51
|
Tavakol S, Modarres Mousavi SM, Massumi M, Amani A, Rezayat SM, Ai J. The effect of Noggin supplementation in Matrigel nanofiber-based cell culture system for derivation of neural-like cells from human endometrial-derived stromal cells. J Biomed Mater Res A 2014; 103:1-7. [PMID: 24408884 DOI: 10.1002/jbm.a.35079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2013] [Revised: 11/06/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
Abstract
A very important obstacle in axonal regeneration after spinal cord injury is astroglial scaring. Noggin as bone morphogenic protein inhibitor plays a critical role in decreasing GFAP(+) cells and reducing the number of astrocytes in the site of injury. Human endometrial-derived stromal cells (hEnSCs) were isolated and cultured in two different neural inductive mediums consisting of neural progenitor maintenance medium (NPMM)/BDNF or NPMM/BDNF/Noggin in Matrigel 3D cell culture. Neural expression markers were investigated at the mRNA and protein level by real-time PCR and immunocytochemistry, respectively. The results showed that Noggin supplementation was able to increase the expression of Nestin, Tuj-1, and NF, whereas the expressions of GFAP, Bcl2, and Olig2 were decreased. In addition, DAPI staining demonstrated that lighter blue chromatin agreed with our observation of lower level of Bcl2 expression in the Noggin protocol in which over-expression of Bcl2 gene did not induce higher neurogenesis in poor Noggin medium. Our findings clearly demonstrated the neural differentiation potential of hEnSC in Matrigel and also Noggin supplementation was able to inhibit astrocyte formation.
Collapse
Affiliation(s)
- Shima Tavakol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
52
|
Treatment with thyroxine restores myelination and clinical recovery after intraventricular hemorrhage. J Neurosci 2013; 33:17232-46. [PMID: 24174657 DOI: 10.1523/jneurosci.2713-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Intraventricular hemorrhage (IVH) remains a major cause of white matter injury in preterm infants with no viable therapeutic strategy to restore myelination. Maturation of oligodendrocytes and myelination is influenced by thyroid hormone (TH) signaling, which is mediated by TH receptor α (TRα) and TRβ. In the brain, cellular levels of TH are regulated by deiodinases, with deiodinase-2 mediating TH activation and deiodinase-3 TH inactivation. Therefore, we hypothesized that IVH would decrease TH signaling via changes in the expression of deiodinases and/or TRs, and normalization of TH signaling would enhance maturation of oligodendrocytes and myelination in preterm infants with IVH. These hypotheses were tested using both autopsy materials from human preterm infants and a rabbit model of IVH. We found that deiodinase-2 levels were reduced, whereas deiodinase-3 levels were increased in brain samples of both humans and rabbits with IVH compared with controls without IVH. TRα expression was also increased in human infants with IVH. Importantly, treatment with TH accelerated the proliferation and maturation of oligodendrocytes, increased transcription of Olig2 and Sox10 genes, augmented myelination, and restored neurological function in pups with IVH. Consistent with these findings, the density of myelinating oligodendrocytes was almost doubled in TH-treated human preterm infants compared with controls. Thus, in infants with IVH the combined elevation in deiodinase-3 and reduction in deiodinase-2 decreases TH signaling that can be worsened by an increase in unliganded TRα. Given that TH promotes neurological recovery in IVH, TH treatment might improve the neurodevelopmental outcome of preterm infants with IVH.
Collapse
|
53
|
Strahle J, Garton HJL, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 2013; 3:25-38. [PMID: 23976902 DOI: 10.1007/s12975-012-0182-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Intraventricular hemorrhage (IVH) is a cause of significant morbidity and mortality and is an independent predictor of a worse outcome in intracerebral hemorrhage (ICH) and germinal matrix hemorrhage (GMH). IVH may result in both injuries to the brain as well as hydrocephalus. This paper reviews evidence on the mechanisms and potential treatments for IVH-induced hydrocephalus. One frequently cited theory to explain hydrocephalus after IVH involves obliteration of the arachnoid villi by microthrombi with subsequent inflammation and fibrosis causing CSF outflow obstruction. Although there is some evidence to support this theory, there may be other mechanisms involved, which contribute to the development of hydrocephalus. It is also unclear whether the causes of acute and chronic hydrocephalus after hemorrhage occur via different mechanisms; mechanical obstruction by blood in the former, and inflammation and fibrosis in the latter. Management of IVH and strategies for prevention of brain injury and hydrocephalus are areas requiring further study. A better understanding of the pathogenesis of hydrocephalus after IVH, may lead to improved strategies to prevent and treat post-hemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed.
Collapse
Affiliation(s)
- Bindu Balakrishnan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University; Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
55
|
Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair. PLoS One 2013; 8:e63415. [PMID: 23650566 PMCID: PMC3641124 DOI: 10.1371/journal.pone.0063415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2012] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs) are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs) in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1) promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin alone.
Collapse
|
56
|
Vinukonda G, Zia MT, Bhimavarapu BBR, Hu F, Feinberg M, Bokhari A, Ungvari Z, Fried VA, Ballabh P. Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery. Exp Neurol 2013; 247:630-44. [PMID: 23474192 DOI: 10.1016/j.expneurol.2013.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 12/12/2022]
Abstract
Intraventricular hemorrhage (IVH) results in white matter injury and hydrocephalus in premature infants. Chondroitin sulfate proteoglycans (CSPGs)-neuorcan, brevican, versican, aggrecan and phosphacan-are unregulated in the extracellular matrix after brain injury, and their degradation enhances plasticity of the brain. Therefore, we hypothesized that CSPG levels were elevated in the forebrain of premature infants with IVH and that in vivo degradation of CSPGs would enhance maturation of oligodendrocyte, augment myelination, promote neurological recovery, and minimize hydrocephalus. We found that levels of neurocan, brevican, aggrecan, phosphacan, and versican were elevated, whereas NG2 expression was reduced in premature rabbit pups and human infants with IVH compared to controls. Intracerebroventricular chondroitinase ABC (ChABC) reduced the expression of neuorcan, brevican, versican and aggrecan, but not NG2. However, ChABC treatment did not enhance maturation of oligodendrocytes, myelination, or neurological recovery in the pups with IVH. Moreover, ChABC did not reduce gliosis or ventriculomegaly. Our results demonstrate that IVH induces distinct changes in the components of CSPGs, and that reversing these changes by in vivo ChABC treatment neither promotes clinical recovery, myelination, nor reduces ventriculomegaly in preterm rabbit pups.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, George NI, Chen JJ. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics 2013; 14:147. [PMID: 23497014 PMCID: PMC3602116 DOI: 10.1186/1471-2164-14-147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2012] [Accepted: 02/21/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. RESULTS Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood-brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). CONCLUSIONS Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes may not be as pronounced as they are in the MAV, particularly for AMPH. Expression profiles in the MAV and choroid plexus differed to some extent and differences were not restricted to vascular related genes.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, U,S, Food and Drug Administration, Jefferson, AR 72079-9502, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013; 6:70. [PMID: 23346046 PMCID: PMC3548228 DOI: 10.3389/fncel.2012.00070] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 01/17/2023] Open
Abstract
Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation.
Collapse
Affiliation(s)
- Kimberly J Christie
- Neural Regeneration Laboratory, Department of Anatomy and Neuroscience, Centre for Neuroscience Research, The University of Melbourne Parkville, VIC, Australia
| | | |
Collapse
|
59
|
Sabo JK, Cate HS. Signalling pathways that inhibit the capacity of precursor cells for myelin repair. Int J Mol Sci 2013; 14:1031-49. [PMID: 23296277 PMCID: PMC3565305 DOI: 10.3390/ijms14011031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 12/17/2022] Open
Abstract
In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Centre for Neuroscience Research, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne Brain Centre, Kenneth Myer Building, 30 Royal Parade, Parkville, Vic 3010, Australia.
| | | |
Collapse
|
60
|
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 2013; 44:497-504. [PMID: 23287782 DOI: 10.1161/strokeaha.112.679092] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Severe intraventricular hemorrhage (IVH) in premature infants and the ensuing posthemorrhagic hydrocephalus cause significant mortality and neurological disabilities, and there are currently no effective therapies. This study determined whether intraventricular transplantation of human umbilical cord blood-derived mesenchymal stem cells prevents posthemorrhagic hydrocephalus development and attenuates brain damage after severe IVH in newborn rats. METHODS To induce severe IVH, 100 μL of blood was injected into each lateral ventricle of postnatal day 4 (P4) Sprague-Dawley rats. Human umbilical cord blood-derived mesenchymal stem cells or fibroblasts (1 × 10(5)) were transplanted intraventricularly under stereotaxic guidance at P6. Serial brain MRI and behavioral function tests, such as the negative geotaxis test and rotarod test, were performed. At P32, brain tissue and cerebrospinal fluid were obtained for histological and biochemical analyses. RESULTS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells, but not fibroblasts, prevented posthemorrhagic hydrocephalus development and significantly attenuated impairment on behavioral tests; the increased terminal deoxynycleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling-positive cells; increased expression of inflammatory cytokines, such as interleukin-1α, interleukin-1β, interleukin-6, and tumor necrosis factor-α; increased astrogliosis; and reduced corpus callosal thickness and myelin basic protein expression after inducing severe IVH. CONCLUSIONS Intraventricular transplantation of umbilical cord blood-derived mesenchymal stem cells significantly attenuated the posthemorrhagic hydrocephalus and brain injury after IVH. This neuroprotective mechanism appears to be mediated by the anti-inflammatory effects of these cells.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul 135-710, Korea
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Delayed myelination in an intrauterine growth retardation model is mediated by oxidative stress upregulating bone morphogenetic protein 4. J Neuropathol Exp Neurol 2012; 71:640-53. [PMID: 22710965 DOI: 10.1097/nen.0b013e31825cfa81] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Intrauterine growth retardation (IUGR) is associated with neurological deficits including cerebral palsy and cognitive and behavioral disabilities. The pathogenesis involves oxidative stress that leads to periventricular white matter injury with a paucity of mature oligodendrocytes and hypomyelination. The molecular mechanisms underlying this damage remain poorly understood. We used a rat model of IUGR created by bilateral ligation of the uterine artery at embryonic Day 19 that results in fetal growth retardation and oxidative stress in the developing brain. The IUGR rat pups showed significant delays in oligodendrocyte differentiation and myelination that resolved by 8 weeks. Bone morphogenetic protein 4 (BMP4), which inhibits oligodendrocyte maturation, was elevated in IUGR brains at postnatal time points and returned to near normal by adulthood. Despite the apparent recovery, behavioral deficiencies were found in 8-week-old female animals, suggesting that the early transient myelination defects have permanent effects. In support of these in vivo data, oligodendrocyte precursor cells cultured from postnatal IUGR rats retained increased BMP4 expression and impaired differentiation that was reversed with the BMP inhibitor noggin. Oxidants in oligodendrocyte cultures increased BMP expression, which decreased differentiation; however, abrogating BMP signaling with noggin in vitro and in BMP-deficient mice prevented these effects. Together, these findings suggest that IUGR results in delayed myelination through the generation of oxidative stress that leads to BMP4 upregulation.
Collapse
|
62
|
Conidi A, Cazzola S, Beets K, Coddens K, Collart C, Cornelis F, Cox L, Joke D, Dobreva MP, Dries R, Esguerra C, Francis A, Ibrahimi A, Kroes R, Lesage F, Maas E, Moya I, Pereira PNG, Stappers E, Stryjewska A, van den Berghe V, Vermeire L, Verstappen G, Seuntjens E, Umans L, Zwijsen A, Huylebroeck D. Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGFβ/BMP signaling in vivo. Cytokine Growth Factor Rev 2011; 22:287-300. [PMID: 22119658 DOI: 10.1016/j.cytogfr.2011.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
Collapse
Affiliation(s)
- Andrea Conidi
- Laboratory of Molecular Biology (Celgen) of Center for Human Genetics, University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|