51
|
Ozhukil Kollath V, Derakhshandeh M, Mayer FD, Mudigonda T, Islam MN, Trifkovic M, Karan K. Fluorescent polycatecholamine nanostructures as a versatile probe for multiphase systems. RSC Adv 2018; 8:31967-31971. [PMID: 35547475 PMCID: PMC9085718 DOI: 10.1039/c8ra05372c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 11/21/2022] Open
Abstract
Shape and size controlled nanostructures are critical for nanotechnology and have versatile applications in understanding interfacial phenomena of various multi-phase systems. Facile synthesis of fluorescent nanostructures remains a challenge from conventional precursors. In this study, bio-inspired catecholamines, dopamine (DA), epinephrine (EP) and levodopa (LDA), were used as precursors and fluorescent nanostructures were synthesized via a simple one pot method in a water-alcohol mixture under alkaline conditions. DA and EP formed fluorescent spheres and petal shaped structures respectively over a broad spectrum excitation wavelength, whereas LDA did not form any particular structure. However, the polyepinephrine (PEP) micropetals were formed by weaker interactions as compared to covalently linked polydopamine (PDA) nanospheres, as revealed by NMR studies. Application of these fluorescent structures was illustrated by their adsorption behavior at the oil/water interface using laser scanning confocal microscopy. Interestingly, PDA nanospheres showed complete coverage of the oil/water interface despite its hydrophilic nature, as compared to hydrophobic PEP micropetals which showed a transient coverage of the oil/water interface but mainly self-aggregated in the water phase. The reported unique fluorescent organic structures will play a key role in understanding various multi-phase systems used in aerospace, biomedical, electronics and energy applications.
Collapse
Affiliation(s)
- Vinayaraj Ozhukil Kollath
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Maziar Derakhshandeh
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Francis D Mayer
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Thanmayee Mudigonda
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Muhammad Naoshad Islam
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, The University of Calgary 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
52
|
WITHDRAWN: Improvement of dose distribution in ocular brachytherapy with 125I seeds-20mm COMS plaque followed to loading of choroidal tumor by gold nanoparticles. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Chen EM, Quijano AR, Seo YE, Jackson C, Josowitz AD, Noorbakhsh S, Merlettini A, Sundaram RK, Focarete ML, Jiang Z, Bindra RS, Saltzman WM. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials 2018; 178:193-203. [PMID: 29936153 PMCID: PMC6082184 DOI: 10.1016/j.biomaterials.2018.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Intracranial delivery of therapeutic agents is limited by penetration beyond the blood-brain barrier (BBB) and rapid metabolism of the drugs that are delivered. Convection-enhanced delivery (CED) of drug-loaded nanoparticles (NPs) provides for local administration, control of distribution, and sustained drug release. While some investigators have shown that repeated CED procedures are possible, longer periods of sustained release could eliminate the need for repeated infusions, which would enhance safety and translatability of the approach. Here, we demonstrate that nanoparticles formed from poly(ethylene glycol)-poly(ω-pentadecalactone-co-p-dioxanone) block copolymers [PEG-poly(PDL-co-DO)] are highly efficient nanocarriers that provide long-term release: small nanoparticles (less than 100 nm in diameter) continuously released a radiosensitizer (VE822) over a period of several weeks in vitro, provided widespread intracranial drug distribution during CED, and yielded significant drug retention within the brain for over 1 week. One advantage of PEG-poly(PDL-co-DO) nanoparticles is that hydrophobicity can be tuned by adjusting the ratio of hydrophobic PDL to hydrophilic DO monomers, thus making it possible to achieve a wide range of drug release rates and drug distribution profiles. When administered by CED to rats with intracranial RG2 tumors, and combined with a 5-day course of fractionated radiation therapy, VE822-loaded PEG-poly(PDL-co-DO) NPs significantly prolonged survival when compared to free VE822. Thus, PEG-poly(PDL-co-DO) NPs represent a new type of versatile nanocarrier system with potential for sustained intracranial delivery of therapeutic agents to treat brain tumors.
Collapse
Affiliation(s)
- Evan M Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Amanda R Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Christopher Jackson
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Seth Noorbakhsh
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Andrea Merlettini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, 40126, Bologna, Italy
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, 40126, Bologna, Italy
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Yale University, West Haven, CT, 06516, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
54
|
El Sayed SM. Enhancing anticancer effects, decreasing risks and solving practical problems facing 3-bromopyruvate in clinical oncology: 10 years of research experience. Int J Nanomedicine 2018; 13:4699-4709. [PMID: 30154655 PMCID: PMC6103555 DOI: 10.2147/ijn.s170564] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
3-Bromopyruvate (3BP) is a promising powerful general anticancer agent. Unfortunately, 3BP release faces many practical and biochemical problems in clinical human oncology, for example, 3BP induces burning venous sensation (during intravenous infusion) and rapid inactivation by thiol groups of glutathione and proteins. 3BP exhibits resistance in glutathione-rich tumors without being able to exert selective targeting. 3BP does not cross the blood–brain barrier and cannot treat nervous system tumors. Importantly, 3BP cannot persist in tumor tissues due to the phenomenon of enhanced permeability and retention effect. Here, the author presents the practical solutions for clinical problems facing 3BP use in clinical oncology, based on over 10 years of experience in 3BP research. Crude (unformulated 3BP that is purchased from chemical companies without being formulated in liposomes or other nanocarriers) should not be administered in clinical oncology. Instead, 3BP is better formulated with liposomes, polyethylene glycol (PEG), PEGylated liposomes (stealth liposomes) or perillyl alcohol that are used currently with many chemotherapeutics for treating clinical tumors in cancer patients. Formulating 3BP with targeted liposomes, for example, with folate, transferrin or other ligands, improves tumor targeting. Formulating 3BP with liposomes, PEG, stealth liposomes or perillyl alcohol may improve its pharmacokinetics, hide it from thiols in the circulation, protect it from serum proteins and enzymes, prevent burning sensation, prolong 3BP’s longevity and facilitate crossing the BBB. Formulating 3BP with stealth liposomes protects 3BP from the reticuloendothelial cells. Liposomal 3BP formulations may retain 3BP better inside the relatively large tumor capillary pores (abolish enhanced permeability and retention effect) sparing normal tissues, facilitate new delivery routes for 3BP (eg, topical and intranasal 3BP administration using perillyl alcohol) and improve cancer cytotoxicity. Formulating 3BP may be promising in overcoming many obstacles in clinical oncology.
Collapse
Affiliation(s)
- Salah Mohamed El Sayed
- Department of Clinical Biochemistry and Molecular Medicine, Taibah College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia, .,Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt,
| |
Collapse
|
55
|
Fabrication of blue-fluorescent nanodiamonds modified with alkyl isocyanate for cellular bioimaging. Colloids Surf B Biointerfaces 2018; 167:191-196. [PMID: 29653370 DOI: 10.1016/j.colsurfb.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/21/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022]
|
56
|
Markwalter CE, Prud'homme RK. Design of a Small-Scale Multi-Inlet Vortex Mixer for Scalable Nanoparticle Production and Application to the Encapsulation of Biologics by Inverse Flash NanoPrecipitation. J Pharm Sci 2018; 107:2465-2471. [PMID: 29772223 PMCID: PMC6095068 DOI: 10.1016/j.xphs.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
Abstract
Flash NanoPrecipitation is a scalable approach to generate polymeric nanoparticles using rapid micromixing in specially designed geometries such as a confined impinging jets mixer or a Multi-Inlet Vortex Mixer (MIVM). A major limitation of formulation screening using the MIVM is that a single run requires tens of milligrams of the therapeutic. To overcome this, we have developed a scaled-down version of the MIVM, requiring as little as 0.2 mg of therapeutic, for formulation screening. The redesigned mixer can then be attached to pumps for scale-up of the identified formulation. It was shown that Reynolds number allowed accurate scaling between the 2 MIVM designs. The utility of the small-scale MIVM for formulation development was demonstrated through the encapsulation of a number of hydrophilic macromolecules using inverse Flash NanoPrecipitation with target loadings as high as 50% by mass.
Collapse
Affiliation(s)
- Chester E Markwalter
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544.
| |
Collapse
|
57
|
Fu Z, Li L, Wang M, Guo X. Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4311-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Tumor target amplification: Implications for nano drug delivery systems. J Control Release 2018; 275:142-161. [PMID: 29454742 DOI: 10.1016/j.jconrel.2018.02.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting.
Collapse
|
59
|
Abánades Lázaro I, Haddad S, Rodrigo-Muñoz JM, Orellana-Tavra C, Del Pozo V, Fairen-Jimenez D, Forgan RS. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5255-5268. [PMID: 29356507 DOI: 10.1021/acsami.7b17756] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The high drug-loading and excellent biocompatibilities of metal-organic frameworks (MOFs) have led to their application as drug-delivery systems (DDSs). Nanoparticle surface chemistry dominates both biostability and dispersion of DDSs while governing their interactions with biological systems, cellular and/or tissue targeting, and cellular internalization, leading to a requirement for versatile and reproducible surface functionalization protocols. Herein, we explore not only the effect of introducing different surface functionalities to the biocompatible Zr-MOF UiO-66 but also the efficacy of three surface modification protocols: (i) direct attachment of biomolecules [folic acid (FA) and biotin (Biot)] introduced as modulators for UiO-66 synthesis, (ii) our previously reported "click-modulation" approach to covalently attach polymers [poly(ethylene glycol) (PEG), poly-l-lactide, and poly-N-isopropylacrylamide] to the surface of UiO-66 through click chemistry, and (iii) surface ligand exchange to postsynthetically coordinate FA, Biot, and heparin to UiO-66. The innovative use of a small molecule with metabolic anticancer activity, dichloroacetate (DCA), as a modulator during synthesis is described, and it is found to be compatible with all three protocols, yielding surface-coated, DCA-loaded (10-20 w/w %) nano-MOFs (70-170 nm). External surface modification generally enhances the stability and colloidal dispersion of UiO-66. Cellular internalization routes and efficiencies of UiO-66 by HeLa cervical cancer cells can be tuned by surface chemistry, and anticancer cytotoxicity of DCA-loaded MOFs correlates with the endocytosis efficiency and mechanisms. The MOFs with the most promising coatings (FA, PEG, poly-l-lactide, and poly-N-isopropylacrylamide) were extensively tested for selectivity of anticancer cytotoxicity against MCF-7 breast cancer cells and HEK293 healthy kidney cells as well as for cell proliferation and reactive oxygen species production against J774 macrophages and peripheral blood lymphocytes isolated from the blood of human donors. DCA-loaded, FA-modified UiO-66 selectively kills cancer cells without harming healthy ones or provoking immune system response in vitro, suggesting a significant targeting effect and great potential in anticancer drug delivery. The results provide mechanistic insight into the design and functionalization of MOFs for drug delivery and underline the availability of various in vitro techniques to potentially minimize early-stage in vivo animal studies following the three Rs: reduction, refinement, and replacement.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- WestCHEM School of Chemistry, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Salame Haddad
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - José M Rodrigo-Muñoz
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid, Spain
| | - Claudia Orellana-Tavra
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - Victoria Del Pozo
- Department of Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), and CIBER de Enfermedades Respiratorias (CIBERES) , 28029 Madrid, Spain
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge , Pembroke Street, Cambridge CB2 3RA, U.K
| | - Ross S Forgan
- WestCHEM School of Chemistry, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
60
|
Nunes A, Pansare VJ, Beziere N, Ntoukas AK, Reber J, Bruzek M, Anthony J, Prud’homme RK, Ntziachristos V. Quenched hexacene optoacoustic nanoparticles. J Mater Chem B 2018; 6:44-55. [DOI: 10.1039/c7tb02633a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flash NanoPrecipitation allows for the creation of optoacoustic imaging agents with tunable size and strong signal for biomedical imaging and therapy.
Collapse
Affiliation(s)
- Antonio Nunes
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Vikram J. Pansare
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Argiris Kolokithas Ntoukas
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Josefine Reber
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Matthew Bruzek
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - John Anthony
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| |
Collapse
|
61
|
Ren W, Wang Y, Chen X, Zuo B, Zhou X, Wang X. Segmental Relaxation Dynamics of the Core and Corona in a Single Dry Micelle. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weizhao Ren
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
62
|
PEGylated polydopamine-coated magnetic nanoparticles for combined targeted chemotherapy and photothermal ablation of tumour cells. Colloids Surf B Biointerfaces 2017; 160:11-21. [DOI: 10.1016/j.colsurfb.2017.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
63
|
Levit SL, Stwodah RM, Tang C. Rapid, Room Temperature Nanoparticle Drying and Low-Energy Reconstitution via Electrospinning. J Pharm Sci 2017; 107:807-813. [PMID: 29107044 DOI: 10.1016/j.xphs.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Nanoparticle formulations offer advantages over free drugs; however, stability of the nanoparticle dispersions is a significant obstacle, and drying is often required for long-term size stability. The main limitation of current drying methods is particle aggregation upon reconstitution which can be overcome with sonication (impractical in a clinical setting) or large amounts of cryoprotectants (result in hypertonic dispersions). Therefore, new approaches to nanoparticle drying are necessary. We demonstrate conversion of nanoparticle dispersions to a dry, thermostable form via electrospinning. As a proof-of-concept, polyethylene glycol stabilized nanoparticles and polyvinyl alcohol were blended and electrospun into ∼300 nm fibers. Following electrospinning, nanoparticles were stored for at least 7 months and redispersed with low osmolarity to their original size without sonication. The nanoparticles redisperse to their original size when the fiber diameter and nanoparticle diameter are comparable (nanoparticle:nanofiber ratio ∼1). Nanoparticles with liquid cores and larger particles better maintained their size when compared to nanoparticles with solid cores and smaller particles, respectively. Storing the nanoparticles within nanofibers appears to prevent Ostwald ripening improving thermostability. Overall, this novel approach enables rapid, continuous drying of nanoparticles at room temperature to facilitate long-term nanoparticle storage. Improved nanoparticle drying techniques will enhance clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Shani L Levit
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Ratib M Stwodah
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Christina Tang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284.
| |
Collapse
|
64
|
El-Leithy ES, Abdel-Rashid RS. Lipid nanocarriers for tamoxifen citrate/coenzyme Q10 dual delivery. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
66
|
Keßler S, Drese K, Schmid F. Simulating copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
67
|
|
68
|
Jia C, Chen H, Wei M, Chen X, Zhang Y, Cao L, Yuan P, Wang F, Yang G, Ma J. Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int J Nanomedicine 2017; 12:4963-4979. [PMID: 28744126 PMCID: PMC5513843 DOI: 10.2147/ijn.s138400] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diabetic cardiomyopathy is a common disease in postmenopausal women, in whom the estrogen deficiency aggravates the pathology. In this study, we have found that estrogen deficiency due to ovariectomy aggravates the inflammation in the hearts of diabetic mice, as depicted by excessive proinflammatory type 1 macrophages (M1) over anti-inflammatory type 2 macrophages (M2). Accordingly, an additional increase of reactive oxygen species, cell apoptosis, cardiac hypertrophy, and fibrosis was observed in the hearts of ovariectomized diabetic mice, in comparison with the diabetes-only group. Significantly, miR155, a potent promoter of M1 polarization, was found to be additionally enhanced in the macrophages and hearts by ovariectomy. Tail vein injection of miR155-AuNP, in which thiol-modified antago-miR155 was covalently conjugated with gold nanoparticle (AuNP), preferentially delivered the nucleic acids into the macrophages via phagocytosis. Together with the increased M2 ratio and reduced inflammation, in vivo delivery of antago-miR155 reduced cell apoptosis and restored the cardiac function. The restoration efficacy of miR155-AuNP was much better than general macrophage depletion by clodrosome. In summary, we revealed that M1/M2 imbalance contributes to the aggravated cardiomyopathy in ovariectomized diabetic mice, and therapeutically reducing miR155 in macrophages by AuNP serves as a promising strategy in improving cardiac function.
Collapse
Affiliation(s)
- Chengming Jia
- Department of Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Hui Chen
- Department of Plastic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mengying Wei
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Xiangjie Chen
- Department of Mathematics, Southeast University, Nanjing, China
| | - Yajun Zhang
- Department of Ultrasound Diagnosis, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Liang Cao
- Department of Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ping Yuan
- Department of Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fangyuan Wang
- Department of Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi’an, China
| | - Jing Ma
- Department of Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
69
|
Haghiralsadat F, Amoabediny G, Sheikhha MH, Forouzanfar T, Helder MN, Zandieh-Doulabi B. A Novel Approach on Drug Delivery: Investigation of A New Nano-Formulation of Liposomal Doxorubicin and Biological Evaluation of Entrapped Doxorubicin on Various Osteosarcoma Cell Lines. CELL JOURNAL 2017; 19:55-65. [PMID: 28580308 PMCID: PMC5448319 DOI: 10.22074/cellj.2017.4502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE In this study we prepared a novel formulation of liposomal doxorubicin (L- DOX). The drug dose was optimized by analyses of cellular uptake and cell viability of osteosarcoma (OS) cell lines upon exposure to nanoliposomes that contained varying DOX concentrations. We intended to reduce the cytotoxicity of DOX and improve characteristics of the nanosystems. MATERIALS AND METHODS In this experimental study, we prepared liposomes by the pH gradient hydration method. Various characterization tests that included dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM) imaging, and UV- Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. In addition, the CyQUANT® assay and fluorescence microscope imaging were used on various OS cell lines (MG-63, U2-OS, SaOS-2, SaOS-LM7) and Human primary osteoblasts cells, as novel methods to determine cell viability and in vitro transfection efficacy. RESULTS We observed an entrapment efficiency of 84% for DOX within the optimized liposomal formulation (L-DOX) that had a liposomal diameter of 96 nm. Less than 37% of DOX released after 48 hours and L-DOX could be stored stably for 14 days. L-DOX increased DOX toxicity by 1.8-4.6 times for the OS cell lines and only 1.3 times for Human primary osteoblasts cells compared to free DOX, which confirmed a higher sensitivity of the OS cell lines versus Human primary osteoblasts cells for L-DOX. We deduced that L- DOX passed more freely through the cell membrane compared to free DOX. CONCLUSION We successfully synthesized a stealth L-DOX that contained natural phospholipid by the pH gradient method, which could encapsulate DOX with 84% efficiency. The resulting nanoparticles were round, with a suitable particle size, and stable for 14 days. These nanoparticles allowed for adequately controlled DOX release, increased cell permeability compared to free DOX, and increased tumor cell death. L-DOX provided a novel, more effective therapy for OS treatment.
Collapse
Affiliation(s)
- Fateme Haghiralsadat
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghasem Amoabediny
- Department of Nano Biotechnology, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Behrouz Zandieh-Doulabi
- Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
70
|
Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev 2017; 110-111:38-51. [PMID: 27327937 PMCID: PMC5235994 DOI: 10.1016/j.addr.2016.06.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 06/11/2016] [Indexed: 12/31/2022]
Abstract
Selective receptor-targeting peptide based agents have attracted considerable attention in molecular imaging of tumor cells that overexpress corresponding peptide receptors due to their unique properties such as rapid clearance from circulation as well as high affinities and specificities for their targets. The rapid growth of chemistry modification techniques has enabled the design and development of various peptide-based imaging agents with enhanced metabolic stability, favorable pharmacokinetics, improved binding affinity and selectivity, better imaging ability as well as biosafety. Among them, many radiolabeled peptides have already been translated into the clinic with impressive diagnostic accuracy and sensitivity. This review summarizes the current status in the development of peptide-based imaging agents with an emphasis on the consideration of probe design including the identification of suitable peptides, the chemical modification of probes and the criteria for clinical translation. Specific examples in clinical trials have been provided as well with respect to their diagnostic capability compared with other FDA approved imaging agents.
Collapse
Affiliation(s)
- Xiaolian Sun
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yesen Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
71
|
Weissmueller NT, Lu HD, Hurley A, Prud'homme RK. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives. Biomacromolecules 2016; 17:3828-3837. [PMID: 27744703 DOI: 10.1021/acs.biomac.6b01440] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.
Collapse
Affiliation(s)
- Nikolas T Weissmueller
- Department of Chemical and Biological Engineering and §Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Hoang D Lu
- Department of Chemical and Biological Engineering and §Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Amanda Hurley
- Department of Chemical and Biological Engineering and §Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering and §Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
72
|
Hpone Myint K, Brown JR, Shim AR, Wyslouzil BE, Hall LM. Encapsulation of Nanoparticles During Polymer Micelle Formation: A Dissipative Particle Dynamics Study. J Phys Chem B 2016; 120:11582-11594. [PMID: 27749067 DOI: 10.1021/acs.jpcb.6b07324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The formation of block copolymer micelles with and without hydrophobic nanoparticles is simulated using dissipative particle dynamics. We use the model developed by Spaeth et al. [ Spaeth , J. R. , Kevrekidis , I. G. , and Panagiotopoulos , A. Z. J. Chem. Phys. 2011 , 134 ( (16) ) 164902 ], and drive micelle formation by adjusting the interaction parameters linearly over time to represent a rapid change from organic solvent to water. For different concentrations of added nanoparticles, we determine characteristic times for micelle formation and coagulation, and characterize micelles with respect to size, polydispersity, and nanoparticle loading. Four block copolymers with different numbers of hydrophobic and hydrophilic polymer beads, are examined. We find that increasing the number of hydrophobic beads on the polymer decreases the micelle formation time and lowers polydispersity in the final micelle distribution. Adding more nanoparticles to the simulation has a negligible effect on micelle formation and coagulation times, and monotonically increases the polydispersity of the micelles for a given polymer system. The presence of relatively stable free polymer in one system decreases the amount of polymer encapsulating the nanoparticles, and results in an increase in polydispersity and the number of nanoparticles per micelle for that system, especially at high nanoparticle concentration. Longer polymers lead to micelles with a more uniform nanoparticle loading.
Collapse
Affiliation(s)
- Kyaw Hpone Myint
- Department of Chemistry, Berea College , Berea, Kentucky 40404, United States.,Department of Physics, Berea College , Berea, Kentucky 40404, United States.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jonathan R Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Anne R Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
73
|
Mori T, Hegmann T. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:295. [PMID: 27766020 PMCID: PMC5047942 DOI: 10.1007/s11051-016-3587-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/03/2016] [Indexed: 05/02/2023]
Abstract
ABSTRACT Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Taizo Mori
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001 USA
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Japan
| | - Torsten Hegmann
- Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242-0001 USA
| |
Collapse
|
74
|
Same S, Aghanejad A, Akbari Nakhjavani S, Barar J, Omidi Y. Radiolabeled theranostics: magnetic and gold nanoparticles. BIOIMPACTS 2016; 6:169-181. [PMID: 27853680 PMCID: PMC5108989 DOI: 10.15171/bi.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
![]()
Introduction: Growing advances in nanotechnology have facilitated the applications of newly emerged nanomaterials in the field of biomedical/pharmaceutical sciences. Following this trend, the multifunctional nanoparticles (NPs) play a significant role in development of advanced drug delivery systems (DDSs) such as diapeutics/theranostics used for simultaneous diagnosis and therapy. Multifunctional radiolabeled NPs with capability of detecting, visualizing and destroying diseased cells with least side effects have been considered as an emerging filed in presentation of the best choice in solving the therapeutic problems. Functionalized magnetic and gold NPs (MNPs and GNPs, respectively) have produced the potential of nanoparticles as sensitive multifunctional probes for molecular imaging, photothermal therapy and drug delivery and targeting.
Methods: In this study, we review the most recent works on the improvement of various techniques for development of radiolabeled magnetic and gold nanoprobes, and discuss the methods for targeted imaging and therapies.
Results: The receptor-specific radiopharmaceuticals have been developed to localized radiotherapy in disease sites. Application of advanced multimodal imaging methods and related modality imaging agents labeled with various radioisotopes (e.g., 125I, 111In, 64Cu, 68Ga, 99mTc) and MNPs/GNPs have significant effects on treatment and prognosis of cancer therapy. In addition, the surface modification with biocompatible polymer such as polyethylene glycol (PEG) have resulted in development of stealth NPs that can evade the opsonization and immune clearance. These long-circulating agents can be decorated with homing agents as well as radioisotopes for targeted imaging and therapy purposes.
Conclusion: The modified MNPs or GNPs have wide applications in concurrent diagnosis and therapy of various malignancies. Once armed with radioisotopes, these nanosystems (NSs) can be exploited for combined multimodality imaging with photothermal/photodynamic therapy while delivering the loaded drugs or genes to the targeted cells/tissues. These NSs will be a game changer in combating various cancers.
Collapse
Affiliation(s)
- Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Akbari Nakhjavani
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Molecular Medicine, School of Advanced Technologies in Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
75
|
Ryu TK, Baek SW, Lee GJ, Rhee CK, Choi SW. Targeted Tumor Therapy Based on Nanodiamonds Decorated with Doxorubicin and Folic Acid. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/18/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Tae-Kyung Ryu
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Seung Woon Baek
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - Gyoung-Ja Lee
- Nuclear Materials Research Division; Korea Atomic Energy Research Institute; 1045 Daedeok Daero Yuseong-gu Daejeon 305-353 Republic of Korea
| | - Chang-Kyu Rhee
- Nuclear Materials Research Division; Korea Atomic Energy Research Institute; 1045 Daedeok Daero Yuseong-gu Daejeon 305-353 Republic of Korea
| | - Sung-Wook Choi
- Department of Biotechnology; The Catholic University of Korea; 43 Jibong-ro Wonmi-gu Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| |
Collapse
|
76
|
Keßler S, Schmid F, Drese K. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition. SOFT MATTER 2016; 12:7231-40. [PMID: 27502026 DOI: 10.1039/c6sm01198e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The co-solvency method is a method for the size controlled preparation of nanoparticles like polymersomes, where a poor co-solvent is mixed into a homogeneous copolymer solution to trigger precipitation of the polymer. The size of the resulting particles is determined by the rate of co-solvent addition. We use the Cahn-Hilliard equation with a Flory-Huggins free energy model to describe the precipitation of a polymer under changing solvent quality by applying a time dependent Flory-Huggins interaction parameter. The analysis focuses on the characteristic size R of polymer aggregates that form during the initial spinodal decomposition stage, and especially on how R depends on the rate s of solvent quality change. Both numerical results and a perturbation analysis predict a power law dependence R∼s(-⅙), which is in agreement with power laws for the final particle sizes that have been reported from experiments and molecular dynamics simulations. Hence, our model results suggest that the nanoparticle size in size-controlled precipitation is essentially determined during the spinodal decomposition stage.
Collapse
Affiliation(s)
- Simon Keßler
- Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | | | | |
Collapse
|
77
|
Kwon KC, Ko HK, Lee J, Lee EJ, Kim K, Lee J. Enhanced In Vivo Tumor Detection by Active Tumor Cell Targeting Using Multiple Tumor Receptor-Binding Peptides Presented on Genetically Engineered Human Ferritin Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4241-4253. [PMID: 27356892 DOI: 10.1002/smll.201600917] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/30/2016] [Indexed: 06/06/2023]
Abstract
Human ferritin heavy-chain nanoparticle (hFTH) is genetically engineered to present tumor receptor-binding peptides (affibody and/or RGD-derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR-overexpressing adenocarcinoma (MDA-MB-468) and integrin-overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor-binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near-infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA-MB-468 or U87MG tumor-bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor-binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors.
Collapse
Affiliation(s)
- Koo Chul Kwon
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, South Korea
| | - Ho Kyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742, South Korea
| | - Jiyun Lee
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, South Korea
| | - Eun Jung Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, South Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Anam-Ro 145, Seoul, 136-713, South Korea
| |
Collapse
|
78
|
Misra SK, Mukherjee P, Chang HH, Tiwari S, Gryka M, Bhargava R, Pan D. Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy. Sci Rep 2016; 6:29299. [PMID: 27405011 PMCID: PMC4941412 DOI: 10.1038/srep29299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/14/2016] [Indexed: 12/22/2022] Open
Abstract
Typically, multiplexing high nanoparticle uptake, imaging, and therapy requires careful integration of three different functions of a multiscale molecular-particle assembly. Here, we present a simpler approach to multiplexing by utilizing one component of the system for multiple functions. Specifically, we successfully synthesized and characterized colloidal carotene carbon nanoparticle (C(3)-NP), in which a single functional molecule served a threefold purpose. First, the presence of carotene moieties promoted the passage of the particle through the cell membrane and into the cells. Second, the ligand acted as a potent detrimental moiety for cancer cells and, finally, the ligands produced optical contrast for robust microscopic detection in complex cellular environments. In comparative tests, C(3)-NP were found to provide effective intracellular delivery that enables both robust detection at cellular and tissue level and presents significant therapeutic potential without altering the mechanism of intracellular action of β-carotene. Surface coating of C(3) with phospholipid was used to generate C(3)-Lipocoat nanoparticles with further improved function and biocompatibility, paving the path to eventual in vivo studies.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Prabuddha Mukherjee
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huei-Huei Chang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saumya Tiwari
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Mark Gryka
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rohit Bhargava
- Electrical and Computer Engineering, Chemical and Biomolecular Engineering, Chemistry, and Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
79
|
|
80
|
Nikoubashman A, Lee VE, Sosa C, Prud'homme RK, Priestley RD, Panagiotopoulos AZ. Directed Assembly of Soft Colloids through Rapid Solvent Exchange. ACS NANO 2016; 10:1425-33. [PMID: 26692293 DOI: 10.1021/acsnano.5b06890] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We studied the directed assembly of soft nanoparticles through rapid micromixing of polymers in solution with a nonsolvent. Both experiments and computer simulations were performed to elucidate the underlying physics and to investigate the role of various process parameters. In particular, we discovered that no external stabilizing agents or charged end groups are required to keep the colloids separated from each other when water is used as the nonsolvent. Furthermore, the size of the nanoparticles can be reliably tuned through the mixing rate and the ratio between polymer solution and nonsolvent. Our results demonstrate that this mechanism is highly promising for the mass fabrication of uniformly sized colloidal particles, using a wide variety of polymeric feed materials.
Collapse
Affiliation(s)
- Arash Nikoubashman
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Institute of Physics, Johannes Gutenberg University of Mainz , Staudingerweg 7, 55128 Mainz, Germany
| | - Victoria E Lee
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Chris Sosa
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University , Princeton, New Jersey 08544, United States
| | - Athanassios Z Panagiotopoulos
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
81
|
Wang JT, Hong Y, Ji X, Zhang M, Liu L, Zhao H. In situ fabrication of PHEMA–BSA core–corona biohybrid particles. J Mater Chem B 2016; 4:4430-4438. [DOI: 10.1039/c6tb00699j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl methacrylate)–bovine serum albumin core–corona particles were prepared using in situ activators generated by electron transfer for atom transfer radical polymerizations of HEMA initiated by a BSA macroinitiator.
Collapse
Affiliation(s)
- Jin-Tao Wang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Xiaotian Ji
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials
- Institute of Biomedical Engineering
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Tianjin 300192
- China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- College of Chemistry
- Nankai University
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
82
|
Shi D, Wang F, Wang Y. Janus Nanostructures for Biomedical Applications: Dual-Surfaces of Single Particle for Multifunctionality. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-319-22861-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
83
|
Chen YF, Hong J, Wu DY, Zhou YY, D'Ortenzio M, Ding Y, Xia XH. In vivo mapping and assay of matrix metalloproteases for liver tumor diagnosis. RSC Adv 2016. [DOI: 10.1039/c5ra26172d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fluorescent probe constructed by simultaneous modification of FITC-grafted peptide and thiolated mPEG on the surface of gold nanoparticles forin vivomapping and assay of matrix metalloproteases.
Collapse
Affiliation(s)
- Yu-Feng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- China Pharmaceutical University
- Ministry of Education
- Nanjing 210009
- China
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials
- School of Sciences
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Dong-Yan Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- China Pharmaceutical University
- Ministry of Education
- Nanjing 210009
- China
| | - Ying-Ying Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- China Pharmaceutical University
- Ministry of Education
- Nanjing 210009
- China
| | | | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance
- China Pharmaceutical University
- Ministry of Education
- Nanjing 210009
- China
| | - Xing-Hua Xia
- Key Lab of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
84
|
Boni A, Ceratti D, Antonelli A, Sfara C, Magnani M, Manuali E, Salamida S, Gozzi A, Bifone A. USPIO-loaded red blood cells as a biomimetic MR contrast agent: a relaxometric study. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 9:229-36. [PMID: 24700750 DOI: 10.1002/cmmi.1562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/11/2013] [Accepted: 06/25/2013] [Indexed: 11/11/2022]
Abstract
Red blood cells (RBCs) loaded with iron oxide nanoparticles have been proposed as biomimetic constructs with long half-life (ca. 20 days) in the blood compartment and potentially interesting properties (such as relaxivity) as intravascular contrast agents for magnetic resonance imaging. However, the encapsulation of nanoparticles into RBCs might affect their magnetic properties and relaxivity, which may be significantly different from the native suspension. Here, we present a relaxometric study of P904, a novel ultra small iron oxide nanoparticle developed by Guerbet, enclosed in human RBCs. We measured longitudinal (r1 ) and transverse (r2 ) relaxivity over a wide range of Larmor frequencies (0.01-300 MHz) in samples of P904-loaded RBCs, and in control samples with P904 nanoparticles dispersed in blood. Internalization of P904 into RBCs resulted in smaller r1 , and in a very high r2 /r1 ratio (232) at the highest field. Moreover, a shift of the Curie peak to high fields was observed in P904-loaded RBCs, possibly the result of nanoparticle size selection caused by the internalization process. High r2 relaxivity together with a high r2 /r1 ratio and a very long blood half-life make P904-loaded RBCs a promising blood-pool negative contrast agent for MR diagnostic applications.
Collapse
Affiliation(s)
- Adriano Boni
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Srinivasan M, Rajabi M, Mousa SA. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. NANOMATERIALS 2015; 5:1690-1703. [PMID: 28347089 PMCID: PMC5304767 DOI: 10.3390/nano5041690] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/23/2015] [Accepted: 10/01/2015] [Indexed: 01/05/2023]
Abstract
The field of nanotechnology has led to the development of many innovative strategies for effective detection and treatment of cancer, overcoming limitations associated with conventional cancer diagnosis and therapy. Multifunctional nanoparticle systems can integrate imaging, targeting and treatment moieties on the surface and in the core, resulting in targeted delivery of the imaging or treatment modalities, specifically to the tumor. Multifunctional nanoparticles also enable simultaneous delivery of multiple treatment agents, resulting in effective combinatorial therapeutic regimens against cancer. In this review, various multifunctional nanoparticle systems that feature a variety of targeting moieties for in vitro and/or in vivo cancer imaging and therapy are discussed.
Collapse
Affiliation(s)
- Mathangi Srinivasan
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | - Mehdi Rajabi
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| |
Collapse
|
86
|
Fuentes-Paniagua E, Serramía MJ, Sánchez-Nieves J, Álvarez S, Muñoz-Fernández MÁ, Gómez R, de la Mata FJ. Fluorescein labelled cationic carbosilane dendritic systems for biological studies. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
87
|
Tian L, Chen BA, Cheng J, Guo QL. Effects of magnetic nanoparticles of Fe3O4 combinated with gambogic acid on apoptosis of SMMC-7721 cells. Onco Targets Ther 2015; 8:2285-90. [PMID: 26345420 PMCID: PMC4556044 DOI: 10.2147/ott.s86494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective This study aims to investigate the potential benefit of combination therapy with magnetic nanoparticles of Fe3O4 (Fe3O4-MNP) and gambogic acid (GA) on SMMC-7721 cells. Methods The inhibition of proliferation of SMMC-7721 cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was calculated and analyzed by flow cytometry, and the expressions of the apoptosis-related protein were detected by Western blot. Results GA enhanced the cytotoxicity of SMMC-7721 cells in a dose-dependent manner. The Fe3O4-MNP itself had no obviously inhibitory effect, but it could enhance the effect of GA on proliferation of SMMC-7721 cells. The apoptotic rate of SMMC-7721 cells induced by combination of GA with Fe3O4-MNP was higher than that by GA alone. The expression levels of caspase-3 and caspase-8 after co-treatment of GA and Fe3O4-MNP were higher than that exposed to either GA or Fe3O4-MNP alone, while the levels of bcl-2 were downregulated. Conclusion Fe3O4-MNP can promote GA-induced apoptosis of SMMC-7721 cells, which may be related to the downregulation of Bcl-2 and upregulation of caspase-3.
Collapse
Affiliation(s)
- Liang Tian
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Bao-An Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Jian Cheng
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), The Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qing-Long Guo
- China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
88
|
Lee H, Sung D, Kim J, Kim BT, Wang T, An SSA, Seo SW, Yi DK. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution. Int J Nanomedicine 2015; 10 Spec Iss:215-25. [PMID: 26357472 PMCID: PMC4559254 DOI: 10.2147/ijn.s88311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice.
Collapse
Affiliation(s)
- Haisung Lee
- Molecular Diagnostics, In Vitro Diagnostics Unit, New Business Division, SK Telecom, Republic of Korea
| | - Dongkyung Sung
- Department of Life Sciences, Graduate School of Korea University, Seoul, Republic of Korea
| | - Jinhoon Kim
- Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Byung-Tae Kim
- Interdisciplinary Graduate Program of Biomedical Engineering, School of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Tuntun Wang
- Department of Chemistry, Myongji University, Seoul, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Soo-Won Seo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Seoul, Republic of Korea
| |
Collapse
|
89
|
Zhu A, Miao K, Deng Y, Ke H, He H, Yang T, Guo M, Li Y, Guo Z, Wang Y, Yang X, Zhao Y, Chen H. Dually pH/Reduction-Responsive Vesicles for Ultrahigh-Contrast Fluorescence Imaging and Thermo-Chemotherapy-Synergized Tumor Ablation. ACS NANO 2015; 9:7874-85. [PMID: 26181349 DOI: 10.1021/acsnano.5b02843] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Smart nanocarriers are of particular interest as nanoscale vehicles of imaging and therapeutic agents in the field of theranostics. Herein, we report dually pH/reduction-responsive terpolymeric vesicles with monodispersive size distribution, which are constructed by assembling acetal- and disulfide-functionalized star terpolymer with near-infrared cyanine dye and anticancer drug. The vesicular nanostructure exhibits multiple theranostic features including on-demand drug releases responding to pH/reduction stimuli, enhanced photothermal conversion efficiency of cyanine dye, and efficient drug translocation from lysosomes to cytoplasma, as well as preferable cellular uptakes and biodistribution. These multiple theranostic features result in ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. The dually stimuli-responsive vesicles represent a versatile theranostic approach for enhanced cancer imaging and therapy.
Collapse
Affiliation(s)
- Aijun Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Ke Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou , Jiangsu 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Miao Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Yanli Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
| | - Zhengqing Guo
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| | - Yangyun Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, and College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou , Jiangsu 215123, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, and College of Pharmaceutical Sciences, Soochow University , Suzhou, Jiangsu 215123, China
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University , Suzhou, Jiangsu 215123, China
| |
Collapse
|
90
|
Shah RR, O'Hagan DT, Amiji MM, Brito LA. The impact of size on particulate vaccine adjuvants. Nanomedicine (Lond) 2015; 9:2671-81. [PMID: 25529570 DOI: 10.2217/nnm.14.193] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Particulate adjuvants have been successful at inducing increased immune responses against many poorly immunogenic antigens. However, the mechanism of action of these adjuvants often remains unclear. As more potential vaccine targets are emerging, it is becoming necessary to broaden our knowledge on the factors involved in generating potent immune responses to recombinant antigens with adjuvants. While composition of adjuvants is integral in defining the overall performance of an adjuvant, some physical parameters such as particle size, surface charge and surface modification may also contribute to the potency. In this review, we will try to highlight the role of particle size in controlling the immune responses to adjuvanted vaccines, with a focus on insoluble aluminum salts, oil-in-water emulsions, polymeric particles and liposomes.
Collapse
Affiliation(s)
- Ruchi R Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
91
|
Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y, Chen H. Smart Albumin-Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3874-3882. [PMID: 25997571 DOI: 10.1002/adma.201500229] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Smart cyanine-grafted gadolinium oxide nanocrystals (Cy-GdNCs) obtained by albumin-based biomineralization are shown to be theranostic nanocomposites, with promising properties for trimodal near-infrared fluorescence/photoacoustics/magnetic-resonance imaging-guided photothermal tumor ablation.
Collapse
Affiliation(s)
- Yong Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Aijun Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yangyun Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Junxin Wang
- Radiology Department, Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Junkang Shen
- Radiology Department, Second Affiliated Hospital, Soochow University, Suzhou, 215004, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Huabing Chen
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
92
|
Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’homme RK, Guo X. Facile Preparation of AIE-Active Fluorescent Nanoparticles through Flash Nanoprecipitation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b00501] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mingwei Wang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Nan Yang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqian Guo
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Kaizhi Gu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Andong Shao
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Weihong Zhu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Yisheng Xu
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wang
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Xuhong Guo
- State-Key
Laboratory of Chemical Engineering, Key Laboratory for Advanced Materials
and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
93
|
Lu HD, Spiegel AC, Hurley A, Perez LJ, Maisel K, Ensign LM, Hanes J, Bassler BL, Semmelhack MF, Prud’homme RK. Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles. NANO LETTERS 2015; 15:2235-41. [PMID: 25651002 PMCID: PMC4390484 DOI: 10.1021/acs.nanolett.5b00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The rise of bacterial antibiotic resistance has created a demand for alternatives to traditional antibiotics. Attractive possibilities include pro- and anti-quorum sensing therapies that function by modulating bacterial chemical communication circuits. We report the use of Flash NanoPrecipitation to deliver the Vibrio cholerae quorum-sensing signal CAI-1 ((S)-3-hydroxytridecan-4-one) in a water dispersible form as nanoparticles. The particles activate V. cholerae quorum-sensing responses 5 orders of magnitude higher than does the identically administered free CAI-1 and are diffusive across in vivo delivery barriers such as intestinal mucus. This work highlights the promise of combining quorum-sensing strategies with drug delivery approaches for the development of next-generation medicines.
Collapse
Affiliation(s)
- Hoang D. Lu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alina C. Spiegel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Amanda Hurley
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Lark J. Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Katharina Maisel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, United States
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, United States
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, United States
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States
| | - Martin F. Semmelhack
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
94
|
Rosenthal EL, Warram JM, Bland KI, Zinn KR. The status of contemporary image-guided modalities in oncologic surgery. Ann Surg 2015; 261:46-55. [PMID: 25599326 DOI: 10.1097/sla.0000000000000622] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To review the current trends in optical imaging to guide oncologic surgery. BACKGROUND Surgical resection remains the cornerstone of therapy for patients with early stage solid malignancies and more than half of all patients with cancer undergo surgery each year. The technical ability of the surgeon to obtain clear surgical margins at the initial resection remains crucial to improve overall survival and long-term morbidity. Current resection techniques are largely based on subjective and subtle changes associated with tissue distortion by invasive cancer. As a result, positive surgical margins occur in a significant portion of tumor resections, which is directly correlated with a poor outcome. METHODS A comprehensive review of studies evaluating optical imaging techniques is performed. RESULTS A variety of cancer imaging techniques have been adapted or developed for intraoperative surgical guidance that have been shown to improve functional and oncologic outcomes in randomized clinical trials. There are also a large number of novel, cancer-specific contrast agents that are in early stage clinical trials and preclinical development that demonstrate significant promise to improve real-time detection of subclinical cancer in the operative setting. CONCLUSIONS There has been an explosion of intraoperative imaging techniques that will become more widespread in the next decade.
Collapse
Affiliation(s)
- Eben L Rosenthal
- *Departments of Surgery and †Radiology, The University of Alabama at Birmingham, Birmingham, AL
| | | | | | | |
Collapse
|
95
|
Shah RR, Dodd S, Schaefer M, Ugozzoli M, Singh M, Otten GR, Amiji MM, O’hagan DT, Brito LA. The Development of Self-Emulsifying Oil-in-Water Emulsion Adjuvant and an Evaluation of the Impact of Droplet Size on Performance. J Pharm Sci 2015; 104:1352-61. [DOI: 10.1002/jps.24337] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023]
|
96
|
Shunmugaperumal T, Kaur V, Thenrajan RS. Lipid- and Polymer-Based Drug Delivery Carriers for Eradicating Microbial Biofilms Causing Medical Device-Related Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 831:147-89. [DOI: 10.1007/978-3-319-09782-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Xue P, Bao J, Wu Y, Zhang Y, Kang Y. Magnetic Prussian blue nanoparticles for combined enzyme-responsive drug release and photothermal therapy. RSC Adv 2015. [DOI: 10.1039/c5ra01616a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional magnetic nanoparticles based on Fe3O4 nanocore and Prussian blue nanoshell for combined enzyme-responsive drug release and photothermal therapy.
Collapse
Affiliation(s)
- Peng Xue
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yafeng Wu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yuejun Kang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
98
|
Minati L, Antonini V, Dalbosco L, Benetti F, Migliaresi C, Dalla Serra M, Speranza G. One-step synthesis of magnetic gold nanostars for bioimaging applications. RSC Adv 2015. [DOI: 10.1039/c5ra20321j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work presents novel magnetite–gold hybrid nanoparticles formed by multiple magnetic cores inside gold nanostars (SPIO@Au).
Collapse
Affiliation(s)
| | - V. Antonini
- Istituto di Biofisica
- Consiglio Nazionale delle Ricerche
- 38123 Trento
- Italy
| | - L. Dalbosco
- Department of Industrial Engineering & Biotech Research Center
- University of Trento
- Trento
- Italy
| | - F. Benetti
- Department of Industrial Engineering & Biotech Research Center
- University of Trento
- Trento
- Italy
| | - C. Migliaresi
- Department of Industrial Engineering & Biotech Research Center
- University of Trento
- Trento
- Italy
| | - M. Dalla Serra
- Istituto di Biofisica
- Consiglio Nazionale delle Ricerche
- 38123 Trento
- Italy
| | | |
Collapse
|
99
|
Bandara HMHN, Nguyen D, Mogarala S, Osiñski M, Smyth HDC. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. BIOFOULING 2015; 31:443-457. [PMID: 26103544 DOI: 10.1080/08927014.2015.1055326] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Due to the refractory nature of pathogenic microbial biofilms, innovative biofilm eradication strategies are constantly being sought. Thus, this study addresses a novel approach to eradicate Pseudomonas aeruginosa biofilms. Magnetic nanoparticles (MNP), ciprofloxacin (Cipro), and magnetic fields were systematically evaluated in vitro for their relative anti-biofilm contributions. Twenty-four-hour biofilms exposed to aerosolized MNPs, Cipro, or a combination of both, were assessed in the presence or absence of magnetic fields (Static one-sided, Static switched, Oscillating, Static + oscillating) using changes in bacterial metabolism, biofilm biomass, and biofilm imaging. The biofilms exposed to magnetic fields alone exhibited significant metabolic and biomass reductions (p < 0.05). When biofilms were treated with a MNP/Cipro combination, the most significant metabolic and biomass reductions were observed when exposed to static switched magnetic fields (p < 0.05). The exposure of P. aeruginosa biofilms to a static switched magnetic field alone, or co-administration with MNP/Cipro/MNP + Cipro appears to be a promising approach to eradicate biofilms of this bacterium.
Collapse
Affiliation(s)
- H M H N Bandara
- a College of Pharmacy , The University of Texas at Austin , Austin , TX , USA
| | | | | | | | | |
Collapse
|
100
|
Tharkar P, Madani AU, Lasham A, Shelling AN, Al-Kassas R. Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2014; 23:97-108. [DOI: 10.3109/1061186x.2014.958844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|