51
|
Meyer HS, Wimmer VC, Hemberger M, Bruno RM, de Kock CPJ, Frick A, Sakmann B, Helmstaedter M. Cell type-specific thalamic innervation in a column of rat vibrissal cortex. ACTA ACUST UNITED AC 2010; 20:2287-303. [PMID: 20534783 PMCID: PMC2936808 DOI: 10.1093/cercor/bhq069] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2–6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90–580 boutons per neuron); 2) pyramidal neurons in L3–L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2–4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.
Collapse
Affiliation(s)
- Hanno S Meyer
- Department of Cell Physiology, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Clancy B, Defelipe J, Espinosa A, Fairén A, Jinno S, Kanold P, Luhmann HJ, Rockland KS, Tamamaki N, Yan XX. Cortical GABAergic Neurons: Stretching it Remarks, Main Conclusions and Discussion. Front Neuroanat 2010; 4:7. [PMID: 20224807 PMCID: PMC2834446 DOI: 10.3389/neuro.05.007.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Indexed: 11/13/2022] Open
Affiliation(s)
- Barbara Clancy
- Department of Biology, University of Central Arkansas Conway, AR, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhao C, Kao JPY, Kanold PO. Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J Neurosci 2009; 29:15479-88. [PMID: 20007472 PMCID: PMC3539415 DOI: 10.1523/jneurosci.4471-09.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/22/2009] [Accepted: 10/31/2009] [Indexed: 11/21/2022] Open
Abstract
The functional connectivity of the cerebral cortex is shaped by experience during development, especially during a critical period early in life. In the prenatal and neonatal cortex, transient neuronal circuits are formed by a population of subplate neurons (SPNs). However, SPNs are absent in the adult cortex. While SPNs are crucial for normal development of the cerebral cortex and of thalamocortical synapses, little is known about how they are integrated in the developing thalamocortical circuit. We therefore investigated SPNs in vitro in thalamocortical slices of A1 and medial geniculate nucleus (MGN) in mouse from postnatal day 1 (P1) to P13. We found that SPNs can fire action potentials at P1 and that their intrinsic membrane properties are mature after P5. We find that SPNs receive functional excitatory inputs from the MGN as early as P2. The MGN projections to SPNs strengthen between P2 and P13 and are capable of inducing action potentials in SPNs. Selective activation of SPNs by photostimulation produced EPSCs in layer 4 neurons, demonstrating a functional excitatory connection. Thus, SPNs are tightly integrated into the developing thalamocortical circuit and would be a reliable relay of early spontaneous and sound-evoked activity. The role of SPNs in development likely results from their strong excitatory projection to layer 4, which might function to regulate activity-dependent processes that enable mechanisms required for the functional maturation and plasticity of the developing cortex and thereby contribute to the development of normal cortical organization.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biology, Institute for Systems Research, and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, and
| | - Joseph P. Y. Kao
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, and
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O. Kanold
- Department of Biology, Institute for Systems Research, and
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, and
| |
Collapse
|
54
|
Clancy B, Teague-Ross TJ, Nagarajan R. Cross-species analyses of the cortical GABAergic and subplate neural populations. Front Neuroanat 2009; 3:20. [PMID: 19936319 PMCID: PMC2779099 DOI: 10.3389/neuro.05.020.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/04/2009] [Indexed: 01/26/2023] Open
Abstract
Cortical GABAergic (gamma-aminobutyric acidergic) neurons include a recently identified subset whose projections extend over relatively long distances in adult rodents and primates. A number of these inhibitory projection neurons are located in and above the conventionally identified white matter, suggesting their persistence from, or a correspondence with, the developmental subplate. GABAergic and subplate neurons share some unique properties unlike those of the more prevalent pyramidal neurons. To better understand the GABAergic and subplate populations, we constructed a database of neural developmental events common to the three species most frequently used in experimental studies: rat, mouse, and macaque, using data from the online database www.translatingtime.net as well as GABAergic and subplate developmental data from the empirical literature. We used a general linear model to test for similarities and differences, a valid approach because the sequence of most neurodevelopmental events is remarkably conserved across mammalian species. Similarities between the two rodent populations are striking, permitting us to identify developmental dates for GABAergic and subplate neural events in rats that were previously identified only in mice, as well as the timing in mouse development for events previously identified in rats. Primate comparative data are also compelling, although slight variability in statistical error measurement indicates differences in primate GABAergic and subplate events when compared to rodents. Although human extrapolations are challenging because fewer empirical data points are available, and because human data display more variability, we also produce estimates of dates for GABAergic and subplate neural events that have not yet been, or cannot be, determined empirically in humans.
Collapse
Affiliation(s)
- Barbara Clancy
- Department of Biology, University of Central Arkansas Conway, AR, USA
| | | | | |
Collapse
|
55
|
Connor CM, Guo Y, Akbarian S. Cingulate white matter neurons in schizophrenia and bipolar disorder. Biol Psychiatry 2009; 66:486-93. [PMID: 19559403 PMCID: PMC2725195 DOI: 10.1016/j.biopsych.2009.04.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/27/2009] [Accepted: 04/29/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased neuronal density in prefrontal, parietal, and temporal white matter of schizophrenia subjects is thought to reflect disordered neurodevelopment; however, it is not known if this cellular alteration affects the cingulate cortex and whether similar changes exist in bipolar disorder. METHOD Eighty-two postmortem specimens (bipolar 15, schizophrenia 22, control 45) were included in this clinical study. Densities for two neuronal markers, neuron-specific nuclear protein (NeuN) and neuregulin 1 alpha (NRG), were determined in white matter up to 2.5 mm beneath the anterior cingulate cortex; density of NeuN immunopositive neurons (NeuN+) was also determined for a subset of cases in prefrontal cortex. Changes during normal development were monitored in a separate cohort of 14 brains. RESULTS Both the schizophrenia and bipolar cohorts demonstrated a twofold increase in NeuN+ density in cingulate white matter; this effect could be attributed to approximately 25% of cases that exceeded the second standard deviation from control subjects. Similar changes were observed in prefrontal cortex. In contrast density of NRG expressing neurons was unaltered. Cases with increased NeuN+ densities in two-dimensional (2-D) counts also showed a pronounced, > fivefold elevation in NeuN+ nuclei per cubic millimeter. Additionally, the developmental cohort demonstrated a 75% decline in NeuN+ neuronal density during the first postnatal year but was stable thereafter. CONCLUSIONS Increased neuronal density in white matter of cingulate cortex in schizophrenia provides further evidence that this alteration occurs in multiple cortical areas. Similar changes in some cases with bipolar illness suggest that the two disorders may share a common underlying defect in late prenatal or early postnatal neurodevelopment.
Collapse
Affiliation(s)
- Caroline M. Connor
- Program in Neurobiology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester MA 01604, Department of Psychiatry, University of Massachusetts Medical School, Worcester MA 01604
| | - Yin Guo
- Department of Psychiatry, University of Massachusetts Medical School, Worcester MA 01604
| | - Schahram Akbarian
- Department of Psychiatry, University of Massachusetts Medical School, Worcester MA 01604,corresponding author: Schahram Akbarian, Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, 303 Belmont Street, University of Massachusetts Medical School, Worcester MA 01604, , Phone 508 8562674 Fax 508 8563937
| |
Collapse
|
56
|
Kanold PO. Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 2009; 3:16. [PMID: 19738926 PMCID: PMC2737439 DOI: 10.3389/neuro.05.016.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 08/03/2009] [Indexed: 01/14/2023] Open
Abstract
The developing cerebral cortex contains a distinct class of cells, subplate neurons, which form one of the first functional cortical circuits. Subplate neurons reside in the cortical white matter, receive thalamic inputs and project into the developing cortical plate, mostly to layer 4. Subplate neurons are present at key time points during development. Removal of subplate neurons profoundly affects cortical development. Subplate removal in visual cortex prevents the maturation of thalamocortical synapse, the maturation of inhibition in layer 4, the development of orientation selective responses in individual cortical neurons, and the formation of ocular dominance columns. In addition, monocular deprivation during development reveals that ocular dominance plasticity is paradoxical in the absence of subplate neurons. Because subplate neurons projecting to layer 4 are glutamatergic, these diverse deficits following subplate removal were hypothesized to be due to lack of feed-forward thalamic driven cortical excitation. A computational model of the developing thalamocortical pathway incorporating feed-forward excitatory subplate projections replicates both normal development and plasticity of ocular dominance as well as the effects of subplate removal. Therefore, we postulate that feed-forward excitatory projections from subplate neurons into the developing cortical plate enhance correlated activity between thalamus and layer 4 and, in concert with Hebbian learning rules in layer 4, allow maturational and plastic processes in layer 4 to commence. Thus subplate neurons are a crucial regulator of cortical development and plasticity, and damage to these neurons might play a role in the pathology of many neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, Institute for Systems Research, and Program in Neuroscience and Cognitive Science, University of MarylandCollege Park, MD, USA,*Correspondence: Patrick O. Kanold, Department of Biology, University of Maryland, 1116 Biosciences Research Building, College Park, MD 20742, USA. e-mail:
| |
Collapse
|
57
|
Friedlander MJ, Torres-Reveron J. The changing roles of neurons in the cortical subplate. Front Neuroanat 2009; 3:15. [PMID: 19688111 PMCID: PMC2727405 DOI: 10.3389/neuro.05.015.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022] Open
Abstract
Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development.
Collapse
|
58
|
Loup F, Picard F, Yonekawa Y, Wieser HG, Fritschy JM. Selective changes in GABAA receptor subtypes in white matter neurons of patients with focal epilepsy. Brain 2009; 132:2449-63. [DOI: 10.1093/brain/awp178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
59
|
Suárez-Solá ML, González-Delgado FJ, Pueyo-Morlans M, Medina-Bolívar OC, Hernández-Acosta NC, González-Gómez M, Meyer G. Neurons in the white matter of the adult human neocortex. Front Neuroanat 2009; 3:7. [PMID: 19543540 PMCID: PMC2697018 DOI: 10.3389/neuro.05.007.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/23/2009] [Indexed: 11/13/2022] Open
Abstract
The white matter (WM) of the adult human neocortex contains the so-called “interstitial neurons”. They are most numerous in the superficial WM underlying the cortical gyri, and decrease in density toward the deep WM. They are morphologically heterogeneous. A subgroup of interstitial neurons display pyramidal-cell like morphologies, characterized by a polarized dendritic tree with a dominant apical dendrite, and covered with a variable number of dendritic spines. In addition, a large contingent of interstitial neurons can be classified as interneurons based on their neurochemical profile as well as on morphological criteria. WM- interneurons have multipolar or bipolar shapes and express GABA and a variety of other neuronal markers, such as calbindin and calretinin, the extracellular matrix protein reelin, or neuropeptide Y, somatostatin, and nitric oxide synthase. The heterogeneity of interstitial neurons may be relevant for the pathogenesis of Alzheimer disease and schizophrenia. Interstitial neurons are most prominent in human brain, and only rudimentary in the brain of non-primate mammals. These evolutionary differences have precluded adequate experimental work on this cell population, which is usually considered as a relict of the subplate, a transient compartment proper of development and without a known function in the adult brain. The primate-specific prominence of the subplate in late fetal stages points to an important role in the establishment of interstitial neurons. Neurons in the adult WM may be actively involved in coordinating inter-areal connectivity and regulation of blood flow. Further studies in primates will be needed to elucidate the developmental history, adult components and activities of this large neuronal system.
Collapse
|
60
|
Chung L, Moore SD, Cox CL. Cholecystokinin action on layer 6b neurons in somatosensory cortex. Brain Res 2009; 1282:10-9. [PMID: 19497313 DOI: 10.1016/j.brainres.2009.05.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/09/2009] [Accepted: 05/11/2009] [Indexed: 11/30/2022]
Abstract
Layer 6b in neocortex is a distinct sublamina at the ventral portion of layer 6. Corticothalamic projections arise from 6b neurons, but few studies have examined the functional properties of these cells. In the present study we examined the actions of cholecystokinin (CCK) on layer 6b neocortical neurons using whole-cell patch clamp recording techniques. We found that the general CCK receptor agonist CCK8S (sulfated CCK octapeptide) strongly depolarized the neurons, and this action persisted in the presence of tetrodotoxin, suggesting a postsynaptic site of action. The excitatory actions of CCK8S were mimicked by the selective CCK(B) receptor agonist CCK4, and attenuated by the selective CCK(B) receptor antagonist L365260, indicating a role for CCK(B) receptors. Voltage-clamp recordings revealed that CCK8S produced a slow inward current associated with a decreased conductance with a reversal potential near the K(+) equilibrium potential. In addition, intracellular cesium also blocked the inward current, suggesting the involvement of a K(+) conductance, likely K(leak). Our data indicate that CCK, acting via CCK(B) receptors, produces a long-lasting excitation of layer 6b neocortical neurons, and this action may play a critical role in modulation of corticothalamic circuit activity.
Collapse
Affiliation(s)
- Leeyup Chung
- Neuroscience Program, Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
61
|
Hoerder-Suabedissen A, Wang WZ, Lee S, Davies KE, Goffinet AM, Rakić S, Parnavelas J, Reim K, Nicolić M, Paulsen O, Molnár Z. Novel Markers Reveal Subpopulations of Subplate Neurons in the Murine Cerebral Cortex. Cereb Cortex 2008; 19:1738-50. [DOI: 10.1093/cercor/bhn195] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
62
|
Friedlander MJ. Lifespan longitudinal multitasking by cortical neurons. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The large number of neurons (1011) and synapses (1014) in the mammalian brain provides a rich anatomical substrate for information processing. Many neurons perform very specialized functions, such as detecting or processing sensory stimuli, relaying or amplifying attributes of an afferent input to another brain area or making decisions to convert inputs into action. Some cell types, including the early-generated subplate cells of the developing cerebral cortex, play a special role during a restricted period of early brain development, acting transiently as scaffolds for the formation of thalamocortical and corticothalamic connections. However, many of these neurons (10–20%) survive elimination and become functionally integrated into the mature cortical circuitry. Thus, a single neuron type can perform different functions in the brain at different periods of life, potentially increasing the combinatorial capacity of the functional cellular architecture of the brain over the lifespan.
Collapse
Affiliation(s)
- Michael J Friedlander
- Baylor College of Medicine, Department of Neuroscience, Director of Neuroscience Initiatives, One Baylor Plaza, Suite S740A, Houston, TX 77030, USA
| |
Collapse
|