51
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
52
|
Dye CA, El Shawa H, Huffman KJ. A lifespan analysis of intraneocortical connections and gene expression in the mouse I. ACTA ACUST UNITED AC 2010; 21:1311-30. [PMID: 21060110 DOI: 10.1093/cercor/bhq212] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A hallmark of mammalian evolution is the structural and functional complexity of the cerebral cortex. Within the cerebral cortex, the neocortex, or isocortex, is a 6-layered complexly organized structure that is comprised of multiple interconnected sensory and motor areas. These areas and their precise patterns of connections arise during development, through a process termed arealization. Intrinsic, activity-independent and extrinsic, activity-dependent mechanisms are involved in the development of neocortical areas and their connections. The intrinsic molecular mechanisms involved in the establishment of this sophisticated network are not fully understood. In this report (I) and the companion report (II), we present the first lifespan analysis of ipsilateral intraneocortical connections (INCs) among multiple sensory and motor regions, from the embryonic period to adulthood in the mouse. Additionally, we characterize the neocortical expression patterns of several developmentally regulated genes that are of central importance to studies investigating the molecular control of arealization from embryonic day 13.5 to postnatal day (P) 3 (I) and P6 to 50 (II). In this analysis, we utilize novel methods to correlate the boundaries of gene expression with INCs and developing areal boundaries, in order to better understand the nature of gene-areal relationships during development.
Collapse
Affiliation(s)
- Catherine A Dye
- Department of Psychology and Interdepartmental Neuroscience Program, University of California-Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | |
Collapse
|
53
|
Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA. FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 2010; 137:3439-48. [PMID: 20843859 DOI: 10.1242/dev.055392] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gain- and loss-of-function experiments have demonstrated that a source of fibroblast growth factor (FGF) 8 regulates anterior to posterior (A/P) patterning in the neocortical area map. Whether FGF8 controls patterning as a classic diffusible morphogen has not been directly tested. We report evidence that FGF8 diffuses through the mouse neocortical primordium from a discrete source in the anterior telencephalon, forms a protein gradient across the entire A/P extent of the primordium, and acts directly at a distance from its source to determine area identity. FGF8 immunofluorescence revealed FGF8 protein distributed in an A/P gradient. Fate-mapping experiments showed that outside the most anterior telencephalon, neocortical progenitor cells did not express Fgf8, nor were they derived from Fgf8-expressing cells, suggesting that graded distribution of FGF8 results from protein diffusion from the anterior source. Supporting this conclusion, a dominant-negative high-affinity FGF8 receptor captured endogenous FGF8 at a distance from the FGF8 source. New FGF8 sources introduced by electroporation showed haloes of FGF8 immunofluorescence indicative of FGF8 diffusion, and surrounding cells reacted to a new source of FGF8 by upregulating different FGF8-responsive genes in concentric domains around the source. Reducing endogenous FGF8 with the dominant-negative receptor in the central neocortical primordium induced cells to adopt a more posterior area identity, demonstrating long-range area patterning by FGF8. These observations support FGF8 as a classic diffusible morphogen in neocortex, thereby guiding future studies of neocortical pattern formation.
Collapse
Affiliation(s)
- Reiko Toyoda
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Paek H, Gutin G, Hébert JM. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development 2009; 136:2457-65. [PMID: 19542358 DOI: 10.1242/dev.032656] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The FGF family of extracellular signaling factors has been proposed to play multiple roles in patterning the telencephalon, the precursor to the cerebrum. In this study, unlike previous ones, we effectively abolish FGF signaling in the anterior neural plate via deletion of three FGF receptor (FGFR) genes. Triple FGFR mutant mice exhibit a complete loss of the telencephalon, except the dorsal midline. Disruption of FGF signaling prior to and coincident with telencephalic induction reveals that FGFs promote telencephalic character and are strictly required to keep telencephalic cells alive. Moreover, progressively more severe truncations of the telencephalon are observed in FGFR single, double and triple mutants. Together with previous gain-of-function studies showing induction of Foxg1 expression and mirror-image duplications of the cortex by exogenous FGF8, our loss-of-function results suggest that, rather than independently patterning different areas, FGF ligands and receptors act in concert to mediate organizer activity for the whole telencephalon.
Collapse
Affiliation(s)
- Hunki Paek
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
55
|
Suzuki-Hirano A, Shimogori T. The role of Fgf8 in telencephalic and diencephalic patterning. Semin Cell Dev Biol 2009; 20:719-25. [DOI: 10.1016/j.semcdb.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/09/2009] [Accepted: 04/01/2009] [Indexed: 12/22/2022]
|
56
|
Little GE, López-Bendito G, Rünker AE, García N, Piñon MC, Chédotal A, Molnár Z, Mitchell KJ. Specificity and plasticity of thalamocortical connections in Sema6A mutant mice. PLoS Biol 2009; 7:e98. [PMID: 19402755 PMCID: PMC2672616 DOI: 10.1371/journal.pbio.1000098] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/16/2009] [Indexed: 02/04/2023] Open
Abstract
The establishment of connectivity between specific thalamic nuclei and cortical areas involves a dynamic interplay between the guidance of thalamocortical axons and the elaboration of cortical areas in response to appropriate innervation. We show here that Sema6A mutants provide a unique model to test current ideas on the interactions between subcortical and cortical guidance mechanisms and cortical regionalization. In these mutants, axons from the dorsal lateral geniculate nucleus (dLGN) are misrouted in the ventral telencephalon. This leads to invasion of presumptive visual cortex by somatosensory thalamic axons at embryonic stages. Remarkably, the misrouted dLGN axons are able to find their way to the visual cortex via alternate routes at postnatal stages and reestablish a normal pattern of thalamocortical connectivity. These findings emphasize the importance and specificity of cortical cues in establishing thalamocortical connectivity and the spectacular capacity of the early postnatal cortex for remapping initial sensory representations. During brain development, the emergence of distinct areas in the cerebral cortex involves an interplay between patterning of the cortical sheet in the early embryo and later influences of incoming connections made from other brain areas, namely the thalamus. Connectivity between the thalamus and the cortex is initially smooth and graded, and a prominent model for how thalamocortical connectivity is established proposes thalamic axons are topographically sorted as they course through subcortical regions and then passively delivered to appropriate areas of the cortical sheet. We have used mutant mice lacking the guidance molecule Semaphorin-6A to test this model. In these mutants, Semaphorin-6A axons from the visual part of the thalamus are subcortically misrouted and fail to innervate the presumptive visual cortex, which is instead invaded by somatosensory thalamic axons. Despite this major disruption in initial connectivity, many visual thalamic axons find their way specifically to visual cortex, arriving several days later than usual. These late-arriving axons often follow alternate routes, and upon arrival are able to out-compete earlier-arriving somatosensory axons to reestablish grossly normal thalamocortical connectivity. These results argue strongly against an essential role for early subcortical targeting in the establishment of thalamocortical connectivity patterns and suggest instead the existence of highly specific target-selection mechanisms that match thalamic axons with appropriate cortical areas. Initial misrouting and subsequent recovery of thalamocortical axon projections in Semaphorin-6A mutant mice highlights the importance of specific target-selection mechanisms that match thalamic axons with appropriate cortical areas.
Collapse
Affiliation(s)
- Graham E Little
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Iwata T, Hevner RF. Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 2009; 51:299-323. [PMID: 19379279 DOI: 10.1111/j.1440-169x.2009.01104.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite substantial and exciting recent progress in our understanding of developmental processes in the cerebral cortex, there is still much to be learned about the molecular and cellular mechanisms that account for formation of the cortical structures, and in turn, how the regulation of these mechanisms is linked to cortical functions and behaviors in animals and humans. Fibroblast growth factors (FGFs) are a classic family of growth factors that are important in neural development and whose structures and signaling have been well-studied molecularly and biochemically. Recent advances have revealed their diverse but specific functions in patterning and neurogenesis during cortical development, as evidenced by multiple experimental approaches using in vivo models. Importantly, changes in FGF signaling during development have been shown to influence structure and function of the cerebral cortex as well as animal behavior, and have been implicated in disorders of nervous system function and intellectual development in humans. For example, disturbance of FGF pathways during development has been implicated in the pathogenesis of autism spectrum disorders. Experimental models with altered cortical structure due to perturbations of FGF signaling present a unique opportunity whereby molecular and cellular mechanisms that underlie cortical function and animal behavior can be directly studied and linked to each other.
Collapse
Affiliation(s)
- Tomoko Iwata
- Division of Cancer Sciences & Molecular Pathology, University of Glasgow, Beatson Laboratories, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | | |
Collapse
|
58
|
Decision by division: making cortical maps. Trends Neurosci 2009; 32:291-301. [PMID: 19380167 DOI: 10.1016/j.tins.2009.01.007] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 11/22/2022]
Abstract
In the past three decades, mounting evidence has revealed that specification of the basic cortical neuronal classes starts at the time of their final mitotic divisions in the embryonic proliferative zones. This early cell determination continues during the migration of the newborn neurons across the widening cerebral wall, and it is in the cortical plate that they attain their final positions and establish species-specific cytoarchitectonic areas. Here, the development and evolutionary expansion of the neocortex is viewed in the context of the radial unit and protomap hypotheses. A broad spectrum of findings gave insight into the pathogenesis of cortical malformations and the biological bases for the evolution of the modern human neocortex. We examine the history and evidence behind the concept of early specification of neurons and provide the latest compendium of genes and signaling molecules involved in neuronal fate determination and specification.
Collapse
|
59
|
Dorph-Petersen KA, Caric D, Saghafi R, Zhang W, Sampson AR, Lewis DA. Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 2009; 117:369-84. [PMID: 18642008 DOI: 10.1007/s00401-008-0410-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 11/30/2022]
Abstract
Subjects with schizophrenia show deficits in visual perception that suggest changes predominantly in the magnocellular pathway and/or the dorsal visual stream important for visiospatial perception. We previously found a substantial 25% reduction in neuron number of the primary visual cortex (Brodmann's area 17, BA17) in postmortem tissue from subjects with schizophrenia. Also, many studies have found reduced volume and neuron number of the pulvinar--the large thalamic association nucleus involved in higher-order visual processing. Here, we investigate if the lateral geniculate nucleus (LGN), the visual relay nucleus of the thalamus, has structural changes in schizophrenia. We used stereological methods based on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of the magno- and parovocellular parts of the left LGN in postmortem brains from nine subjects with schizophrenia, seven matched normal comparison subjects and 13 subjects with mood disorders. No significant schizophrenia-related structural differences in volume or neuron number of the left LGN or its major subregions were found, but we did observe a significantly increased total volume of the LGN, and of the parvocellular lamina and interlaminar regions, in the mood group. These findings do not support the hypothesis that subjects with schizophrenia have structural changes in the LGN. Therefore, our previous observation of a schizophrenia-related reduction of the primary visual cortex is probably not secondary to a reduction in the LGN.
Collapse
|
60
|
Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 2009; 3:519-32. [PMID: 18983967 DOI: 10.1016/j.stem.2008.09.002] [Citation(s) in RCA: 1029] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/06/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
Here, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture.
Collapse
Affiliation(s)
- Mototsugu Eiraku
- Organogenesis and Neurogenesis Group, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Huang Z, Kawase-Koga Y, Zhang S, Visvader J, Toth M, Walsh CA, Sun T. Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control. Dev Biol 2008; 327:132-42. [PMID: 19111533 DOI: 10.1016/j.ydbio.2008.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Proper formation of the shape and size of cortical functional areas is essential for complex brain function, including sensory perception and motor control. Our previous work identified the transcription factor Lim domain only 4 (Lmo4), a regulator in calcium-dependent gene transcription, that has unique, region-specific expression in postnatal mouse cortices with high expression anteriorly and posteriorly but very low expression in between. Here we report that Lmo4 expression coincides with the timing of the development of the somatosensory barrel field. Lmo4 cortical deletion causes changes in expression patterns of cortical regional markers and results in rostro-medial shrinkage but not rostral or caudal shift of the somatosensory barrel subfield. Fine regulation of accurate shape of the barrel subfield by Lmo4, as well as Lmo4-mediated calcium-dependent gene expression, is critical for normal brain functions, as Lmo4-deficient mice display impaired sensorimotor performance. Moreover, even though Lmo4 has broad expression in the central nervous system, it plays a subtle role in the development of non-cortical regions. Our results reveal a new mechanism of cortical area formation and normal sensorimotor control that is regulated by genes with region-specific expression in the developing cortex.
Collapse
Affiliation(s)
- Zhenyong Huang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Kichula EA, Huntley GW. Developmental and comparative aspects of posterior medial thalamocortical innervation of the barrel cortex in mice and rats. J Comp Neurol 2008; 509:239-58. [PMID: 18496871 DOI: 10.1002/cne.21690] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The thalamocortical projection to the rodent barrel cortex consists of inputs from the ventral posterior medial (VPM) and posterior medial (POm) nuclei that terminate in largely nonoverlapping territories in and outside of layer IV. This projection in both rats and mice has been used extensively to study development and plasticity of highly organized synaptic circuits. Whereas the VPM pathway has been well characterized in both rats and mice, organization of the POm pathway has only been described in rats, and no studies have focused exclusively on the development of the POm projection. Here, using transport of Phaseolus vulgaris leucoagglutinin(PHA-L) or carbocyanine dyes, we characterize the POm thalamocortical innervation of adult mouse barrel cortex and describe its early postnatal development in both mice and rats. In adult mice, POm inputs form a dense plexus in layer Va that extends uniformly underneath layer IV barrels and septa. Innervation of layer IV is very sparse; a clear septal innervation pattern is evident only at the layer IV/Va border. This pattern differs subtly from that described previously in rats. Developmentally, in both species, POm axons are present in barrel cortex at birth. In mice, they occupy layer IV as it differentiates, whereas in rats, POm axons do not enter layer IV until 1-2 days after its emergence from the cortical plate. In both species, arbors undergo progressive and directed growth. However, no layer IV septal innervation pattern emerges until several days after the cytoarchitectonic appearance of barrels and well after the emergence of whisker-related clusters of VPM thalamocortical axons. The mature pattern resolves earlier in rats than in mice. Taken together, these data reveal anatomical differences between mice and rats in the development and organization of POm inputs to barrel cortex, with implications for species differences in the nature and plasticity of lemniscal and paralemniscal information processing.
Collapse
Affiliation(s)
- Elizabeth A Kichula
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|
63
|
Powell AW, Sassa T, Wu Y, Tessier-Lavigne M, Polleux F. Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon. PLoS Biol 2008; 6:e116. [PMID: 18479186 PMCID: PMC2584572 DOI: 10.1371/journal.pbio.0060116] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 03/21/2008] [Indexed: 01/30/2023] Open
Abstract
Recent studies have demonstrated that the topography of thalamocortical (TC) axon projections is initiated before they reach the cortex, in the ventral telencephalon (VTel). However, at this point, the molecular mechanisms patterning the topography of TC projections in the VTel remains poorly understood. Here, we show that a long-range, high-rostral to low-caudal gradient of Netrin-1 in the VTel is required in vivo for the topographic sorting of TC axons to distinct cortical domains. We demonstrate that Netrin-1 is a chemoattractant for rostral thalamic axons but functions as a chemorepulsive cue for caudal thalamic axons. In accordance with this model, DCC is expressed in a high-rostromedial to low-caudolateral gradient in the dorsal thalamus (DTh), whereas three Unc5 receptors (Unc5A–C) show graded expression in the reverse orientation. Finally, we show that DCC is required for the attraction of rostromedial thalamic axons to the Netrin-1–rich, anterior part of the VTel, whereas DCC and Unc5A/C receptors are required for the repulsion of caudolateral TC axons from the same Netrin-1–rich region of the VTel. Our results demonstrate that a long-range gradient of Netrin-1 acts as a counteracting force from ephrin-A5 to control the topography of TC projections before they enter the cortex. The functional properties of each structure in the central nervous system are critically dependent on the precision of neuronal connectivity. The cerebral cortex in particular is a highly organized structure divided into many distinct cortical areas underlying important sensory, motor, and cognitive functions in the brain. Each primary cortical area receives its synaptic inputs from the periphery via the dorsal thalamus. The main relay station for sensory information to the cortex, the thalamus, can be divided into specific nuclei projecting topographically to individual cortical areas. How is the complex topography of thalamic axon projection to individual cortical areas specified during development? Recent evidence demonstrated that thalamic axons are routed to different cortical domains before they enter the cortex, by putative axon guidance cues present in the ventral forebrain. In the present study, we provide evidence that a secreted axon guidance cue, Netrin-1, expressed in a long-range gradient in the ventral forebrain, plays a critical role in the establishment of the topography of thalamic projections by directing different subsets of axons to specific cortical domains. These results provide important insights into the molecular mechanisms responsible for shaping the topographical patterns of thalamocortical axon projections in mammals. A long-range gradient of Netrin-1 plays a critical role in the specification of the topography of thalamocortical projections in the ventral telencephalon. The function of Netrin-1 requires both its attractive and repulsive functions to guide different subsets of thalamic axons to specific cortical domains.
Collapse
Affiliation(s)
- Ashton W Powell
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Takayuki Sassa
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongqin Wu
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Franck Polleux
- Neuroscience Center, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
64
|
Bargary G, Mitchell KJ. Synaesthesia and cortical connectivity. Trends Neurosci 2008; 31:335-42. [PMID: 18550184 DOI: 10.1016/j.tins.2008.03.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 01/10/2023]
Abstract
Synaesthesia is a heritable condition of involuntary sensory cross-activation whereby the presentation of a particular stimulus elicits a secondary sensory-perceptual experience. It is thought to be caused by aberrant cross-activation of one cortical area by another, but models differ as to whether this reflects functional or structural differences in the brains of synaesthetes. Here we consider these models in light of recent experimental findings and argue for structural differences in the brains of synaesthetes, which might be more widespread than expected. We also discuss several plausible developmental mechanisms that could link a putative genetic variant to altered cortical connectivity and illustrate how synaesthesia could be an informative model to investigate how patterns of connectivity between cortical areas are established.
Collapse
Affiliation(s)
- Gary Bargary
- School of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
65
|
Close homolog of L1 and neuropilin 1 mediate guidance of thalamocortical axons at the ventral telencephalon. J Neurosci 2008; 27:13667-79. [PMID: 18077678 DOI: 10.1523/jneurosci.2888-07.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a cooperation between the neural adhesion molecule close homolog of L1 (CHL1) and the semaphorin 3A (Sema3A) receptor, neuropilin 1 (Npn1), important for establishment of area-specific thalamocortical projections. CHL1 deletion in mice selectively disrupted the projection of somatosensory thalamic axons from the ventrobasal (VB) nuclei, causing them to shift caudally and target the visual cortex. At the ventral telencephalon, an intermediate target with graded Sema3A expression, VB axons were caudally shifted in CHL1- embryos and in Npn1(Sema-/-) mutants, in which axons are nonresponsive to Sema3A. CHL1 colocalized with Npn1 on thalamic axons, and associated with Npn1 through a sequence in the CHL1 Ig1 domain that was required for Sema3A-induced growth cone collapse. These results identify a novel function for CHL1 in thalamic axon responsiveness to ventral telencephalic cues, and demonstrate a role for CHL1 and Npn1 in establishment of proper targeting of specific thalamocortical projections.
Collapse
|
66
|
Aboitiz F, Montiel J. Co-option of signaling mechanisms from neural induction to telencephalic patterning. Rev Neurosci 2007; 18:311-42. [PMID: 18019612 DOI: 10.1515/revneuro.2007.18.3-4.311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This article provides an overview of signaling processes during early specification of the anterior neural tube, with special emphasis on the telencephalon. A series of signaling systems based on the action of distinct morphogens acts at different developmental stages, specifying interacting developmental fields that define axes of differentiation in the rostrocaudal and the dorsoventral domains. Interestingly, many of these signaling systems are co-opted for several differentiation processes. This strategy provides a simple and efficient mechanism to generate novel structures in evolution, and may have been especially important in the origin of the telencephalon and the mammalian cerebral cortex. For example, the action of fibroblast growth factor (FGF) secreted in early stages from the anterior neural ridge, but in later stages from the dorsal anterior forebrain, may have been a key factor in the early differentiation of the ventral telencephalon and in the eventual expansion of the mammalian neocortex. Likewise, bone morphogenetic proteins (BMPs) participate at several stages in neural patterning, even if early neural induction consists of the inhibition of the BMP pathway. BMPs, secreted dorsally, interact with FGFs in the frontal aspect of the hemispheres, and with PAX6-dependent signaling sources located laterally, to pattern the dorsal telencephalon. The actions of other morphogens are also described in this context, such as the ventralizing factor SHH, the dorsalizing element GLI3, and other factors related to the dorsomedial telencephalon such as WNTs and EMXs. The main conclusion we draw from this review is the well-known phylogenetic and developmental conservatism of signaling pathways, which in evolution have been applied in different embryological contexts, generating novel interactions between morphogenetic fields and leading to the generation of new morphological structures.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría y Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | |
Collapse
|
67
|
Abstract
The spatio-temporal timing of the last round of mitosis, followed by the migration of neuroblasts to the cortical plate leads to the formation of the six-layered cortex that is subdivided into functionally defined cortical areas. Whereas many of the cellular and molecular mechanisms have been established in rodents, there are a number of unique features that require further elucidation in primates. Recent findings both in rodents and in primates indicate that regulation of the cell cycle, specifically of the G1 phase has a crucial role in controlling area-specific rates of neuron production and the generation of cytoarchitectonic maps.
Collapse
Affiliation(s)
- Colette Dehay
- INSERM, U846, 18 Avenue Doyen Lépine, 69675 Bron Cedex, France.
| | | |
Collapse
|
68
|
Galazo MJ, Martinez-Cerdeño V, Porrero C, Clascá F. Embryonic and Postnatal Development of the Layer I–Directed (“Matrix”) Thalamocortical System in the Rat. Cereb Cortex 2007; 18:344-63. [PMID: 17517678 DOI: 10.1093/cercor/bhm059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.
Collapse
Affiliation(s)
- Maria J Galazo
- Department of Anatomy & Neuroscience, School of Medicine, Autónoma University, E-28871 Madrid, Spain
| | | | | | | |
Collapse
|
69
|
Leamey CA, Glendining KA, Kreiman G, Kang ND, Wang KH, Fassler R, Sawatari A, Tonegawa S, Sur M. Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. Cereb Cortex 2007; 18:53-66. [PMID: 17478416 DOI: 10.1093/cercor/bhm031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adult neocortical areas are characterized by marked differences in cytoarchitecture and connectivity that underlie their functional roles. The molecular determinants of these differences are largely unknown. We performed a microarray analysis to identify molecules that define the somatosensory and visual areas during the time when afferent and efferent projections are forming. We identified 122 molecules that are differentially expressed between the regions and confirmed by quantitative polymerase chain reaction 95% of the 20 genes tested. Two genes were chosen for further investigation: Bcl6 and Ten_m3. Bcl6 was highly expressed in the superficial cortical plate corresponding to developing layer IV of somatosensory cortex at postnatal day (P) 0. This had diminished by P3, but strong expression was found in layer V pyramidal cells by P7 and was maintained until adulthood. Retrograde tracing showed that Bcl6 is expressed in corticospinal neurons. Ten_m3 was expressed in a graded pattern within layer V of caudal cortex that corresponds well with visual cortex. Retrograde tracing and immunostaining showed that Ten_m3 is highly expressed along axonal tracts of projection neurons of the developing visual pathway. Overexpression demonstrated that Ten_m3 promotes homophilic adhesion and neurite outgrowth in vivo. This suggests an important role for Ten_m3 in the development of the visual pathway.
Collapse
Affiliation(s)
- Catherine A Leamey
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The frontal cortex (FC) is the seat of higher cognition. The genetic mechanisms that control formation of the functionally distinct subdivisions of the FC are unknown. Using a set of gene expression markers that distinguish subdivisions of the newborn mouse FC, we show that loss of Fgf17 selectively reduces the size of the dorsal FC whereas ventral/orbital FC appears normal. These changes are complemented by a rostral shift of sensory cortical areas. Thus, Fgf17 functions similar to Fgf8 in patterning the overall neocortical map but has a more selective role in regulating the properties of the dorsal but not ventral FC.
Collapse
Affiliation(s)
- Jeremy A. Cholfin
- *Medical Scientist Training Program
- Neuroscience Graduate Program
- Nina Ireland Laboratory of Developmental Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, CA 94143-2611
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, and
- Department of Psychiatry, University of California, San Francisco, CA 94143-2611
- To whom correspondence should be addressed at:
University of California, Rock Hall Room #282, 1550 Fourth Street, San Francisco, CA 94143-2611. E-mail:
| |
Collapse
|
71
|
Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA. Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 2007; 501:290-301. [PMID: 17226750 DOI: 10.1002/cne.21243] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of studies that assessed the visual system in subjects with schizophrenia found impairments in early visual processing. Furthermore, functional imaging studies suggested changes in primary visual cortex activity in subjects with schizophrenia. Interestingly, postmortem studies of subjects with schizophrenia reported an increased density of neurons in the primary visual cortex (Brodmann's area 17, BA17). The observed changes in visual processing may thus be reflected in structural changes in the circuitry of BA17. To characterize the structural changes further we used stereological methods based on unbiased principles of sampling (Cavalieri's principle and the optical fractionator) to estimate the total volume and neuron number of BA17 in postmortem brains from 10 subjects with schizophrenia and 10 matched normal comparison subjects. In addition, we assessed cortical thickness. We found a marked and significant reduction in total neuron number (25%) and volume (22%) of BA17 in the schizophrenia group relative to the normal comparison subjects. In contrast, we found no changes in neuronal density or cortical thickness between the two groups. Subjects with schizophrenia therefore have a smaller cortical area allocated to primary visual perception. This finding suggests the existence of a schizophrenia-related change in cortical parcellation.
Collapse
|
72
|
Horng SH, Sur M. Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. PROGRESS IN BRAIN RESEARCH 2007; 157:3-11. [PMID: 17167899 DOI: 10.1016/s0079-6123(06)57001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The mammalian cortex is organized anatomically into discrete areas, which receive, process, and transmit neural signals along functional pathways. These pathways form a system of complex networks that wire up through development and refine their connections into adulthood. Understanding the processes of cortical-pathway formation, maintenance, and experience-dependent plasticity has been among the major goals of contemporary neurobiology. In this chapter, we will discuss an experimental model used to investigate the role of activity in the patterning of cortical networks during development. This model involves the "rewiring" of visual inputs into the auditory thalamus and subsequent remodeling of the auditory cortex to process visual information. We review the molecular, cellular, and physiological mechanisms of visual "rewiring" and activity-dependent shaping of cortical networks.
Collapse
Affiliation(s)
- Sam H Horng
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
73
|
Gheorghita F, Kraftsik R, Dubois R, Welker E. Structural basis for map formation in the thalamocortical pathway of the barrelless mouse. J Neurosci 2006; 26:10057-67. [PMID: 17005869 PMCID: PMC6674479 DOI: 10.1523/jneurosci.1263-06.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Barrelless mice (BRL) homozygous for the BRL mutation that disrupts the gene coding for adenylyl cyclase type I on chromosome 11 lack spatial segregation of layer IV cortical cells and of the thalamocortical axons (TCAs) into barrel domains. Despite these morphological perturbations, a functional topographic map has been demonstrated. We reconstructed individual biocytin-injected TCAs from thalamus to barrel cortex in NOR (normal) and BRL mice to analyze to what extent the TCA arborization pattern and bouton distribution could explain the topographic representation of the whisker follicles. In BRL, the geometry of TCA is modified within layer IV as well as in infragranular layers. However, in both strains, the spatial distribution of TCA in layer IV reflects the spatial relationship of their cell bodies in the ventrobasal nucleus of the thalamus. The morphometric analysis revealed that TCAs of both strains have the same length, branch number, and number of axonal boutons in layer IV. However, in barrelless, the boutons are distributed within a larger tangential extent. Analysis of the distribution of boutons from neighboring thalamic neurons demonstrated the existence in layer IV of domains of high bouton density that in both strains equal the size and shape of individual barrels. We propose that the domains of high bouton density are at the basis of the whisker map in barrelless mice.
Collapse
Affiliation(s)
- Fulvia Gheorghita
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Rudolf Kraftsik
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Roger Dubois
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Egbert Welker
- Département de Biologie Cellulaire et de Morphologie, Faculté de Médecine, Université de Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
74
|
Catania KC, Henry EC. Touching on somatosensory specializations in mammals. Curr Opin Neurobiol 2006; 16:467-73. [PMID: 16837185 DOI: 10.1016/j.conb.2006.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/20/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Specialized species often reveal general principles of brain organization and provide systems for analysis of sensory function. Subterranean species dependent on touch have particularly large somatosensory areas with modular cortical representations of sensory surfaces. Some species have added cortical areas to processing networks, have developed tactile foveas and have superior colliculi primarily devoted to somatosensation rather than vision. Recent studies reveal surprisingly large cortical representations of oral structures in primates and mole-rats. Cortical modules represent a range of different sensory surfaces in rodents, star-nosed moles and primates, indicating that similar developmental mechanisms operate in diverse species. Finally, manipulation of patterning genes in mice suggests evolutionary mechanisms for producing the specialized corticies of subterranean species.
Collapse
Affiliation(s)
- Kenneth C Catania
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
75
|
Aboitiz F, Montiel J, García RR. Ancestry of the mammalian preplate and its derivatives: evolutionary relicts or embryonic adaptations? Rev Neurosci 2006; 16:359-76. [PMID: 16519011 DOI: 10.1515/revneuro.2005.16.4.359] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mammalian cortical development is preceded by the elaboration of a transient preplate, which is split into a superficial marginal zone and a deep subplate after the arrival of the cortical plate. There has been some controversy in the evolutionary interpretation of this transient structure, as some propose it to represent the ancestral cortex or pallium of non-mammals, while others consider it to be a phylogenetic novelty. The preplate and its derivatives contain components derived by both tangential and radial migration. Tangentially migrating elements include pioneer neurons and interneurons, both of subpallial origin, and Cajal-Retzius cells, mostly of pallial origin. Pioneer neurons were probably present in the ancestors of mammals, but may have changed their original superficial position to one below the developing cortex, thus attracting thalamic afferents in the subcortical white matter, and making them penetrate the cortex radially. In mammals, Cajal-Retzius cells appear to have increased both in number and on their level of reelin expression, perhaps in the context of controlling the final stages of migration in a radially expanding neoocortex. Radial-migrating cells are partly represented by the pyramidal-like cells of the subplate. These neurons resemble the excitatory elements of the adult reptilian cortex, but is not clear whether they are their true homologues. One possibility is that these cells appeared by virtue of a heterochronic process in which the earliest radial elements of the cortical plate began to be produced at progressively earlier developmental stages. Thus, we conclude that the mammalian preplate and its derivatives contain both ancestral and derived elements, all of which have been modified in the course of mammalian evolution to support an increasingly complex cortical plate development.
Collapse
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile.
| | | | | |
Collapse
|
76
|
Abstract
Early thalamus-independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [Rakic, P. (1988)Science, 241, 170-176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area-specific morphogenetic programs.
Collapse
Affiliation(s)
- Antonello Mallamaci
- DIBIT, Unit of Cerebral Cortex Development, Department of Molecular Biology and Functional Genomics, San Raffaele Scientific Intitute, via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
77
|
Rash BG, Grove EA. Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 2006; 16:25-34. [PMID: 16426837 DOI: 10.1016/j.conb.2006.01.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 01/09/2006] [Indexed: 01/19/2023]
Abstract
Two anatomical patterns characterize the neocortex, and both are essential for normal cortical function. First, neocortex is divided into anatomically distinct and functionally specialized areas that form a species-specific map. Second, neocortex is composed of layers that organize cortical connectivity. Recent studies of layer and area development have used time-lapse microscopy to follow cortical cell division and migration, gene arrays to find layer- or area- specific regulatory genes, time- and region- specific manipulations of candidate genes, and optical imaging to compare area maps in wild type with genetically altered mice. New observations clarify the molecular and cellular mechanisms that generate each pattern, and stress the links between layer and area formation.
Collapse
Affiliation(s)
- Brian G Rash
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago IL, 60637, USA
| | | |
Collapse
|
78
|
Torii M, Levitt P. Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. Neuron 2006; 48:563-75. [PMID: 16301174 DOI: 10.1016/j.neuron.2005.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 08/01/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Molecular mechanisms generating the topographic organization of corticothalamic (CT) circuits, which comprise more than three-quarters of the synaptic inputs onto sensory relay neurons, and their interdependence with thalamocortical (TC) axon development are unknown. Using in utero electroporation-mediated gene transfer, we show that EphA7-mediated signaling on neocortical axons controls the within-nucleus topography of CT projections in the thalamus. Notably, CT axons that mis-express EphA7 do not shift the relative positioning of their pathway within the subcortical telencephalon (ST), indicating that they do not depend upon EphA7/ephrin-A signaling in the ST for establishing this topography. Moreover, mis-expression of cortical EphA7 results in disrupted topography of CT projections, but unchanged inter- and intra-areal topography of TC projections. Our results support a model in which EphA/ephrin-A signaling controls independently the precision with which CT and TC projections develop, yet is essential for establishing their topographic reciprocity.
Collapse
Affiliation(s)
- Masaaki Torii
- Vanderbilt Kennedy Center for Research on Human Development and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37203, USA
| | | |
Collapse
|
79
|
Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA. Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 2006; 48:577-89. [PMID: 16301175 PMCID: PMC2424263 DOI: 10.1016/j.neuron.2005.10.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/15/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
Ephrin-As and their receptors, EphAs, are expressed in the developing cortex where they may act to organize thalamic inputs. Here, we map the visual cortex (V1) in mice deficient for ephrin-A2, -A3, and -A5 functionally, using intrinsic signal optical imaging and microelectrode recording, and structurally, by anatomical tracing of thalamocortical projections. V1 is shifted medially, rotated, and compressed and its internal organization is degraded. Expressing ephrin-A5 ectopically by in utero electroporation in the lateral cortex shifts the map of V1 medially, and expression within V1 disrupts its internal organization. These findings indicate that interactions between gradients of EphA/ephrin-A in the cortex guide map formation, but that factors other than redundant ephrin-As are responsible for the remnant map. Together with earlier work on the retinogeniculate map, the current findings show that the same molecular interactions may operate at successive stages of the visual pathway to organize maps.
Collapse
Affiliation(s)
- Jianhua Cang
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Megumi Kaneko
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
| | - Jena Yamada
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Georgia Woods
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| | - Michael P. Stryker
- W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, California 94143
- *Correspondence: (D.A.F.); (M.P.S.)
| | - David A. Feldheim
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
- *Correspondence: (D.A.F.); (M.P.S.)
| |
Collapse
|
80
|
Abstract
The cerebral cortex of the human brain is a sheet of about 10 billion neurons divided into discrete subdivisions or areas that process particular aspects of sensation, movement, and cognition. Recent evidence has begun to transform our understanding of how cortical areas form, make specific connections with other brain regions, develop unique processing networks, and adapt to changes in inputs.
Collapse
Affiliation(s)
- Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., 46-6237, Cambridge, MA 02139, USA.
| | | |
Collapse
|