) of the two polymers, poly(L-lactide): poly(glycolide) and covered with a neural cell line differentiated in vitro, were tested in vivo for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve. Before in vivo testing, the PLGA 90:10 tubes were tested in vitro for water uptake and mass loss and compared with collagen sheets. The water uptake of the PLGA tubes was lower, and the mass loss was more rapid and higher than those of the collagen sheets when immersed in phosphate-buffered saline (PBS) solution. The pH values of immersing PBS did not change after soaking the collagen sheets and showed to be around 7.4. On the other hand, the pH values of PBS after soaking PLGA tubes decreased gradually during 10 days reaching values around 3.5. For the in vivo testing, 22 Sasco Sprague adult rats were divided into four groups--group 1: gap not reconstructed; group 2: gap reconstructed using an autologous nerve graft; group 3: gap reconstructed with PLGA 90:10 tube guides; group 4: gap reconstructed with PLGA 90:10 tube guides covered with neural cells differentiated in vitro. Motor and sensory functional recovery was evaluated throughout a healing period of 20 weeks using sciatic functional index, static sciatic index, extensor postural thrust, withdrawal reflex latency, and ankle kinematics. Stereological analysis was carried out on regenerated nerve fibers. Both motor and sensory functions improved significantly in the three experimental nerve repair groups, although the rate and extent of recovery was significantly higher in the group where the gap was reconstructed using the autologous graft. The presence of neural cells covering the inside of the PLGA tube guides did not make any difference in the functional recovery. By contrast, morphometric analysis showed that the introduction of N1E-115 cells inside PLGA 90:10 tube guides led to a significant lower number and size of regenerated nerve fibers, suggesting thus that this approach is not adequate for promoting peripheral nerve repair. Further studies are warranted to assess the role of other cellular systems as a foreseeable therapeutic strategy in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Universidade do Porto, Vairão, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Functional recovery after peripheral nerve injury and implantation of a collagen guide. Biomaterials 2008; 30:363-73. [PMID: 18929405 DOI: 10.1016/j.biomaterials.2008.09.043] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022]
Abstract
Although surgery techniques improved over the years, the clinical results of peripheral nerve repair remain unsatisfactory. In the present study, we compare the results of a collagen nerve guide conduit to the standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves. We assessed behavioral and functional sensori-motor recovery in a rat model of peroneal nerve transection. A 1cm segment of the peroneal nerve innervating the Tibialis anterior muscle was removed and immediately replaced by a new biodegradable nerve guide fabricated from highly purified type I+III collagens derived from porcine skin. Four groups of animals were included: control animals (C, n=12), transected animals grafted with either an autologous nerve graft (Gold Standard; GS, n=12) or a collagen tube filled with an acellular skeletal muscle matrix (Tube-Muscle; TM, n=12) or an empty collagen tube (Collagen-Tube; CT, n=12). We observed that 1) the locomotor recovery pattern, analyzed with kinetic parameters and peroneal functional index, was superior in the GS and CT groups; 2) a muscle contraction was obtained in all groups after stimulation of the proximal nerve but the mechanical muscle properties (twitch and tetanus threshold) parameters indicated a fast to slow fiber transition in all operated groups; 3) the muscular atrophy was greater in animals from TM group; 4) the metabosensitive afferent responses to electrically induced fatigue and to two chemical agents (KCl and lactic acid) was altered in GS, CT and TM groups; 5) the empty collagen tube supported motor axonal regeneration. Altogether, these data indicate that motor axonal regeneration and locomotor recovery can be obtained with the insertion of the collagen tube RevolNerv. Future studies may include engineered conduits that mimic as closely as possible the internal organization of uninjured nerve.
Collapse
|
64
|
Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials 2008; 29:1601-9. [DOI: 10.1016/j.biomaterials.2007.11.036] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/24/2007] [Indexed: 10/22/2022]
|
65
|
Vein Grafts Used as Nerve Conduits for Obstetrical Brachial Plexus Palsy Reconstruction. Plast Reconstr Surg 2007; 120:1930-1941. [DOI: 10.1097/01.prs.0000287391.12943.00] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
66
|
Li J, Shi R. Fabrication of patterned multi-walled poly-l-lactic acid conduits for nerve regeneration. J Neurosci Methods 2007; 165:257-64. [PMID: 17644184 DOI: 10.1016/j.jneumeth.2007.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 06/03/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Topographical cues in the micron and nanoscale regime represent a powerful and effective method for controlling neuron and glial cell behavior. Previous studies have shown that contact guidance can facilitate axon pathfinding, accelerate neurite growth and induce glial cell alignment. In this paper, we exploit the concept of haptotaxis via implementation into three-dimensional neural based scaffolds. Polymeric poly-l-lactic acid (PLLA) conduits possessing multiple intralumenal walls and precise topography along the longitudinal axis were fabricated using solvent casting, physical imprinting and a rolling-fusing method. Measurements made on scanning electron micrographs show the conduits demonstrate a transparency factor (void to polymer ratio) of up to 87.9% and an increase in surface area of four to eight times over comparably sized hollow conduits. Intralumenal wall thickness was approximately 20 microm and physical parameters such as the number of lumens, conduit length and diameter were controllable. These results imply that the structures are conducive for cellular infiltration and proliferation. Although PLLA was used, the manufacturing techniques are highly flexible and are compatible with multiple polymer-solvent systems. Thus, the proposed conduits can be custom tailored to resorb in parallel with the healing process. Applications for these scaffolds include autograft substitutes for peripheral nerve transection or potential use in spinal cord related injuries.
Collapse
Affiliation(s)
- Jianming Li
- Weldon School of Biomedical Engineering, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
67
|
Kim SM, Lee SK, Lee JH. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit. J Craniofac Surg 2007; 18:475-88. [PMID: 17538306 DOI: 10.1097/01.scs.0000249362.41170.f3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The use of artificial nerve conduit containing viable Schwann cells is one of the most promising strategies to repair peripheral nerve injury. To fabricate an effective nerve conduit whose microstructure and internal environment are more favorable in nerve regeneration than those currently existing, a new three-dimensional (3D) Schwann cell culture technique using Matrigel and dorsal root ganglion (DRG) was developed. Nerve conduit of 3D arranged Schwann cells was fabricated using direct seeding of freshly harvested DRG into Matrigel-filled silicone tubes (inner diameter 1.98 mm, 14 mm length) and in vitro rafting culture for 2 weeks. The nerve regeneration efficacy of 3D cultured Schwann cell conduit (3D conduit group, n = 6) was assessed using an Sprague-Dawley rat sciatic nerve defect of 10 mm and compared with that of a silicone conduit filled with Matrigel and Schwann cells prepared with the conventional plain culture method (two-dimensional [2D] conduit group, n = 6). After 12 weeks, sciatic function was evaluated with sciatic function index (SFI) and gait analysis, and histomorphology of nerve conduit and the innervated tissues of sciatic nerve were examined using image analyzer and electromicroscopic methods. The SFI and ankle stance angle in the functional evaluation were -60.1 +/- 13.9, 37.9 degrees +/- 5.4 degrees in the 3D conduit group (n = 5) and -87.0 +/- 12.9, 32.2 degrees +/- 4.8 degrees in the 2D conduit group (n = 4). The myelinated axon was 44.91% +/- 0.13% in the 3D conduit group and 13.05% +/- 1.95% in the 2D conduit group. In the transmission electron microscope study, the 3D conduit group showed more abundant myelinated nerve fibers with well-organized and thickened extracellular collagen than the 2D conduit group, and the gastrocnemius muscle and biceps femoris tendon in the 3D conduit group were less atrophied and showed decreased fibrosis with less fatty infiltration than the 2D conduit group. A new 3D Schwann cell culture technique was established, and nerve conduit fabricated using this technique showed much improved nerve regeneration capacity than the silicone tube filled with Matrigel and Schwann cells prepared from the conventional plain culture method.
Collapse
Affiliation(s)
- Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Kangnung National University, Gangneung, South Korea
| | | | | |
Collapse
|
68
|
Nakayama K, Takakuda K, Koyama Y, Itoh S, Wang W, Mukai T, Shirahama N. Enhancement of Peripheral Nerve Regeneration Using Bioabsorbable Polymer Tubes Packed With Fibrin Gel. Artif Organs 2007; 31:500-8. [PMID: 17584474 DOI: 10.1111/j.1525-1594.2007.00418.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nerve conduit tubes were developed using bioabsorbable polymer membranes, and the effects of tube shape--straight or bellows-shaped tubes--and the fibrin gel filling were investigated. The mechanical properties of the tubes were examined by in vitro tests, and their effectiveness for peripheral nerve regeneration was determined by grafting into experimentally transected sciatic nerves of rats. The bellows tube showed mechanically superior properties, and when used with the fibrin gel, it induced superior tissue formation of myelinated nerve fibers as compared to other tube types. The total area of myelinated axons regenerated in the fibrin-filled bellows tube was comparable to that of an isograft control, whereas those of the other tubes demonstrated inferior regeneration. This result suggests that the mechanically superior bellows tube filled with fibrin gel is an effective graft alternative for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Kazuya Nakayama
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Luis AL, Rodrigues JM, Amado S, Veloso AP, Armada-Da-Silva PAS, Raimondo S, Fregnan F, Ferreira AJ, Lopes MA, Santos JD, Geuna S, Varejão ASP, Maurício AC. PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery 2007; 27:125-37. [PMID: 17290381 DOI: 10.1002/micr.20317] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to test in vivo two different nerve guides for promoting nerve regeneration across a 10-mm gap of the rat sciatic nerve: 1) one made of PLGA in a novel proportion (90:10) of the two polymers poly(L-lactide):poly(glycolide); 2) another made of (DL-lactide-epsilon-caprolactone) copolyester (Neurolac) tube, by comparing its healing efficacy with that of the more traditional methods of end-to-end nerve suture and autologous graft. Motor and sensory functional recovery were assessed throughout the healing period of 20 weeks, and the repaired nerves were processed for morphological and histomorphometrical analysis. Both motor and sensory functions improved significantly in all experimental nerve repaired groups. At the end of the 20-week follow-up, the end-to-end group showed better recovery of motor function when compared with the groups treated with guiding tubes. However, at this time point, the level of motor function in the Neurolac(R) and PLGA groups was similar to the one of the graft group. Nociception function also recovered faster in the end-to-end group compared with the Neurolac(R) and PLGA groups, and in this case, recovery was also delayed in the graft group. At the end of follow-up, nociception was similar in all experimental groups. Morphological and histomorphometrical analysis showed that axon regeneration occurred in both PLGA and Neurolac(R) experimental groups, with no significant differences in the total number of regenerated fibers, but disclosed a different pattern of degradation of the two types of tubes with larger biodegradation of PLGA material by the end of 20 weeks. These results suggest that both types of biomaterials are a good substrate for preparing tubular nerve guides, and their different pattern of degradation does not seem to influence the degree of nerve regeneration.
Collapse
Affiliation(s)
- Ana L Luis
- Animal Science and Study Centre, Food and Agrarian Sciences and Technologies Institute, Porto University, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH. Templated agarose scaffolds support linear axonal regeneration. ACTA ACUST UNITED AC 2007; 12:2777-87. [PMID: 17518647 DOI: 10.1089/ten.2006.12.2777] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While several strategies can stimulate axonal regeneration within a site of spinal cord injury, the growth of axons is generally disorganized and random. Biocompatible scaffolds that guide and maintain the native organization of axons regenerating through an injury site could be of importance in enhancing recovery of the nervous system after injury. Here we report a novel fabrication process for templated agarose nerve guidance scaffolds composed of uniaxial channels of precise diameter and wall thickness extending through their full length. When tested in an in vivo model of spinal cord injury, scaffolds exhibit excellent integration with host tissue and support linear axonal growth through their channels. Further, when loaded with bone marrow stromal cells genetically engineered to secrete brain-derived neurotrophic factor (BDNF), the number of linear penetrating axons is significantly enhanced. The templating process can be useful in fabricating nerve guidance scaffolds for both central and peripheral nerve injuries, or any materials application requiring a precise array of linearly oriented channels.
Collapse
Affiliation(s)
- Shula Stokols
- Department of Bioengineering, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
71
|
Barakat-Walter I, Kraftsik R, Krafsik R, Schenker M, Kuntzer T. Thyroid Hormone in Biodegradable Nerve Guides Stimulates Sciatic Nerve Regeneration: A Potential Therapeutic Approach for Human Peripheral Nerve Injuries. J Neurotrauma 2007; 24:567-77. [PMID: 17402861 DOI: 10.1089/neu.2006.0104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Collapse
|
72
|
Oh SH, Lee JH. Fabrication and characterization of hydrophilized porous PLGA nerve guide conduits by a modified immersion precipitation method. J Biomed Mater Res A 2007; 80:530-8. [PMID: 17013859 DOI: 10.1002/jbm.a.30937] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nerve guide conduits (NGCs) with selective permeability and hydrophilicity were fabricated using poly(lactic-co-glycolic acid) (PLGA) and Pluronic F127 by a modified immersion precipitation method developed by our laboratory. The hydrophilized porous PLGA tubes as NGCs were fabricated by immersing a water-saturated rod-shape alginate hydrogel into PLGA/Pluronic F127 mixture solution (in tetraglycol). The PLGA/Pluronic F127 mixture was precipitated outside the alginate hydrogel rod by the diffusion of water from the hydrogel rod into PLGA/Pluronic F127 mixture solution. The inner diameter and wall thickness of tubes could be easily controlled by adjusting the diameter of alginate hydrogel rod and immersion time, respectively. It was observed that the tube wall has an asymmetric column-shape porous structure. The inner surface of the tube had nano-size pores ( approximately 50 nm), which can effectively prevent from fibrous tissue infiltration but permeate nutrients and retain neurotrophic factors, while the outer surface had micro-size pores ( approximately 50 microm), which can allow vascular ingrowth for effective supply of nutrients and oxygen into the tube. From the investigations of mechanical property, water absorbabiliy, and model nutrient permeability of the tubes, the hydrophilized PLGA/F127 (3 wt %) tube seems to be a good candidate as a NGC for the effective permeation of nutrients as well as the good mechanical strength to maintain a stable support structure for the nerve regeneration.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Advanced Materials, Hannam University, 133 Ojeong Dong, Daedeog Gu, Daejeon 306-791, Korea
| | | |
Collapse
|
73
|
Hess JR, Brenner MJ, Fox IK, Nichols CM, Myckatyn TM, Hunter DA, Rickman SR, Mackinnon SE. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg 2007; 119:246-259. [PMID: 17255680 DOI: 10.1097/01.prs.0000245341.71666.97] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Limitations in autogenous tissue have inspired the study of alternative materials for repair of complex peripheral nerve injuries. Cadaveric allografts are one potential reconstructive material, but their use requires systemic immunosuppression. Cold preservation (> or =7 weeks) renders allografts devoid of antigens, but these acellular substrates generally fail in supporting regeneration beyond 3 cm. In this study, the authors evaluated the reconstruction of extensive nonhuman primate peripheral nerve defects using 7-week cold-preserved allografts repopulated with cultured autologous Schwann cells. METHODS Ten outbred Macaca fascicularis primates were paired based on maximal genetic disparity as measured by similarity index assay. A total of 14 ulnar nerve defects measuring 6 cm were successfully reconstructed using autografts (n = 5), fresh allografts (n = 2), cold-preserved allografts (n = 3), or cold-preserved allografts seeded with autogenous Schwann cells (n = 4). Recipient immunoreactivity was evaluated by means of enzyme-linked immunosorbent spot assay, and nerves were harvested at 6 months for histologic and histomorphometric analysis. RESULTS Cytokine production in response to cold-preserved allografts and cold-preserved allografts seeded with autologous Schwann cells was similar to that observed for autografts. Schwann cell-repopulated cold-preserved grafts demonstrated significantly enhanced fiber counts, nerve density, and percentage nerve (p < 0.05) compared with unseeded cold-preserved grafts at 6 months after reconstruction. CONCLUSIONS Cold-preserved allografts seeded with autologous Schwann cells were well-tolerated in unrelated recipients and supported significant regeneration across 6-cm peripheral nerve defects. Use of cold-preserved allogeneic nerve tissue supplemented with autogenous Schwann cells poses a potentially safe and effective alternative to the use of autologous tissue in the reconstruction of extensive nerve injuries.
Collapse
Affiliation(s)
- Jason R Hess
- St. Louis, Mo. From the Division of Plastic and Reconstructive Surgery, Department of Surgery, and Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lloyd BM, Luginbuhl RD, Brenner MJ, Rocque BG, Tung TH, Myckatyn TM, Hunter DA, Mackinnon SE, Borschel GH. Use of motor nerve material in peripheral nerve repair with conduits. Microsurgery 2007; 27:138-45. [PMID: 17290378 DOI: 10.1002/micr.20318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have recently shown in experimental nerve injury models that nerve regeneration is enhanced across a motor nerve graft as compared with a sensory nerve graft. To test the hypothesis that nerve architecture may mediate the beneficial effect of motor nerve grafting, we developed a model of disrupted nerve architecture in which motor and sensory nerve fragments were introduced into silicone conduits. Lewis rats were randomized to 5 experimental groups: nerve repair with motor nerve fragments, sensory nerve fragments, mixed nerve fragments, saline-filled conduit (negative control), or nerve isograft (positive control). At 6, 9, or 12 weeks, animals were sacrificed and nerve tissues were analyzed by quantitative histomorphometry. No significant differences were observed between the motor, sensory, and mixed nerve fragment groups. These findings suggest that intact nerve architecture, regardless of neurotrophic or biochemical factors, is a prerequisite for the beneficial effect of motor nerve grafting.
Collapse
Affiliation(s)
- Brendan M Lloyd
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wan Y, Fang Y, Hu Z, Wu Q. Electrically Conductive Poly(DL-lactide)/Chitosan/Polypyrrole Complexes. Macromol Rapid Commun 2006. [DOI: 10.1002/marc.200600142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
76
|
Jansen K, Ludwig Y, van Luyn MJA, Gramsbergen AA, Meek MF. Evaluation of morphological and functional nerve recovery of rat sciatic nerve with a Hyaff11-based nerve guide. Appl Bionics Biomech 2006. [DOI: 10.1533/abbi.2005.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
77
|
Cai J, Peng X, Nelson KD, Eberhart R, Smith GM. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J Biomed Mater Res A 2005; 75:374-86. [PMID: 16088902 DOI: 10.1002/jbm.a.30432] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Successful peripheral nerve regeneration is still limited in artificial conduits, especially for long lesion gaps. In this study, porous poly(L-lactide-co-DL-lactide, 75:25) (PLA) conduits were manufactured with 16 poly(L-lactide) (PLLA) microfilaments aligned inside the lumen. Fourteen and 18 mm lesion gaps were created in a rat sciatic nerve lesion model. To evaluate the combined effect of permeable PLA conduits and microfilament bundles on axon growth, four types of implants were tested for each lesion gap: PLA conduits with 16 filaments; PLA conduits without filaments; silicone conduits with 16 filaments; and silicone conduits without filaments. Ten weeks following implantation, regeneration within the distal nerve was compared between corresponding groups. Antibodies against the markers S100, calcitonin gene related peptide (CGRP), RMDO95, and P0 were used to identify Schwann cells, unmyelinated axons, myelinated axons, and myelin, respectively. Results demonstrated that the filament scaffold enhanced tissue cable formation and Schwann cell migration in all groups. The filament scaffold enhanced axonal regeneration toward the distal stump, especially across long lesion gaps, but significance was only achieved with PLA conduits. When compared to corresponding silicone conduits, permeable PLA conduits enhanced myelinated axon regeneration across both lesion gaps and achieved significance only in combination with filament scaffolds. Myelin staining indicated PLA conduits supported axon myelination with better myelin quantity and quality when compared to silicone conduits.
Collapse
Affiliation(s)
- Jie Cai
- Department of Physiology, MS 508, Albert B. Chandler Medical Center, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
78
|
Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. La réparation nerveuse périphérique : 30 siècles de recherche. Rev Neurol (Paris) 2005; 161:1045-59. [PMID: 16288170 DOI: 10.1016/s0035-3787(05)85172-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. STATE OF ART Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. CONCLUSION This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Collapse
Affiliation(s)
- C Desouches
- Service de Chirurgie de la Main, Chirurgie Plastique et Réparatrice des Membres, Assistance Publique, Hôpitaux de Marseille, Hôpital de la Conception, Marseille
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- S Hall
- Department of Anatomy and Human Sciences, King's College London, School of Biomedical Sciences, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
80
|
Yang Y, De Laporte L, Rives CB, Jang JH, Lin WC, Shull KR, Shea LD. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release 2005; 104:433-46. [PMID: 15911044 PMCID: PMC2648409 DOI: 10.1016/j.jconrel.2005.02.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 02/20/2005] [Accepted: 02/25/2005] [Indexed: 01/06/2023]
Abstract
Tissue engineering strategies for nerve repair employ polymer conduits termed guidance channels and bridges to promote regeneration for peripheral nerve injury and spinal cord injury, respectively. An approach for fabrication of nerve conduits with single and multiple lumens capable of controlled release of neurotrophic factors was developed. These conduits were fabricated from a mixture of poly(lactide-co-glycolide) (PLG) microspheres and porogen (NaCl) that was loaded into a mold and processed by gas foaming. The porosity and mechanical properties of the constructs were regulated by the ratio of porogen to polymer microsphere. The neurotrophin, nerve growth factor (NGF), was incorporated into the conduit by either mixing the protein with microspheres or encapsulating the protein within microspheres prior to gas foaming. A sustained release was observed for at least 42 days, with the release rate controlled by method of incorporation and polymer molecular weight. Released NGF retained its bioactivity, as demonstrated by its ability to stimulate neurite outgrowth from primary dorsal root ganglion (DRG). In vivo results indicate that conduits retain their original architecture, and allow for cellular infiltration into the channels. Polymer conduits with controllable lumen diameters and protein release may enhance nerve regeneration by guiding and stimulating neurite outgrowth.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Christopher B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Jae-Hyung Jang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Wei-Chun Lin
- Department of Materials Science, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Kenneth R. Shull
- Department of Materials Science, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, United States
- Corresponding author. Department of Chemical Engineering, Northwestern University, 2145 Sheridan Rd E156, Evanston, IL 60208-3120, United States. Tel.: +1 847 491 7043; fax: +1 847 491 3728. E-mail address: (L.D. Shea)
| |
Collapse
|
81
|
Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2005; 15:1521-31. [PMID: 15696797 DOI: 10.1163/1568562042459698] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although collagen is commonly used as components of tissue-engineered nerve-guidance channels, little is known about the effect of the mechanical properties of commonly used gel concentrations on the extension of neurites. This study focused on neurite extension of dissociated chick dorsal root ganglia in vitro over a range of collagen concentrations (0.4-2.0 mg/ml). Neurite length increased in all gels between day 1 and day 4, except at the highest collagen concentration, where a 9% decrease was noted at day 4. Although maximum neurite extension was seen in lower concentration gels (0.6-0.8 mg/ml), mechanical stiffness of each gel significantly increased with increasing concentration, from 2.2 Pa at 0.4 mg/ml to 17.0 Pa at 2.0 mg/ml. A previous model of mechanical stiffness versus neurite outgrowth did not fit this data well, likely because of interactions between the growth cone and the collagen fibers. Overall, these results provided insight regarding factors that influence neurite elongation and may be utilized to further optimize tissue-engineered scaffolds.
Collapse
Affiliation(s)
- Rebecca Kuntz Willits
- Department of Biomedical Engineering, Saint Louis University, St Louis, MO 63103, USA.
| | | |
Collapse
|
82
|
Belkas JS, Munro CA, Shoichet MS, Johnston M, Midha R. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials 2005; 26:1741-9. [PMID: 15576148 DOI: 10.1016/j.biomaterials.2004.05.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
Artificial grafts are promising alternatives to nerve grafts for peripheral nerve repair because they obviate the complications and disadvantages associated with autografting such as donor site morbidity and limited tissue availability. We have synthesized poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous tubes and studied their efficacy in vivo. Specifically, we studied the short- and long-term stability and biocompatibility of 12 mm long tubes for the repair of surgically created 10 mm nerve gaps in rat sciatic nerves. Prior to implantation, tubes were analyzed in vitro using a micro-mechanical tester to measure displacement achieved with load applied. These results served as a calibration curve, y = 6.8105 x -0.0073 (R2 = 0.9750, n = 28), for in vivo morphometric tube compression measurements. In vivo, most of the PHEMA-MMA conduits maintained their structural integrity up to 8 weeks, but 29% (4/14) of them collapsed by 16 weeks. Interestingly, the tube wall area of collapsed 16-week tubes was significantly lower than those of patent tubes. Tubes were largely biocompatible; however, a small subset of 16-week tubes displayed signs of chronic inflammation characterized by "finger-like" tissue extensions invading the inner tube aspect, inflammatory cells (some of which were ED1+macrophages) and giant cells. Tubes also demonstrated signs of calcification, which increased from 8 to 16 weeks. To overcome these issues, future nerve conduits will be re-designed to be more robust and biocompatible.
Collapse
Affiliation(s)
- Jason S Belkas
- Division of Neurosurgery and Neuroscience Research Program, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ont., Canada, M4N 3M5
| | | | | | | | | |
Collapse
|
83
|
Gravvanis AI, Lavdas A, Papalois AE, Franceschini I, Tsoutsos DA, Dubois-Dalcq M, Matsas R, Ioannovich JD. Effect of genetically modified Schwann cells with increased motility in end-to-side nerve grafting. Microsurgery 2005; 25:423-32. [PMID: 16032724 DOI: 10.1002/micr.20141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Taking into account that Schwann-cell (SC) motility is a prerequisite for myelination during peripheral nerve regeneration, the present study was designed with the intention to increase SC motility in vitro and to evaluate the effect of transduced SC on nerve regeneration in vivo, through silicone tubes after end-to-side nerve repair. Our in vitro study demonstrated that SC transduction with the pREV-HW3 retrovirus, encoding for sialyl-transferase-X (STX), significantly increased their motility compared to the control. In the in vivo study, 45 Wistar rats were randomized into three groups of 15 each. In all animals, the left peroneal nerve was severed, and a 10-mm segment was removed. The distal stump of the peroneal nerve was connected end-to-side to a perineurial window in the ipsilateral tibial nerve with either a silicone tube lined with SC (group A) or a silicone tube lined with STX-transduced SC (groups B and C). Fluorescence and light microscopy in group C showed that SCs were viable the first critical 15 postoperative days. After 90 days, light microscopy in group B demonstrated that STX-transduced SCs with increased motility ensured nerve regeneration, through silicone tubes, in all cases. Furthermore, STX-transduced SCs increased significantly fiber diameter and myelin thickness, and most importantly enhanced significantly the functional outcome compared to non-transduced SCs.
Collapse
Affiliation(s)
- Andreas I Gravvanis
- Department of Plastic Surgery, Microsurgery and Burns Center, General State Hospital of Athens G. Gennimatas, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, Mackinnon SE. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol 2004; 190:347-55. [PMID: 15530874 DOI: 10.1016/j.expneurol.2004.08.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/05/2004] [Accepted: 08/11/2004] [Indexed: 12/17/2022]
Abstract
Autologous nerve grafting is the current standard of care for nerve injuries resulting in a nerve gap. This treatment requires the use of sensory grafts to reconstruct motor defects, but the consequences of mismatches between graft and native nerve are unknown. Motor pathways have been shown to preferentially support motoneuron regeneration. Functional outcome of motor nerve reconstruction depends on the magnitude, rate, and precision of end organ reinnervation. This study examined the role of pathway type on regeneration across a mixed nerve defect. Thirty-six Lewis rats underwent tibial nerve transection and received isogeneic motor, sensory or mixed nerve grafts. Histomorphometry of the regenerating nerves at 3 weeks demonstrated robust nerve regeneration through both motor and mixed nerve grafts. In contrast, poor nerve regeneration was seen through sensory nerve grafts, with significantly decreased nerve fiber count, percent nerve, and nerve density when compared with mixed and motor groups (P < 0.05). These data suggest that use of motor or mixed nerve grafts, rather than sensory nerve grafts, will optimize regeneration across mixed nerve defects.
Collapse
Affiliation(s)
- Chris M Nichols
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng 2004; 1:151-7. [PMID: 15876634 DOI: 10.1088/1741-2560/1/3/004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.
Collapse
Affiliation(s)
- Gregory E Rutkowski
- Chemical Engineering Department, University of Minnesota, 215 Engineering Building, Duluth, MN 55812-3025, USA
| | | | | | | |
Collapse
|
87
|
Lundborg G, Rosén B, Dahlin L, Holmberg J, Rosén I. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. ACTA ACUST UNITED AC 2004; 29:100-7. [PMID: 15010152 DOI: 10.1016/j.jhsb.2003.09.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 09/22/2003] [Indexed: 02/04/2023]
Abstract
The long-term outcome from silicone tube nerve repair was compared with the outcome from routine microsurgical repair in a clinical randomized prospective study, comprising 30 patients with median or ulnar nerve injuries in the distal forearm. Postoperatively, the patients underwent neurophysiological and clinical assessments of sensory and motor function regularly over a 5-year period. After 5 years there was no significant difference in outcome between the two techniques except that cold intolerance was significantly less severe with the tubular technique. In the total group there was ongoing improvement of functional sensibility throughout the 5 years after repair. It is concluded that tubular repair of the median and ulnar nerves is at least as good as routine microsurgical repair, and results in less cold intolerance.
Collapse
Affiliation(s)
- G Lundborg
- Department of Hand Surgery, University Hospital MAS, Malmö, Sweden, and the Department of Clinical Neurophysiology, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
88
|
Meek MF, Varejão ASP, Geuna S. Use of Skeletal Muscle Tissue in Peripheral Nerve Repair: Review of the Literature. ACTA ACUST UNITED AC 2004; 10:1027-36. [PMID: 15363160 DOI: 10.1089/ten.2004.10.1027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, necessitates a donor nerve and corresponding deficit. Many alternative techniques have thus been developed. The use of skeletal muscle tissue as graft material for nerve repair is one example. The rationale regarding the use of the skeletal muscle tissue technique is the availability of a longitudinally oriented basal lamina and extracellular matrix components that direct and enhance regenerating nerve fibers. These factors provide superiority over other bridging methods as vein grafts or (non)degradable nerve conduits. The main disadvantages of this technique are the risk that nerve fibers can grow out of the muscle tissue during nerve regeneration, and that a donor site is necessary to harvest the muscle tissue. Despite publications on nerve conduits as an alternative for peripheral nerve repair, autologous nerve grafting is still the standard care for treatment of a nerve gap in the clinical situation; however, the use of the skeletal muscle tissue technique can be added to the surgeon's arsenal of peripheral nerve repair tools, especially for bridging short nerve defects or when traditional nerve autografts cannot be employed. This technique has been investigated both experimentally and clinically and, in this article, an overview of the literature on skeletal muscle grafts for bridging peripheral nerve defects is presented.
Collapse
Affiliation(s)
- Marcel F Meek
- Department of Plastic Surgery, University Hospital Groningen, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
89
|
Myckatyn TM, Mackinnon SE. Surgical techniques of nerve grafting (standard/vascularized/allograft). ACTA ACUST UNITED AC 2004. [DOI: 10.1053/j.oto.2004.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
90
|
Belkas JS, Shoichet MS, Midha R. Axonal guidance channels in peripheral nerve regeneration. ACTA ACUST UNITED AC 2004. [DOI: 10.1053/j.oto.2004.06.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
91
|
Leterme D, Tyc F. Re-innervation and recovery of rat soleus muscle and motor unit function after nerve crush. Exp Physiol 2004; 89:353-61. [PMID: 15123555 DOI: 10.1113/expphysiol.2004.027151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we have investigated the effects of peripheral nerve crush on the contractile properties of the adult rat soleus muscle. The soleus nerve was crushed close to the muscle and functional re-innervation was assessed by the measurement of the force produced by contraction induced by electrical nerve stimulation. Whole soleus muscle and single motor unit (MU) properties were studied at increasing re-innervation times 7-56 days after crush. Results showed progressive re-innervation as 50% of the axotomized motoneurones had re-innervated their muscle 7 days after crush, 72% at 14 days and re-innervation was complete at 28 days. The force parameters recovered more slowly. Tetanic contractions faded at high frequency stimulation, which did not occur in the control muscle. This disruption in the tetanic response was more pronounced in single MUs. Our results demonstrate for the first time a process of progressive axonal re-innervation by the axotomized motoneurones and provide a functional picture of the effective restoration of the neuromuscular function.
Collapse
Affiliation(s)
- D Leterme
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Bassin Napoléon, BP 120, 62327 Boulogne sur Mer, France.
| | | |
Collapse
|
92
|
Abstract
Biological nerve grafts have been extensively utilized in the past to repair peripheral nerve injuries. More recently, the use of synthetic guidance tubes in repairing these injuries has gained in popularity. This review focuses on artificial conduits, nerve regeneration through them, and an account of various synthetic materials that comprise these tubes in experimental animal and clinical trials. It also lists and describes several biomaterial considerations one should regard when designing, developing, and manufacturing potential guidance channel candidates. In the future, it it likely that the most successful synthetic nerve conduit will be one that has been fabricated with some of these strategies in mind.
Collapse
Affiliation(s)
- Jason S Belkas
- Division of Neurosurgery, Neuroscience Research Program, Sunnybrook & Women's College Health Sciences Centre, University of Toronto, ON, Canada
| | | | | |
Collapse
|
93
|
Diaz LM, Steele MH, Guerra AB, Aubert FE, Sloop GD, Diaz HA, Metzinger RC, Blake DB, Delaune CL, Metzinger SE. The Role of Topically Administered FK506 (Tacrolimus) at the Time of Facial Nerve Repair Using Entubulation Neurorrhaphy in a Rabbit Model. Ann Plast Surg 2004; 52:407-13. [PMID: 15084888 DOI: 10.1097/01.sap.0000107780.37285.6d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peripheral facial nerve palsy is a common sequela of traumatic craniofacial injury, often resulting in dramatic and sometimes permanent functional deficits. Exogenous agents and methods of repair that accelerate axonal regeneration would be of great benefit to the multitude of patients with facial nerve injuries. The objective of this study was to evaluate the effect of FK506 at the time of facial nerve repair using entubulation neurorrhaphy, and to compare entubulation neurorrhaphy versus interposition autograft in critical facial nerve gap defects. The study design was a prospective, randomized, blinded animal study with a control group. Twenty-five New Zealand White rabbits were assigned to 4 experimental groups and a control group. The buccal branch of the facial nerve was used in all procedures. Group 1 was the control group. Rabbits in group 2 underwent sham surgery. Group 3 was an interposition autograft group in which a 6-mm segment of nerve was transacted, flipped, and followed by epineural repair. Groups 4 and 5 underwent transection followed by entubulation neurorrhaphy with topical administration of either a carrier molecule (group 4) or an FK506 carrier molecule (group 5). Outcome measures included daily subjective assessment of upper lip movement; electromyographic studies at weeks 3, 5, and 8 postoperatively; and blinded quantitative histomorphometric evaluation after 8 weeks. All rabbits in all groups were noted to have spontaneous movement after 8 weeks, with 1 rabbit in group 5 obtaining the highest functional score among all study groups. Electrophysiologic studies showed polyphasic potentials, indicating reinnervation in 1 rabbit in group 5. Histomorphometric examination of group 5 rabbits revealed a similar cross-sectional area distal to transection and remyelination. Other groups showed decreased cross-sectional area and/or incomplete remyelination distal to the transection. FK506 applied topically at the time of facial nerve repair using entubulation neurorrhaphy demonstrated superior results in nerve regeneration versus entubulation neurorrhaphy carrier protein alone, and interposition autograft.
Collapse
Affiliation(s)
- L Michael Diaz
- Department of Surgery, LSU Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Myckatyn TM, Mackinnon SE, McDonald JW. Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transpl Immunol 2004; 12:343-58. [PMID: 15157926 DOI: 10.1016/j.trim.2003.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A number of potential approaches aim to optimize functional recovery after spinal cord injury. They include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells or peripheral nerve grafts, remyelinating denuded axons, and maximizing the intrinsic regenerative potential of endogenous progenitor cells. We review the application of stem cell transplantation to the spinal cord, emphasizing the use of embryonic stem cells for remyelinating damaged axons. We speculate that harnessing the potential of endogenously born stem cells already present in the spinal cord represents an important therapeutic target. We also discuss the potential application of peripheral nervous system reconstruction to recovery from spinal cord injury. The principles of peripheral nerve regeneration and concepts of nerve grafting are reviewed. Particular attention is given to peripheral nerve allotransplantation for repairing extensively injured tissue when autologous donor nerve material is scarce. The potential role of nerve transfers for reconstructing the injured spinal cord, particularly the cauda equina and lumbosacral plexus, are also described.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | | | | |
Collapse
|
95
|
Mohanna PN, Young RC, Wiberg M, Terenghi G. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat 2004; 203:553-65. [PMID: 14686691 PMCID: PMC1571193 DOI: 10.1046/j.1469-7580.2003.00243.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is considerable evidence that peripheral nerves have the potential to regenerate in an appropriate microenvironment. We have developed a novel artificial nerve guide composed of poly 3-hydroxybutyrate (PHB) filled with glial growth factor (GGF) suspended in alginate hydrogel. Gaps of 2-4 cm in rabbit common peroneal nerve were bridged using a PHB conduit containing either GGF in alginate hydrogel (GGF) or alginate alone (Alginate), or with an empty PHB conduit (Empty). Tissues were harvested 21, 42 and 63 days post-operatively. Schwann cell and axonal regeneration were assessed using quantitative immunohistochemistry. At 21 days, addition of GGF increased significantly the distance of axonal and Schwann cells regeneration in comparison with that observed in Alginate and Empty conduits for both gap lengths. The axons bridged the 2-cm GGF conduits gap by 63 days, with a comparable rate of regeneration seen in 4-cm conduits. Schwann cells and axonal regeneration quantity was similar for both gap lengths in each group. However, at all time points the quantity of axonal and Schwann cells regeneration in GGF grafts was significantly greater than in both Alginate and Empty conduits, the latter showing better regeneration than Alginate conduits. The results indicate an inhibitory effect of alginate on regeneration, which is partially reversed by the addition of GGF to the conduits. In conclusion, GGF stimulates a progressive and sustainable regeneration increase in long nerve gap conduits.
Collapse
Affiliation(s)
- P N Mohanna
- Blond McIndoe Research Laboratories, Plastic and Reconstructive Surgery Research, The University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
96
|
Jansen K, van der Werff JFA, van Wachem PB, Nicolai JPA, de Leij LFMH, van Luyn MJA. A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 2004; 25:483-9. [PMID: 14585697 DOI: 10.1016/s0142-9612(03)00544-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated possible cytotoxic effects, biocompatibility, and degradation of a hyaluronan-based conduit for peripheral nerve repair. We subjected the conduits to an in vitro fibroblast cytotoxicity test and concluded that the conduits were not cytotoxic. Subsequently, we implanted the conduits subcutaneously in rats, in order to investigate tissue reactions and biodegradation. Initially, a fibrin matrix was formed around the material, while the surroundings were relatively quiet. Macrophages (MØ) migrated to the conduits and formed giant cells next to the material after 5 days. The maximum presence of MØ was found after 3-6 weeks. The appearance of MHC class II cells showed a similar pattern. Highest numbers of giants reached a maximum after 6-12 weeks. Angiogenesis was started in the surroundings of the hyaluronan-based conduit within a few days. Massive ingrowth of blood vessels into the biomaterial was found after 6 weeks as well as cellular ingrowth into the lumen of the tube. At that time the tubular structure of the conduit was lost and loose biomaterial fibers were observed. The results show that a hyaluronan-based conduit is not cytotoxic and shows good biocompatibility. Such a conduit may be suitable as a guide in peripheral nerve repair.
Collapse
Affiliation(s)
- K Jansen
- Department of Plastic and Reconstructive Surgery, University Hospital and University of Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands.
| | | | | | | | | | | |
Collapse
|
97
|
Lee AC, Yu VM, Lowe JB, Brenner MJ, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol 2003; 184:295-303. [PMID: 14637100 DOI: 10.1016/s0014-4886(03)00258-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Based on previous studies demonstrating the potential of growth factors to enhance peripheral nerve regeneration, we developed a novel growth factor delivery system to provide sustained delivery of nerve growth factor (NGF). This delivery system uses heparin to immobilize NGF and slow its diffusion from a fibrin matrix. This system has been previously shown to enhance neurite outgrowth in vitro, and in this study, we evaluated the ability of this delivery system to enhance nerve regeneration through conduits. We tested the effect of controlled NGF delivery on peripheral nerve regeneration in a 13-mm rat sciatic nerve defect. The heparin-containing delivery system was studied in combination with three doses of NGF (5, 20, or 50 ng/mL) and the results were compared with positive controls (isografts) and negative controls (fibrin alone, NGF alone, and empty conduits). Nerves were harvested at 6 weeks postoperatively for histomorphometric analysis. Axonal regeneration in the delivery system groups revealed a marked dose-dependent effect. The total number of nerve fibers at both the mid-conduit level and in the distal nerve showed no statistical difference for NGF doses at 20 and 50 ng/mL from the isograft (positive control). The results of this study demonstrate that the incorporation of a novel delivery system providing controlled release of growth factors enhances peripheral nerve regeneration and represents a significant contribution toward enhancing nerve regeneration across short nerve gaps.
Collapse
Affiliation(s)
- Annie C Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Varejão ASP, Cabrita AM, Geuna S, Melo-Pinto P, Filipe VM, Gramsbergen A, Meek MF. Toe out angle: a functional index for the evaluation of sciatic nerve recovery in the rat model. Exp Neurol 2003; 183:695-9. [PMID: 14552911 DOI: 10.1016/s0014-4886(03)00208-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In experimental peripheral nerve studies, the rat sciatic nerve model is widely used to examine functional outcome following nerve injury and repair. A variety of evaluation methods exist in the literature, but an adequate selection continues to be a critical point for the researcher. Rats with sciatic nerve injury typically ambulate with an external rotation of the foot. A new functional assessment instrument, the toe out angle (TOA) is quantified using computerized gait analysis. We compared Sciatic Functional Index (SFI) with TOA parameter after peripheral nerve transection and entubulation repair. We found a good correlation between SFI and TOA measurements in terms of predicting functional recovery. Moreover, the TOA provides information on the biomechanical consequences of the external rotation of the foot in the stance phase of walking.
Collapse
Affiliation(s)
- Artur S P Varejão
- Department of Pathology and Veterinary Clinics, CETAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | | | | | | | | | | | | |
Collapse
|
99
|
Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS. Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 2003; 99:555-65. [PMID: 12959445 DOI: 10.3171/jns.2003.99.3.0555] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECT The authors' long-term goal is repair of peripheral nerve injuries by using synthetic nerve guidance devices that improve both regeneration and functional outcome relative to an autograft. They report the in vitro processing and in vivo application of synthetic hydrogel tubes that are filled with collagen gel impregnated with growth factors. METHODS Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous 12-mm-long tubes with an inner diameter of 1.3 mm and an outer diameter of 1.8 mm were used to repair surgically created 10-mm gaps in the rat sciatic nerve. The inner lumen of the tubes was filled with collagen matrix alone or matrix supplemented with either neurotropin-3 at 1 microg/ml, brain-derived neurotrophic factor at 1 microg/ml, or acidic fibroblast growth factor (FGF-1) at 1 or 10 microg/ml. Nerve regeneration through the growth factor-enhanced tubes was assessed at 8 weeks after repair by histomorphometric analysis at the midgraft level and in the nerve distal to the tube repair. The tubes were biostable and biocompatible, and supported nerve regeneration in more than 90% of cases. Nerve regeneration was improved in tubes in which growth factors were added, compared with empty tubes and those containing collagen gel alone (negative controls). Tubes filled with 10 microg/ml of FGF-1 dispersed in collagen demonstrated regeneration comparable to autografts (positive controls) and showed significantly better regeneration than the other groups. CONCLUSIONS The PHEMA-MMA tubes augmented with FGF-1 in their lumens appear to be a promising alternative to autografts for repair of nerve injuries. Studies are in progress to assess the long-term biocompatibility of these implants and to enhance regeneration further.
Collapse
Affiliation(s)
- Rajiv Midha
- Division of Neurosurgery and Neuroscience Research Program, Sunnybrook & Women's College Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
100
|
Abstract
Advances in the field of peripheral nerve surgery have increased our understanding of the complex cellular and molecular events involved in nerve injury and repair. Application of these important discoveries has led to important developments in the techniques of nerve repair, nerve grafting, nerve allografts, end-to-side repairs, and nerve-to-nerve transfers. As our understanding of this dynamic field increases, further improvement in functional outcomes after nerve injury and repair can be expected.
Collapse
Affiliation(s)
- Linda Dvali
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Suite 17424, East Pavilion, One Barnes-Jewish Hospital Plaza, St. Louis, MO 63110, USA
| | | |
Collapse
|