51
|
Ferreira P, Cerqueira NMFSA, Coelho C, Fernandes PA, Romão MJ, Ramos MJ. New insights about the monomer and homodimer structures of the human AOX1. Phys Chem Chem Phys 2019; 21:13545-13554. [DOI: 10.1039/c9cp01040h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We conducted MD simulations to provide a comprehensive study on the human aldehyde oxidase and on the impact that the allosteric inhibitor thioridazine and malonate ions have on its structure, particularly on the catalytic tunnel.
Collapse
Affiliation(s)
- P. Ferreira
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - N. M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - C. Coelho
- UCIBIO@REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - P. A. Fernandes
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - M. J. Romão
- UCIBIO@REQUIMTE
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - M. J. Ramos
- UCIBIO@REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
52
|
Metabolism of 4-methylimidazole in Fischer 344 rats and B6C3F1 mice. Food Chem Toxicol 2019; 123:181-194. [DOI: 10.1016/j.fct.2018.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
|
53
|
Takaoka N, Sanoh S, Okuda K, Kotake Y, Sugahara G, Yanagi A, Ishida Y, Tateno C, Tayama Y, Sugihara K, Kitamura S, Kurosaki M, Terao M, Garattini E, Ohta S. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug–drug interactions. Biochem Pharmacol 2018; 154:28-38. [DOI: 10.1016/j.bcp.2018.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
|
54
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
55
|
Bender D, Schwarz G. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Lett 2018; 592:2126-2139. [DOI: 10.1002/1873-3468.13089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel Bender
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
| | - Guenter Schwarz
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Germany
| |
Collapse
|
56
|
Dyer RMB, Hahn PL, Hilinski MK. Selective Heteroaryl N-Oxidation of Amine-Containing Molecules. Org Lett 2018; 20:2011-2014. [PMID: 29547294 DOI: 10.1021/acs.orglett.8b00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first examples of nonenzymatic N-oxidation of heteroarenes in the presence of amines are reported. Pyridine, quinoline, and isoquinoline N-oxides are selectively formed in the presence of more reactive aliphatic and alicyclic amines by use of an in situ protonation strategy and an iminium salt organocatalyst. Application to late-stage functionalization that mimics phase 1 metabolism of small-molecule drugs is also demonstrated.
Collapse
Affiliation(s)
- Robert M B Dyer
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| | - Philip L Hahn
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| | - Michael K Hilinski
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4319 , United States
| |
Collapse
|
57
|
Li AC, Cui D, Yu E, Dobson K, Hellriegel ET, Robertson Jr P. Identification and human exposure prediction of two aldehyde oxidase-mediated metabolites of a methylquinoline-containing drug candidate. Xenobiotica 2018; 49:302-312. [PMID: 29473769 DOI: 10.1080/00498254.2018.1444815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Austin C. Li
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| | - Donghui Cui
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| | - Erya Yu
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| | - Kyle Dobson
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| | - Edward T. Hellriegel
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| | - Philmore Robertson Jr
- Department of Drug Metabolism and Pharmacokinetics, Teva Pharmaceuticals, West Chester, PA, USA
| |
Collapse
|
58
|
Long K, Mao K, Che T, Zhang J, Qiu W, Wang Y, Tang Q, Ma J, Li M, Li X. Transcriptome differences in frontal cortex between wild boar and domesticated pig. Anim Sci J 2018. [DOI: 10.1111/asj.12999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keren Long
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Ke Mao
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Jinwei Zhang
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Wanling Qiu
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding; College of Animal Science and Technology; Sichuan Agricultural University; Chengdu Sichuan China
| |
Collapse
|
59
|
Hosogi J, Ohashi R, Maeda H, Fujita K, Ushiki J, Kuwabara T, Yamamoto Y, Imamura T. An iminium ion metabolite hampers the production of the pharmacologically active metabolite of a multikinase inhibitor KW-2449 in primates: irreversible inhibition of aldehyde oxidase and covalent binding with endogenous proteins. Biopharm Drug Dispos 2018; 39:164-174. [DOI: 10.1002/bdd.2123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Hosogi
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Rui Ohashi
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Hiroshi Maeda
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Kazuhiro Fujita
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Junko Ushiki
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Takashi Kuwabara
- Translational Research Unit; Research and Development Division, Kyowa Hakko Kirin Co., Ltd; 1188 Shimotogari, Nagaizumi-cho, Sunto-gun Shizuoka 411-8731 Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakura-cho, Hachioji Tokyo 192-0983 Japan
| | - Toru Imamura
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakura-cho, Hachioji Tokyo 192-0983 Japan
| |
Collapse
|
60
|
Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem 2018; 14:6611-37. [PMID: 27282396 DOI: 10.1039/c6ob00936k] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.
Collapse
Affiliation(s)
- Alexandria P Taylor
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Ralph P Robinson
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Yvette M Fobian
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - David C Blakemore
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | - Lyn H Jones
- Worldwide Medicinal Chemistry, Pfizer, 610 Main Street, Cambridge, MA 02139, USA
| | - Olugbeminiyi Fadeyi
- Worldwide Medicinal Chemistry, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| |
Collapse
|
61
|
Zheng J, Xin Y, Zhang J, Subramanian R, Murray BP, Whitney JA, Warr MR, Ling J, Moorehead L, Kwan E, Hemenway J, Smith BJ, Silverman JA. Pharmacokinetics and Disposition of Momelotinib Revealed a Disproportionate Human Metabolite-Resolution for Clinical Development. Drug Metab Dispos 2018; 46:237-247. [PMID: 29311136 DOI: 10.1124/dmd.117.078899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
Momelotinib (MMB), a small-molecule inhibitor of Janus kinase (JAK)1/2 and of activin A receptor type 1 (ACVR1), is in clinical development for the treatment of myeloproliferative neoplasms. The pharmacokinetics and disposition of [14C]MMB were characterized in a single-dose, human mass-balance study. Metabolism and the pharmacologic activity of key metabolites were elucidated in multiple in vitro and in vivo experiments. MMB was rapidly absorbed following oral dosing with approximately 97% of the radioactivity recovered, primarily in feces with urine as a secondary route. Mean blood-to-plasma [14C] area under the plasma concentration-time curve ratio was 0.72, suggesting low association of MMB and metabolites with blood cells. [14C]MMB-derived radioactivity was detectable in blood for ≤48 hours, suggesting no irreversible binding of MMB or its metabolites. The major circulating human metabolite, M21 (a morpholino lactam), is a potent inhibitor of JAK1/2 and ACVR1 in vitro. Estimation of pharmacological activity index suggests M21 contributes significantly to the pharmacological activity of MMB for the inhibition of both JAK1/2 and ACVR1. M21 was observed in disproportionately higher amounts in human plasma than in rat or dog, the rodent and nonrodent species used for the general nonclinical safety assessment of this molecule. This discrepancy was resolved with additional nonclinical studies wherein the circulating metabolites and drug-drug interactions were further characterized. The human metabolism of MMB was mediated primarily by multiple cytochrome P450 enzymes, whereas M21 formation involved initial P450 oxidation of the morpholine ring followed by metabolism via aldehyde oxidase.
Collapse
Affiliation(s)
- Jim Zheng
- Gilead Sciences, Inc., Foster City, California
| | - Yan Xin
- Gilead Sciences, Inc., Foster City, California
| | | | | | | | | | | | - John Ling
- Gilead Sciences, Inc., Foster City, California
| | | | - Ellen Kwan
- Gilead Sciences, Inc., Foster City, California
| | | | | | | |
Collapse
|
62
|
Uchida H, Mikami B, Yamane-Tanabe A, Ito A, Hirano K, Oki M. Crystal structure of an aldehyde oxidase from Methylobacillus sp. KY4400. J Biochem 2018; 163:321-328. [DOI: 10.1093/jb/mvy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Bunzou Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Aiko Yamane-Tanabe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Anna Ito
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Kouzou Hirano
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| |
Collapse
|
63
|
Cruciani G, Milani N, Benedetti P, Lepri S, Cesarini L, Baroni M, Spyrakis F, Tortorella S, Mosconi E, Goracci L. From Experiments to a Fast Easy-to-Use Computational Methodology to Predict Human Aldehyde Oxidase Selectivity and Metabolic Reactions. J Med Chem 2017; 61:360-371. [DOI: 10.1021/acs.jmedchem.7b01552] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriele Cruciani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Nicolò Milani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paolo Benedetti
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Susan Lepri
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Lucia Cesarini
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Massimo Baroni
- Molecular Discovery Ltd, Centennial
Park, Borehamwood, Hertfordshire, United Kingdom
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University of Turin, via P. Giuria
9, 10125 Turin, Italy
| | - Sara Tortorella
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
- Molecular Horizon srl, via Montelino
32, 06084 Bettona, Italy
| | - Edoardo Mosconi
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
- Computational
Laboratory for Hybrid/Organic Photovoltaics, National Research Council−Institute of Molecular Science and Technologies, Via Elce
di Sotto 8, I-06123 Perugia, Italy
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
64
|
Hosogi J, Ohashi R, Maeda H, Tashiro S, Fuse E, Yamamoto Y, Kuwabara T. Monoamine oxidase B oxidizes a novel multikinase inhibitor KW-2449 to its iminium ion and aldehyde oxidase further converts it to the oxo-piperazine form in human. Drug Metab Pharmacokinet 2017; 32:255-264. [DOI: 10.1016/j.dmpk.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
|
65
|
Crouch RD, Blobaum AL, Felts AS, Conn PJ, Lindsley CW. Species-Specific Involvement of Aldehyde Oxidase and Xanthine Oxidase in the Metabolism of the Pyrimidine-Containing mGlu5-Negative Allosteric Modulator VU0424238 (Auglurant). Drug Metab Dispos 2017; 45:1245-1259. [DOI: 10.1124/dmd.117.077552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 01/10/2023] Open
|
66
|
Montefiori M, Jørgensen FS, Olsen L. Aldehyde Oxidase: Reaction Mechanism and Prediction of Site of Metabolism. ACS OMEGA 2017; 2:4237-4244. [PMID: 30023718 PMCID: PMC6044498 DOI: 10.1021/acsomega.7b00658] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/11/2017] [Indexed: 05/16/2023]
Abstract
Aldehyde oxidase (AO) is a molybdenum-containing enzyme involved in the clearance of drug compounds containing aldehydes and N-containing heterocyclic fragments. AO has gained considerable interest in recent years because of examples of too fast clearance of drug compounds in development. Thus, it is important to be able to predict AO-mediated drug metabolism. Therefore, we have characterized the structural and energetic aspects of different mechanisms with density functional theory using the molybdenum cofactor as a model for the reactive part of the enzyme. For a series of 6-substituted 4-quinazolinones, the trend in activation energies is the same for three tested reaction mechanisms. Using the concerted mechanism as a model for the enzymatic reaction, the transition states (TSs) for the formation of all possible metabolites for a series of known AO substrates were determined. The lowest activation energies correspond in all cases to the experimentally observed sites of metabolism (SOMs). Various molecular properties were calculated and investigated as more easily determinable markers for reactivity. The stabilities of both intermediates and products correlate to some extent with the TS energies and may be used to predict the SOM. The electrostatic-potential-derived charges are also good markers for the prediction of the experimental SOM for this set of compounds and may pave the way for the development of fast methods for the prediction of SOM for AO substrates.
Collapse
|
67
|
|
68
|
Foti A, Dorendorf F, Leimkühler S. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase. PLoS One 2017; 12:e0182061. [PMID: 28750088 PMCID: PMC5531472 DOI: 10.1371/journal.pone.0182061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. The enzymes use oxygen as the terminal electron acceptor and produce reduced oxygen species during turnover. The physiological function of mammalian AOX isoenzymes is still unclear, however, human AOX (hAOX1) is an emerging enzyme in phase-I drug metabolism. Indeed, the number of xenobiotics acting as hAOX1 substrates is increasing. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified within the hAOX1 gene. SNPs are a major source of inter-individual variability in the human population, and SNP-based amino acid exchanges in hAOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. In this report we selected ten novel SNPs resulting in amino acid exchanges in proximity to the FAD site of hAOX1 and characterized the purified enzymes after heterologous expression in Escherichia coli. The hAOX1 variants were characterized carefully by quantitative differences in their ability to produce superoxide radical. ROS represent prominent key molecules in physiological and pathological conditions in the cell. Our data reveal significant alterations in superoxide anion production among the variants. In particular the SNP-based amino acid exchange L438V in proximity to the isoalloxanzine ring of the FAD cofactor resulted in increased rate of superoxide radical production of 75%. Considering the high toxicity of the superoxide in the cell, the hAOX1-L438V SNP variant is an eventual candidate for critical or pathological roles of this natural variant within the human population.
Collapse
Affiliation(s)
- Alessandro Foti
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Dorendorf
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
69
|
Nakagawa T, Fowler S, Takanashi K, Youdim K, Yamauchi T, Kawashima K, Sato-Nakai M, Yu L, Ishigai M. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes. Xenobiotica 2017; 48:546-554. [PMID: 28657423 DOI: 10.1080/00498254.2017.1344910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
1. The in vitro metabolism of alectinib, a potent and highly selective oral anaplastic lymphoma kinase inhibitor, was investigated. 2. The main metabolite (M4) in primary human hepatocytes was identified, which is produced by deethylation at the morpholine ring. Three minor metabolites (M6, M1a, and M1b) were also identified, and a minor peak of hydroxylated alectinib (M5) was detected as a possible precursor of M4, M1a, and M1b. 3. M4, an important active major metabolite, was produced and further metabolized to M6 by CYP3A, indicating that CYP3A enzymes were the principal contributors to this route. M5 is possibly produced by CYP3A and other isoforms as the primary step in metabolism, followed by oxidation to M4 mainly by CYP3A. Alternatively, M5 could be oxidized to M1a and M1b via an NAD-dependent process. None of the non-CYP3A-mediated metabolism appeared to be major. 4. In conclusion, this study suggests that involvement of multiple enzymes in the metabolism of alectinib reduces its potential for drug-drug interactions.
Collapse
Affiliation(s)
| | - Stephen Fowler
- b Non-Clinical Drug Safety, F. Hoffmann-La Roche Ltd. , Basel , Switzerland
| | | | - Kuresh Youdim
- b Non-Clinical Drug Safety, F. Hoffmann-La Roche Ltd. , Basel , Switzerland
| | | | | | | | - Li Yu
- c Roche Innovation Center , New York , NY , USA
| | | |
Collapse
|
70
|
Kumar R, Joshi G, Kler H, Kalra S, Kaur M, Arya R. Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Med Res Rev 2017; 38:1073-1125. [DOI: 10.1002/med.21457] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Raj Kumar
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Harveen Kler
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Sourav Kalra
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
- Centre for Human Genetics and Molecular Medicine
| | - Manpreet Kaur
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| | - Ramandeep Arya
- Laboratory for Drug Design and Synthesis, Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences; Central University of Punjab; Bathinda 151001 India
| |
Collapse
|
71
|
Kücükgöze G, Terao M, Garattini E, Leimkühler S. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse. Drug Metab Dispos 2017; 45:947-955. [DOI: 10.1124/dmd.117.075937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 11/22/2022] Open
|
72
|
Uehara S, Uno Y, Okamoto E, Inoue T, Sasaki E, Yamazaki H. Molecular Cloning and Characterization of Marmoset Aldehyde Oxidase. Drug Metab Dispos 2017; 45:883-886. [DOI: 10.1124/dmd.117.076042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
|
73
|
Wilkinson DJ, Southall RL, Li M, Wright LM, Corfield LJ, Heeley TA, Bratby B, Mannu R, Johnson SL, Shaw V, Friett HL, Blakeburn LA, Kendrick JS, Otteneder MB. Minipig and Human Metabolism of Aldehyde Oxidase Substrates: In Vitro–In Vivo Comparisons. AAPS JOURNAL 2017; 19:1163-1174. [DOI: 10.1208/s12248-017-0087-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
|
74
|
Romão MJ, Coelho C, Santos-Silva T, Foti A, Terao M, Garattini E, Leimkühler S. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics. Curr Opin Chem Biol 2017; 37:39-47. [DOI: 10.1016/j.cbpa.2017.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
75
|
Crouch RD, Hutzler JM, Daniels JS. A novel in vitro allometric scaling methodology for aldehyde oxidase substrates to enable selection of appropriate species for traditional allometry. Xenobiotica 2017; 48:219-231. [PMID: 28281401 DOI: 10.1080/00498254.2017.1296208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Failure to predict human pharmacokinetics of aldehyde oxidase (AO) substrates using traditional allometry has been attributed to species differences in AO metabolism. 2. To identify appropriate species for predicting human in vivo clearance by single-species scaling (SSS) or multispecies allometry (MA), we scaled in vitro intrinsic clearance (CLint) of five AO substrates obtained from hepatic S9 of mouse, rat, guinea pig, monkey and minipig to human in vitro CLint. 3. When predicting human in vitro CLint, average absolute fold-error was ≤2.0 by SSS with monkey, minipig and guinea pig (rat/mouse >3.0) and was <3.0 by most MA species combinations (including rat/mouse combinations). 4. Interspecies variables, including fraction metabolized by AO (Fm,AO) and hepatic extraction ratios (E) were estimated in vitro. SSS prediction fold-errors correlated with the animal:human ratio of E (r2 = 0.6488), but not Fm,AO (r2 = 0.0051). 5. Using plasma clearance (CLp) from the literature, SSS with monkey was superior to rat or mouse at predicting human CLp of BIBX1382 and zoniporide, consistent with in vitro SSS assessments. 6. Evaluation of in vitro allometry, Fm,AO and E may prove useful to guide selection of suitable species for traditional allometry and prediction of human pharmacokinetics of AO substrates.
Collapse
Affiliation(s)
- Rachel D Crouch
- a Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA and
| | - J Matthew Hutzler
- b Q2 Solutions, Bioanalytical and ADME Labs , Indianapolis , IN , USA
| | - J Scott Daniels
- a Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA and
| |
Collapse
|
76
|
Mao Z, Wu Y, Li Q, Wang X, Liu Y, Di X. Aldehyde oxidase-dependent species difference in hepatic metabolism of fasudil to hydroxyfasudil. Xenobiotica 2017; 48:170-177. [DOI: 10.1080/00498254.2017.1292016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhengsheng Mao
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yali Wu
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiuying Li
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Wang
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | - Youping Liu
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Di
- Laboratory of Drug Metabolism and Pharmacokinetics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
77
|
Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov 2017; 12:305-316. [DOI: 10.1080/17460441.2017.1284198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Diao X, Huestis MA. Approaches, Challenges, and Advances in Metabolism of New Synthetic Cannabinoids and Identification of Optimal Urinary Marker Metabolites. Clin Pharmacol Ther 2016; 101:239-253. [DOI: 10.1002/cpt.534] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- X Diao
- Department of Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse; National Institutes of Health; Baltimore Maryland USA
| | - MA Huestis
- Department of Chemistry and Drug Metabolism, IRP, National Institute on Drug Abuse; National Institutes of Health; Baltimore Maryland USA
- University of Maryland School of Medicine; Baltimore Maryland USA
| |
Collapse
|
79
|
Ramanathan S, Jin F, Sharma S, Kearney BP. Clinical Pharmacokinetic and Pharmacodynamic Profile of Idelalisib. Clin Pharmacokinet 2016; 55:33-45. [PMID: 26242379 DOI: 10.1007/s40262-015-0304-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Idelalisib is a potent and selective phosphatidylinositol 3-kinase-δ inhibitor, which is a first-in-class agent to be approved for the treatment of relapsed chronic lymphocytic leukaemia, follicular B cell non-Hodgkin's lymphoma and small lymphocytic lymphoma. In dose-ranging studies, idelalisib exposure increased in a less than dose-proportional manner, likely because of solubility-limited absorption. The approved starting dose of 150 mg twice daily was supported by extensive exposure-response evaluations, with dose reduction to 100 mg twice daily being allowed for specific toxicities. Idelalisib may be administered without regard to food on the basis of the absence of clinically relevant food effects, and was accordingly dosed in primary efficacy/safety studies. Idelalisib is metabolized primarily via aldehyde oxidase (AO) and, to a lesser extent, via cytochrome P450 (CYP) 3A. Coadministration with the strong CYP3A inhibitor ketoconazole 400 mg once daily resulted in a ~79 % increase in the idelalisib area under the plasma concentration-time curve (AUC). Administration with the potent inducer rifampin resulted in a 75 % decrease in idelalisib exposure (AUC) and, as such, coadministration with strong inducers should be avoided. GS-563117 is an inactive primary circulating metabolite of idelalisib formed mainly via AO. Unlike idelalisib, GS-563117 is a mechanism-based inhibitor of CYP3A. Accordingly, idelalisib 150 mg twice-daily dosing increases the midazolam AUC 5.4-fold. Clinically, idelalisib is not an inhibitor of the transporters P-glycoprotein, breast cancer resistance protein, organic anion-transporting polypeptide (OATP) 1B1 or OAPT1B3. In a population pharmacokinetic model, no meaningful impact on idelalisib pharmacokinetics was noted for any of the covariates tested. Idelalisib exposure was ~60 % higher with moderate/severe hepatic impairment; no relevant changes were observed with severe renal impairment. This article reviews a comprehensive pharmacology programme, including drug-drug interaction studies and mechanistic and special population studies, which has allowed a thorough understanding of idelalisib clinical pharmacokinetics and their impact on clinical safety and efficacy.
Collapse
MESH Headings
- Administration, Oral
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacokinetics
- Dose-Response Relationship, Drug
- Drug Interactions
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/metabolism
- Purines/administration & dosage
- Purines/pharmacokinetics
- Quinazolinones/administration & dosage
- Quinazolinones/pharmacokinetics
Collapse
Affiliation(s)
| | - Feng Jin
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Shringi Sharma
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Brian P Kearney
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| |
Collapse
|
80
|
Structural features of guinea pig aldehyde oxidase inhibitory activities of flavonoids explored using QSAR and molecular modeling studies. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
81
|
Wang J, Keceli G, Cao R, Su J, Mi Z. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism. Redox Rep 2016; 22:17-25. [PMID: 27686142 DOI: 10.1080/13510002.2016.1206175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. BACKGROUND Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. METHODS We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. RESULTS UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. CONCLUSIONS To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Gizem Keceli
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Rui Cao
- b Department of Chemistry , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Jiangtao Su
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| | - Zhiyuan Mi
- a Department of Pharmacy, Food and Pharmaceutical Engineering College , Hubei University of Technology , Wuhan , Hubei 430068 , China
| |
Collapse
|
82
|
Argikar UA, Potter PM, Hutzler JM, Marathe PH. Challenges and Opportunities with Non-CYP Enzymes Aldehyde Oxidase, Carboxylesterase, and UDP-Glucuronosyltransferase: Focus on Reaction Phenotyping and Prediction of Human Clearance. AAPS JOURNAL 2016; 18:1391-1405. [PMID: 27495117 DOI: 10.1208/s12248-016-9962-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023]
Abstract
Over the years, significant progress has been made in reducing metabolic instability due to cytochrome P450-mediated oxidation. High-throughput metabolic stability screening has enabled the advancement of compounds with little to no oxidative metabolism. Furthermore, high lipophilicity and low aqueous solubility of presently pursued chemotypes reduces the probability of renal excretion. As such, these low microsomal turnover compounds are often substrates for non-CYP-mediated metabolism. UGTs, esterases, and aldehyde oxidase are major enzymes involved in catalyzing such metabolism. Hepatocytes provide an excellent tool to identify such pathways including elucidation of major metabolites. To predict human PK parameters for P450-mediated metabolism, in vitro-in vivo extrapolation using hepatic microsomes, hepatocytes, and intestinal microsomes has been actively investigated. However, such methods have not been sufficiently evaluated for non-P450 enzymes. In addition to the involvement of the liver, extrahepatic enzymes (intestine, kidney, lung) are also likely to contribute to these pathways. While there has been considerable progress in predicting metabolic pathways and clearance primarily mediated by the liver, progress in characterizing extrahepatic metabolism and prediction of clearance has been slow. Well-characterized in vitro systems or in vivo animal models to assess drug-drug interaction potential and intersubject variability due to polymorphism are not available. Here we focus on the utility of appropriate in vitro studies to characterize non-CYP-mediated metabolism and to understand the enzymes involved followed by pharmacokinetic studies in the appropriately characterized surrogate species. The review will highlight progress made in establishing in vitro-in vivo correlation, predicting human clearance and avoiding costly clinical failures when non-CYP-mediated metabolic pathways are predominant.
Collapse
Affiliation(s)
- Upendra A Argikar
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Inc., Cambridge, Massachusetts, USA
| | - Philip M Potter
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J Matthew Hutzler
- Q2 Solutions, Bioanalytical and ADME Labs, Indianapolis, Indiana, USA
| | - Punit H Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, New Jersey, USA.
| |
Collapse
|
83
|
Terao M, Barzago MM, Kurosaki M, Fratelli M, Bolis M, Borsotti A, Bigini P, Micotti E, Carli M, Invernizzi RW, Bagnati R, Passoni A, Pastorelli R, Brunelli L, Toschi I, Cesari V, Sanoh S, Garattini E. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity. Sci Rep 2016; 6:30343. [PMID: 27456060 PMCID: PMC4960552 DOI: 10.1038/srep30343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/30/2016] [Indexed: 02/03/2023] Open
Abstract
Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Andrea Borsotti
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Paolo Bigini
- Laboratory of Biochemistry and Protein Chemistry, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Edoardo Micotti
- Laboratory of Neurodegenerative diseases, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Mirjana Carli
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberto William Invernizzi
- Laboratory of Neurochemistry and Behaviour, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Renzo Bagnati
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Alice Passoni
- Analytical Instrumentation Unit, Department of Environmental Health Sciences, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences; IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences; Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Seigo Sanoh
- Graduate School of Biochemical and Health Sciences, Hiroshima University, Hiroshima Japan
| | - Enrico Garattini
- Laboratory of Molecular Biology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milano, Italy
| |
Collapse
|
84
|
Foti RS, Dalvie DK. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. ACTA ACUST UNITED AC 2016; 44:1229-45. [PMID: 27298339 DOI: 10.1124/dmd.116.071753] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| | - Deepak K Dalvie
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| |
Collapse
|
85
|
Fan PW, Zhang D, Halladay JS, Driscoll JP, Khojasteh SC. Going Beyond Common Drug Metabolizing Enzymes: Case Studies of Biotransformation Involving Aldehyde Oxidase, γ-Glutamyl Transpeptidase, Cathepsin B, Flavin-Containing Monooxygenase, and ADP-Ribosyltransferase. ACTA ACUST UNITED AC 2016; 44:1253-61. [PMID: 27117704 DOI: 10.1124/dmd.116.070169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
Abstract
The significant roles that cytochrome P450 (P450) and UDP-glucuronosyl transferase (UGT) enzymes play in drug discovery cannot be ignored, and these enzyme systems are commonly examined during drug optimization using liver microsomes or hepatocytes. At the same time, other drug-metabolizing enzymes have a role in the metabolism of drugs and can lead to challenges in drug optimization that could be mitigated if the contributions of these enzymes were better understood. We present examples (mostly from Genentech) of five different non-P450 and non-UGT enzymes that contribute to the metabolic clearance or bioactivation of drugs and drug candidates. Aldehyde oxidase mediates a unique amide hydrolysis of GDC-0834 (N-[3-[6-[4-[(2R)-1,4-dimethyl-3-oxopiperazin-2-yl]anilino]-4-methyl-5-oxopyrazin-2-yl]-2-methylphenyl]-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide), leading to high clearance of the drug. Likewise, the rodent-specific ribose conjugation by ADP-ribosyltransferase leads to high clearance of an interleukin-2-inducible T-cell kinase inhibitor. Metabolic reactions by flavin-containing monooxygenases (FMO) are easily mistaken for P450-mediated metabolism such as oxidative defluorination of 4-fluoro-N-methylaniline by FMO. Gamma-glutamyl transpeptidase is involved in the initial hydrolysis of glutathione metabolites, leading to formation of proximate toxins and nephrotoxicity, as is observed with cisplatin in the clinic, or renal toxicity, as is observed with efavirenz in rodents. Finally, cathepsin B is a lysosomal enzyme that is highly expressed in human tumors and has been targeted to release potent cytotoxins, as in the case of brentuximab vedotin. These examples of non-P450- and non-UGT-mediated metabolism show that a more complete understanding of drug metabolizing enzymes allows for better insight into the fate of drugs and improved design strategies of molecules in drug discovery.
Collapse
Affiliation(s)
- Peter W Fan
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - Jason S Halladay
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - James P Driscoll
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco (P.W.F., D.Z., S.C.K.); Anacor Pharmaceuticals, Inc., Palo Alto (J.S.H.); MyoKardia, Inc., South San Francisco (J.P.D.), California
| |
Collapse
|
86
|
Ferreira Antunes M, Eggimann FK, Kittelmann M, Lütz S, Hanlon SP, Wirz B, Bachler T, Winkler M. Human xanthine oxidase recombinant in E. coli: A whole cell catalyst for preparative drug metabolite synthesis. J Biotechnol 2016; 235:3-10. [PMID: 27021957 DOI: 10.1016/j.jbiotec.2016.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022]
Abstract
Human xanthine oxidoreductase (XOR), which is responsible for the final steps of the purine metabolism pathway and involved in oxidative drug metabolism, was successfully expressed in Escherichia coli BL21(DE3) Gold. Recombinant human (rh) XOR yielded higher productivity with the gene sequence optimized for expression in E.coli than with the native gene sequence. Induction of XOR expression with lactose or IPTG resulted in complete loss of activity whereas shake flasks cultures using media rather poor in nutrients resulted in functional XOR expression in the stationary phase. LB medium was used for a 25L fermentation in fed-batch mode, which led to a 5 fold increase of the enzyme productivity when compared to cultivation in shake flasks. Quinazoline was used as a substrate on the semi-preparative scale using an optimized whole cell biotransformation protocol, yielding 73mg of the isolated product, 4-quinazolinone, from 104mg of starting material.
Collapse
Affiliation(s)
- Márcia Ferreira Antunes
- Edifício da Unidade Piloto do IBET, Estação Agronómica Nacional, Avenida da República, 2780-157 Oeiras, Portugal
| | | | | | | | | | - Beat Wirz
- F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Thorsten Bachler
- acib GmbH c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Margit Winkler
- acib GmbH c/o Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| |
Collapse
|
87
|
Crouch RD, Morrison RD, Byers FW, Lindsley CW, Emmitte KA, Daniels JS. Evaluating the Disposition of a Mixed Aldehyde Oxidase/Cytochrome P450 Substrate in Rats with Attenuated P450 Activity. ACTA ACUST UNITED AC 2016; 44:1296-303. [PMID: 26936972 DOI: 10.1124/dmd.115.068338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/26/2016] [Indexed: 11/22/2022]
Abstract
Marketed drugs cleared by aldehyde oxidase (AO) are few, with no known clinically relevant pharmacokinetic drug interactions associated with AO inhibition, whereas cytochrome P450 (P450) inhibition or induction mediates a number of clinical drug interactions. Little attention has been given to the consequences of coadministering a P450 inhibitor with a compound metabolized by both AO and P450. Upon discovering that VU0409106 (1) was metabolized by AO (to M1) and P450 enzymes (to M4-M6), we sought to evaluate the in vivo disposition of 1 and its metabolites in rats with attenuated P450 activity. Male rats were orally pretreated with the pan-P450 inactivator, 1-aminobenzotriazole (ABT), before an i.p. dose of 1. Interestingly, the plasma area under the curve (AUC) of M1 was increased 15-fold in ABT-treated rats, indicating a metabolic shunt toward AO resulted from the drug interaction condition. The AUC of 1 also increased 7.8-fold. Accordingly, plasma clearance of 1 decreased from 53.5 to 15.3 ml/min per kilogram in ABT-pretreated rats receiving an i.v. dose of 1. Consistent with these data, M1 formation in hepatic S9 increased with NADPH-exclusion to eliminate P450 activity (50% over reactions containing NADPH). These studies reflect possible consequences of a drug interaction between P450 inhibitors and compounds cleared by both AO and P450 enzymes. Notably, increased exposure to an AO metabolite may hold clinical relevance for active metabolites or those mediating toxicity at elevated concentrations. The recent rise in clinical drug candidates metabolized by AO underscores the importance of these findings and the need for clinical studies to fully understand these risks.
Collapse
Affiliation(s)
- Rachel D Crouch
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Frank W Byers
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kyle A Emmitte
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery (R.D.C., R.D.M., F.W.B., C.W.L., K.A.E., J.S.D.), Departments of Pharmacology (R.D.C., C.W.L, K.A.E., J.S.D.) and Chemistry (C.W.L, K.A.E.), Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
88
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|
89
|
Foti A, Hartmann T, Coelho C, Santos-Silva T, Romao MJ, Leimkuhler S. Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms. Drug Metab Dispos 2016; 44:1277-85. [DOI: 10.1124/dmd.115.068395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 01/02/2023] Open
|
90
|
Siah M, Farzaei MH, Ashrafi-Kooshk MR, Adibi H, Arab SS, Rashidi MR, Khodarahmi R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study. Bioorg Chem 2016; 64:74-84. [DOI: 10.1016/j.bioorg.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023]
|
91
|
Isobe T, Ohta M, Kaneko Y, Kawai H. Species differences in metabolism of ripasudil (K-115) are attributed to aldehyde oxidase. Xenobiotica 2015; 46:579-590. [DOI: 10.3109/00498254.2015.1096981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
92
|
Muta K, Fukami T, Nakajima M. A proposed mechanism for the adverse effects of acebutolol: CES2 and CYP2C19-mediated metabolism and antinuclear antibody production. Biochem Pharmacol 2015; 98:659-70. [DOI: 10.1016/j.bcp.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/18/2015] [Indexed: 12/16/2022]
|
93
|
Geybels MS, Zhao S, Wong CJ, Bibikova M, Klotzle B, Wu M, Ostrander EA, Fan JB, Feng Z, Stanford JL. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate 2015; 75:1941-50. [PMID: 26383847 PMCID: PMC4928710 DOI: 10.1002/pros.23093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. METHODS The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. RESULTS In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. CONCLUSIONS This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets.
Collapse
Affiliation(s)
- Milan S. Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shanshan Zhao
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- National Institute of Environmental Health Sciences, Biostatistics & Computational Biology Branch, North Carolina
| | - Chao-Jen Wong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Michael Wu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | | | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
94
|
Sanoh S. [In Vitro and in Vivo Assessments of Drug-induced Hepatotoxicity and Drug Metabolism in Humans]. YAKUGAKU ZASSHI 2015; 135:1273-9. [PMID: 26521876 DOI: 10.1248/yakushi.15-00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug-induced hepatotoxicity is of concern in drug discovery and development. Reactive metabolites generated by drug metabolizing enzymes in the liver contribute to the induction of hepatotoxicity. Therefore, drug-induced hepatotoxicity, drug metabolism, and pharmacokinetics were evaluated in vitro and in vivo in this pre-clinical study. First, hepatotoxicity was tested in vitro using three-dimensional hepatocyte cultures. Hepatocyte spheroids formed in the three-dimensional culture systems maintain various liver functions such as the expression of drug metabolizing enzymes. High dose exposure to acetaminophen (APAP) induces hepatotoxicity because of the formation of reactive metabolites by CYP. Using fluorescence imaging, we observed that cell viability and glutathione levels were reduced in hepatocyte spheroids exposed to APAP mediated by the metabolic activation of CYP. On the other hand, there are species differences in the expression of drug metabolizing enzymes and metabolite profiles between animals and humans. Therefore, chimeric mice transfected with human hepatocytes were used for the in vivo assessment of metabolic profiles in humans. We found that drug metabolism and pharmacokinetics mediated by CYP and non-CYP enzymes, such as UDP-glucuronosyltransferase and aldehyde oxidase, in chimeric mice with humanized liver were similar to those in humans. The combination of in vitro and in vivo assessments using spheroids and chimeric mice with humanized liver, respectively, during the screening of drug candidates may help to reveal hepatotoxicity induced by the formation of metabolites.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima Univeristy
| |
Collapse
|
95
|
Kamimura H, Ito S. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound. Xenobiotica 2015; 46:557-69. [DOI: 10.3109/00498254.2015.1091113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
96
|
Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 2015; 11:779-83. [DOI: 10.1038/nchembio.1895] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
|
97
|
Herter S, McKenna SM, Frazer AR, Leimkühler S, Carnell AJ, Turner NJ. Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis. ChemCatChem 2015. [DOI: 10.1002/cctc.201500218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
98
|
Interspecies differences in the metabolism of methotrexate: An insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 2015; 96:288-95. [PMID: 26032640 DOI: 10.1016/j.bcp.2015.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
Several drug compounds have failed in clinical trials due to extensive biotransformation by aldehyde oxidase (AOX) (EC 1.2.3.1). One of the main reasons is the difficulty in scaling clearance for drugs metabolised by AOX, from preclinical species to human. Using methotrexate as a probe substrate, we evaluated AOX metabolism in liver cytosol from human and commonly used laboratory species namely guinea pig, monkey, rat and rabbit. We found that the metabolism of methotrexate in rabbit liver cytosol was several orders of magnitude higher than any of the other species tested. The results of protein quantitation revealed that the amount of AOX1 in human liver was similar to rabbit liver. To understand if the observed differences in activity were due to structural differences, we modelled rabbit AOX1 using the previously generated human AOX1 homology model. Molecular docking of methotrexate into the active site of the enzyme led to the identification of important residues that could potentially be involved in substrate binding and account for the observed differences. In order to study the impact of these residue changes on enzyme activity, we used site directed mutagenesis to construct mutant AOX1 cDNAs by substituting nucleotides of human AOX1 with relevant ones of rabbit AOX1. AOX1 mutant proteins were expressed in Escherichia coli. Differences in the kinetic properties of these mutants have been presented in this study.
Collapse
|
99
|
Jin F, Robeson M, Zhou H, Hisoire G, Ramanathan S. The pharmacokinetics and safety of idelalisib in subjects with moderate or severe hepatic impairment. J Clin Pharmacol 2015; 55:944-52. [PMID: 25821156 DOI: 10.1002/jcph.504] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022]
Abstract
Idelalisib, a phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitor, is metabolized primarily by aldehyde oxidase to form GS-563117, an inactive metabolite, and is metabolized to a lesser extent by cytochrome P450 3A and uridine 5'-diphospho-glucuronosyltransferase 1A4. In a mass balance study, the orally administered idelalisib dose was recovered mainly in feces (∼78%). This study evaluated the pharmacokinetics and safety of a single 150-mg dose of idelalisib in subjects with moderate or severe hepatic impairment and in age-, sex-, and weight-matched, healthy controls. The idelalisib maximum observed plasma concentration was generally comparable in subjects with moderate or severe hepatic impairment versus healthy controls, whereas the mean area under the curve was higher (58% to 59%). GS-563117 exposures were lower in impaired versus healthy control subjects, likely because of lower formation in the setting of liver impairment. Exploratory analyses indicated no relevant relationships between idelalisib or GS-563117 plasma exposures and Child-Pugh-Turcotte scores. Single oral doses of idelalisib 150 mg were well tolerated, with most treatment-emergent adverse events (AEs) and laboratory abnormalities being grades 1 or 2 in severity. As such, no dose adjustment was required when initiating idelalisib treatment in patients with mild or moderate hepatic impairment, although close monitoring for potential AEs is recommended.
Collapse
Affiliation(s)
- Feng Jin
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | |
Collapse
|
100
|
Affiliation(s)
- Deepak Dalvie
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| | - Michael Zientek
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| |
Collapse
|