51
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
52
|
Ivanova E, Kovacs-Oller T, Sagdullaev BT. Domain-specific distribution of gap junctions defines cellular coupling to establish a vascular relay in the retina. J Comp Neurol 2019; 527:2675-2693. [PMID: 30950036 PMCID: PMC6721971 DOI: 10.1002/cne.24699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
In the retina, diverse functions of neuronal gap junctions (GJs) have been established. However, the distribution and function of vascular GJs are less clear. Here in the mouse retina whole mounts, we combined structural immunohistochemical analysis and a functional assessment of cellular coupling with a GJ-permeable tracer Neurobiotin to determine distribution patterns of three major vascular connexins. We found that Cx43 was expressed in punctate fashion on astroglia, surrounding all types of blood vessels and in continuous string-like structures along endothelial cell contacts in specialized regions of the vascular tree. Specifically, these Cx43-positive strings originated at the finest capillaries and extended toward the feeding artery. As this structural arrangement promoted strong and exclusive coupling of pericytes and endothelial cells along the corresponding branch, we termed this region a "vascular relay." Cx40 expression was found predominantly along the endothelial cell contacts of the primary arteries and did not overlap with Cx43-positive strings. At their occupied territories, Cx43 and Cx40 clustered with tight junctions and, to a lesser extent, with adhesion contacts, both key elements of the blood-retina barrier. Finally, Cx37 puncta were associated with the entire surface of both mural and endothelial cells across all regions of the vascular tree. This combinatorial analysis of vascular connexins and identification of the vascular relay region will serve as a structural foundation for future studies of neurovascular signaling in health and disease.
Collapse
Affiliation(s)
- Elena Ivanova
- Burke Neurological Institute, Department of Ophthalmology, Weill Cornell Medicine, White Plains, New York
| | - Tamas Kovacs-Oller
- Burke Neurological Institute, Department of Ophthalmology, Weill Cornell Medicine, White Plains, New York
| | - Botir T Sagdullaev
- Burke Neurological Institute, Department of Ophthalmology, Weill Cornell Medicine, White Plains, New York
| |
Collapse
|
53
|
Role of Pericytes in the Initiation and Propagation of Spontaneous Activity in the Microvasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:329-356. [PMID: 31183834 DOI: 10.1007/978-981-13-5895-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microvasculature is composed of arterioles, capillaries and venules. Spontaneous arteriolar constrictions reduce effective vascular resistance to enhance tissue perfusion, while spontaneous venular constrictions facilitate the drainage of tissue metabolites by pumping blood. In the venules of visceral organs, mural cells, i.e. smooth muscle cells (SMCs) or pericytes, periodically generate spontaneous phasic constrictions, Ca2+ transients and transient depolarisations. These events arise from spontaneous Ca2+ release from the sarco-endoplasmic reticulum (SR/ER) and the subsequent opening of Ca2+-activated chloride channels (CaCCs). CaCC-dependent depolarisation further activates L-type voltage-dependent Ca2+ channels (LVDCCs) that play a critical role in maintaining the synchrony amongst mural cells. Mural cells in arterioles or capillaries are also capable of developing spontaneous activity. Non-contractile capillary pericytes generate spontaneous Ca2+ transients primarily relying on SR/ER Ca2+ release. Synchrony amongst capillary pericytes depends on gap junction-mediated spread of depolarisations resulting from the opening of either CaCCs or T-type VDCCs (TVDCCs) in a microvascular bed-dependent manner. The propagation of capillary Ca2+ transients into arterioles requires the opening of either L- or TVDCCs again depending on the microvascular bed. Since the blockade of gap junctions or CaCCs prevents spontaneous Ca2+ transients in arterioles and venules but not capillaries, capillary pericytes appear to play a primary role in generating spontaneous activity of the microvasculature unit. Pericytes in capillaries where the interchange of substances between tissues and the circulation takes place may provide the fundamental drive for upstream arterioles and downstream venules so that the microvasculature network functions as an integrated unit.
Collapse
|
54
|
Abstract
Microcirculation is the generic name for the finest level of the circulatory system and consists of arteriolar and venular networks located upstream and downstream of capillaries, respectively. Anatomically arterioles are surrounded by a monolayer of spindle-shaped smooth muscle cells (myocytes), while terminal branches of precapillary arterioles, capillaries and all sections of postcapillary venules are surrounded by a monolayer of morphologically different perivascular cells (pericytes). Pericytes are essential components of the microvascular vessel wall. Wrapped around endothelial cells, they occupy a strategic position at the interface between the circulating blood and the interstitial space. There are physiological differences in the responses of pericytes and myocytes to vasoactive molecules, which suggest that these two types of vascular cells could have different functional roles in the regulation of local blood flow within the same microvascular bed. Also, pericytes may play different roles in different microcirculatory beds to meet the characteristics of individual organs. Contractile activity of pericytes and myocytes is controlled by changes of cytosolic free Ca2+concentration. In this chapter, we attempt to summarize the results in the field of Ca2+ signalling in pericytes especially in light of their contractile roles in different tissues and organs. We investigate the literature and describe our results regarding sources of Ca2+, relative importance and mechanisms of Ca2+ release and Ca2+ entry in control of the spatio-temporal characteristics of the Ca2+ signals in pericytes, where possible Ca2+ signalling and contractile responses in pericytes are compared to those of myocytes.
Collapse
|
55
|
Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy. Eye (Lond) 2019; 34:307-311. [PMID: 31273312 DOI: 10.1038/s41433-019-0513-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Abstract
AIM Previous data suggest the existence of retinal vascular changes and impaired autoregulation in the very early stages of diabetic retinopathy (DR). We compared the retinal plexuses between patients with type 1 diabetes (T1D) without DR and a demographically similar healthy cohort, using optical coherence tomography angiography (OCT-A). METHODS Patients with T1D and no signs of DR were prospectively recruited from an outpatient clinic. Using OCT-A (AngioVue®), the parafoveal superficial (SCP) and deep (DPC) capillary plexus as well as the foveal avascular zone (FAZ) and perimeter were gathered. Mean comparison tests and linear regression analysis were used as statistical tests (STATA v14). RESULTS Studied population included 48 subjects (24 T1D). The analysis of SCP revealed an attenuation of the capillary network compared with the control group in both parafoveal (51.8 ± 4.5 vs. 55.8 ± 3.2, p < 0.001) and perifoveal (51.9 ± 3.3 vs. 53.9 ± 1.9, p = 0.01) regions. A similar finding was observed in the DCP for both parafoveal (56.4 ± 4.3 vs. 60.4 ± 2.2, p < 0.001) and perifoveal (54.7 ± 3.9 vs. 60.8 ± 3.4, p = 0.001) sectors. Also, a longer time since T1D diagnosis was associated with a larger FAZ area (p = 0.055) and perimeter (p = 0.03). CONCLUSIONS Significant differences in the retinal microvasculature were observed between healthy subjects and T1D patients using OCT-A, even before clinically detectable disease on fundus biomicroscopy.
Collapse
|
56
|
Reeves C, Pradim-Jardim A, Sisodiya SM, Thom M, Liu JYW. Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults. Neuropathol Appl Neurobiol 2019; 45:609-627. [PMID: 30636077 PMCID: PMC6767497 DOI: 10.1111/nan.12539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022]
Abstract
Aims Understanding the spatiotemporal dynamics of reactive cell types following brain injury is important for future therapeutic interventions. We have previously used penetrating cortical injuries following intracranial recordings as a brain repair model to study scar‐forming nestin‐expressing cells. We now explore the relationship between nestin‐expressing cells, PDGFRβ+ pericytes and Olig2+ glia, including their proliferation and functional maturation. Methods In 32 cases, ranging from 3 to 461 days post injury (dpi), immunohistochemistry for PDGFRβ, nestin, GFAP, Olig2, MCM2, Aquaporin 4 (Aq4), Glutamine Synthetase (GS) and Connexin 43 (Cx43) was quantified for cell densities, labelling index (LI) and cellular co‐expression at the injury site compared to control regions. Results PDGFRβ labelling highlighted both pericytes and multipolar parenchymal cells. PDGFRβ LI and PDGFRβ+/MCM2+ cells significantly increased in injury Zones at 10–13 dpi with migration of pericytes away from vessels with increased co‐localization of PDGRFβ with nestin compared to control regions (P < 0.005). Olig2+/MCM2+ cell populations peaked at 13 dpi with significantly higher cell densities at injury sites than in control regions (P < 0.01) and decreasing with dpi (P < 0.05). Cx43 LI was reduced in acute injuries but increased with dpi (P < 0.05) showing significant cellular co‐localization with nestin and GFAP (P < 0.005 and P < 0.0001) but not PDGFRβ. Conclusions These findings indicate that PDGFRβ+ and Olig2+ cells contribute to the proliferative fraction following penetrating brain injuries, with evidence of pericyte migration. Dynamic changes in Cx43 in glial cell types with dpi suggest functional alterations during temporal stages of brain repair.
Collapse
Affiliation(s)
- C Reeves
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - A Pradim-Jardim
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, UNIFESP, Sao Paulo/SP, Brazil
| | - S M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Chalfont Centre for Epilepsy, Chesham Lane, Chalfont St Peter, Bucks, SL9 0RJ, UK
| | - M Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London
| | - J Y W Liu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, London.,Department of Neuropathology, UCL Queen Square Institute of Neurology, Queen Square, London.,School of life Sciences, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
57
|
Berthiaume AA, Grant RI, McDowell KP, Underly RG, Hartmann DA, Levy M, Bhat NR, Shih AY. Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain. Cell Rep 2019; 22:8-16. [PMID: 29298435 DOI: 10.1016/j.celrep.2017.12.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022] Open
Abstract
Direct contact and communication between pericytes and endothelial cells is critical for maintenance of cerebrovascular stability and blood-brain barrier function. Capillary pericytes have thin processes that reach hundreds of micrometers along the capillary bed. The processes of adjacent pericytes come in close proximity but do not overlap, yielding a cellular chain with discrete territories occupied by individual pericytes. Little is known about whether this pericyte chain is structurally dynamic in the adult brain. Using in vivo two-photon imaging in adult mouse cortex, we show that while pericyte somata were immobile, the tips of their processes underwent extensions and/or retractions over days. The selective ablation of single pericytes provoked exuberant extension of processes from neighboring pericytes to contact uncovered regions of the endothelium. Uncovered capillary regions had normal barrier function but were dilated until pericyte contact was regained. Pericyte structural plasticity may be critical for cerebrovascular health and warrants detailed investigation.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Konnor P McDowell
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Robert G Underly
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David A Hartmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Manuel Levy
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Narayan R Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
58
|
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal 2019; 17:26. [PMID: 30894190 PMCID: PMC6425710 DOI: 10.1186/s12964-019-0340-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pericytes, as a key cellular part of the blood-brain barrier, play an important role in the maintenance of brain neurovascular unit. These cells participate in brain homeostasis by regulating vascular development and integrity mainly through secreting various factors. Pericytes per se show different restorative properties after blood-brain barrier injury. Upon the occurrence of brain acute and chronic diseases, pericytes provoke immune cells to regulate neuro-inflammatory conditions. Loss of pericytes in distinct neurologic disorders intensifies blood-brain barrier permeability and leads to vascular dementia. The therapeutic potential of pericytes is originated from the unique morphological shape, location, and their ability in providing vast paracrine and juxtacrine interactions. A subset of pericytes possesses multipotentiality and exhibit trans-differentiation capacity in the context of damaged tissue. This review article aimed to highlight the critical role of pericytes in restoration of the blood-brain barrier after injury by focusing on the dynamics of pericytes and cross-talk with other cell types.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran.
| |
Collapse
|
59
|
Ivanova E, Alam NM, Prusky GT, Sagdullaev BT. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight 2019; 5:126747. [PMID: 30888334 PMCID: PMC6538333 DOI: 10.1172/jci.insight.126747] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Changes in neuronal activity alter blood flow to match energy demand with the supply of oxygen and nutrients. This functional hyperemia is maintained by interactions between neurons, vascular cells, and glia. However, how changing neuronal activity prevalent at the onset of neurodegenerative disease affects neurovascular elements is unclear. Here, in mice with photoreceptor degeneration, a model of neuron-specific dysfunction, we combined assessment of visual function, neurovascular unit structure, and the blood-retina barrier permeability. We found that the rod loss paralleled remodeling of the neurovascular unit, comprised of photoreceptors, retinal pigment epithelium, and Muller glia. When significant visual function was still present, blood flow became disrupted and blood-retina barrier began to fail, facilitating cone loss and vision decline. Thus, in contrast to the established view, vascular deficit in neuronal degeneration is not a late consequence of neuronal dysfunction, but is present early in the course of disease. These findings further establish the importance of vascular deficit and blood retina barrier function in neuron-specific loss, and highlight it as a target for early therapeutic intervention.
Collapse
|
60
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
61
|
Prager O, Kamintsky L, Hasam‐Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar‐Klein G, Vazana U, Heinemann U, Friedman A, Kovács R. Seizure‐induced microvascular injury is associated with impaired neurovascular coupling and blood–brain barrier dysfunction. Epilepsia 2019; 60:322-336. [DOI: 10.1111/epi.14631] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ofer Prager
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Lyna Kamintsky
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Luisa A. Hasam‐Henderson
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl Schoknecht
- Neuroscience Research Center Charité—Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Vera Wuntke
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Ismini Papageorgiou
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Jutta Swolinsky
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Valeria Muoio
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Guy Bar‐Klein
- McKusick‐Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland
- Howard Hughes Medical Institute Chevy Chase Maryland
| | - Udi Vazana
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | | | - Alon Friedman
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Richard Kovács
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
62
|
Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis. Front Aging Neurosci 2018; 10:210. [PMID: 30065645 PMCID: PMC6057109 DOI: 10.3389/fnagi.2018.00210] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The biology of brain microvascular pericytes is an active area of research and discovery, as their interaction with the endothelium is critical for multiple aspects of cerebrovascular function. There is growing evidence that pericyte loss or dysfunction is involved in the pathogenesis of Alzheimer’s disease, vascular dementia, ischemic stroke and brain injury. However, strategies to mitigate or compensate for this loss remain limited. In this review, we highlight a novel finding that pericytes in the adult brain are structurally dynamic in vivo, and actively compensate for loss of endothelial coverage by extending their far-reaching processes to maintain contact with regions of exposed endothelium. Structural remodeling of pericytes may present an opportunity to foster pericyte-endothelial communication in the adult brain and should be explored as a potential means to counteract pericyte loss in dementia and cerebrovascular disease. We discuss the pathophysiological consequences of pericyte loss on capillary function, and the biochemical pathways that may control pericyte remodeling. We also offer guidance for observing pericytes in vivo, such that pericyte structural remodeling can be more broadly studied in mouse models of cerebrovascular disease.
Collapse
Affiliation(s)
- Andrée-Anne Berthiaume
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - David A Hartmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Mark W Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, United States
| | - Narayan R Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, United States.,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
63
|
Hashitani H, Mitsui R, Miwa-Nishimura K, Lam M. Role of capillary pericytes in the integration of spontaneous Ca 2+ transients in the suburothelial microvasculature in situ of the mouse bladder. J Physiol 2018; 596:3531-3552. [PMID: 29873405 DOI: 10.1113/jp275845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS In the bladder suburothelial microvasculature, pericytes in different microvascular segments develop spontaneous Ca2+ transients with or without associated constrictions. Spontaneous Ca2+ transients in pericytes of all microvascular segments primarily rely on the cycles of Ca2+ uptake and release by the sarco- and endoplasmic reticulum. The synchrony of spontaneous Ca2+ transients in capillary pericytes exclusively relies on the spread of depolarizations resulting from the opening of Ca2+ -activated chloride channels (CaCCs) via gap junctions. CaCC-dependent depolarizations further activate L-type voltage-dependent Ca2+ channels as required for the synchrony of Ca2+ transients in pericytes of pre-capillary arterioles, post-capillary venules and venules. Capillary pericytes may drive spontaneous Ca2+ transients in pericytes within the suburothelial microvascular network by sending CaCC-dependent depolarizations via gap junctions. ABSTRACT Mural cells in the microvasculature of visceral organs develop spontaneous Ca2+ transients. However, the mechanisms underlying the integration of these Ca2+ transients within a microvascular unit remain to be clarified. In the present study, the origin of spontaneous Ca2+ transients and their propagation in the bladder suburothelial microvasculature were explored. Cal-520 fluorescence Ca2+ imaging and immunohistochemistry were carried out on mural cells using mice expressing red fluorescent protein (DsRed) under control of the NG2 promotor. NG2(+) pericytes in both pre-capillary arterioles (PCAs) and capillaries developed synchronous spontaneous Ca2+ transients. By contrast, although NG2-DsRed also labelled arteriolar smooth muscle cells, these cells remained quiescent. Both NG2(+) pericytes in post-capillary venules (PCVs) and NG2(-) venular pericytes exhibited propagated Ca2+ transients. L-type voltage-dependent Ca2+ channel (LVDCC) blockade with nifedipine prevented Ca2+ transients or disrupted their synchrony in PCA, PCV and venular pericytes without dis-synchronizing Ca2+ transients in capillary pericytes. Blockade of gap junctions with carbenoxolone or Ca2+ -activated chloride channels (CaCCs) with 4,4'-diisothiocyanato-2,2'-stilbenedisulphonic acid disodium salt prevented Ca2+ transients in PCA and venular pericytes and disrupted the synchrony of Ca2+ transients in capillary and PCV pericytes. Spontaneous Ca2+ transients in pericytes of all microvascular segments were abolished or suppressed by cyclopiazonic acid, caffeine or tetracaine. The synchrony of Ca2+ transients in capillary pericytes arising from spontaneous Ca2+ release from the sarco- and endoplasmic reticulum appears to rely exclusively on CaCC activation, whereas subsequent LVDCC activation is required for the synchrony of Ca2+ transients in pericytes of other microvascular segments. Capillary pericytes may drive spontaneous activity in the suburothelial microvascular unit to facilitate capillary perfusion.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Miwa-Nishimura
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Michelle Lam
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
64
|
Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System. Int J Mol Sci 2018; 19:ijms19041159. [PMID: 29641478 PMCID: PMC5979343 DOI: 10.3390/ijms19041159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs) and hemichannels (HCs) which are composed of hexamer of connexin43 (Cx43) protein. In particular, we discuss how GJ intercellular communication (GJIC) in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC activities.
Collapse
|