51
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
52
|
Goodwin PR, Juo P. The scaffolding protein SYD-2/Liprin-α regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons. PLoS One 2013; 8:e54763. [PMID: 23358451 PMCID: PMC3554613 DOI: 10.1371/journal.pone.0054763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023] Open
Abstract
The polarized trafficking of axonal and dendritic components is essential for the development and maintenance of neuronal structure and function. Neuropeptide-containing dense-core (DCVs) vesicles are trafficked in a polarized manner from the cell body to their sites of release; however, the molecules involved in this process are not well defined. Here we show that the scaffolding protein SYD-2/Liprin-α is required for the normal polarized localization of Venus-tagged neuropeptides to axons of cholinergic motor neurons in C. elegans. In syd-2 loss of function mutants, the normal polarized localization of INS-22 neuropeptide-containing DCVs in motor neurons is disrupted, and DCVs accumulate in the cell body and dendrites. Time-lapse microscopy and kymograph analysis of mobile DCVs revealed that syd-2 mutants exhibit decreased numbers of DCVs moving in both anterograde and retrograde directions, and a corresponding increase in stationary DCVs in both axon commissures and dendrites. In addition, DCV run lengths and velocities were decreased in both axon commissures and dendrites of syd-2 mutants. This study shows that SYD-2 promotes bi-directional mobility of DCVs and identifies SYD-2 as a novel regulator of DCV trafficking and polarized distribution.
Collapse
Affiliation(s)
- Patricia R. Goodwin
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
53
|
Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 2012; 32:12192-203. [PMID: 22933801 DOI: 10.1523/jneurosci.0752-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
How size and shape of presynaptic active zones are regulated at the molecular level has remained elusive. Here we provide insight from studying rod photoreceptor ribbon-type active zones after disruption of CAST/ERC2, one of the cytomatrix of the active zone (CAZ) proteins. Rod photoreceptors were present in normal numbers, and the a-wave of the electroretinogram (ERG)--reflecting their physiological population response--was unchanged in CAST knock-out (CAST(-/-)) mice. Using immunofluorescence and electron microscopy, we found that the size of the rod presynaptic active zones, their Ca(2+) channel complement, and the extension of the outer plexiform layer were diminished. Moreover, we observed sprouting of horizontal and bipolar cells toward the outer nuclear layer indicating impaired rod transmitter release. However, rod synapses of CAST(-/-) mice, unlike in mouse mutants for the CAZ protein Bassoon, displayed anchored ribbons, normal vesicle densities, clustered Ca(2+) channels, and essentially normal molecular organization. The reduction of the rod active zone size went along with diminished amplitudes of the b-wave in scotopic ERGs. Assuming, based on the otherwise intact synaptic structure, an unaltered function of the remaining release apparatus, we take our finding to suggest a scaling of release rate with the size of the active zone. Multielectrode-array recordings of retinal ganglion cells showed decreased contrast sensitivity. This was also observed by optometry, which, moreover, revealed reduced visual acuity. We conclude that CAST supports large active zone size and high rates of transmission at rod ribbon synapses, which are required for normal vision.
Collapse
|
54
|
Abstract
Neurotransmitters are released by synaptic vesicle exocytosis at the active zone of a presynaptic nerve terminal. In this review, I discuss the molecular composition and function of the active zone. Active zones are composed of an evolutionarily conserved protein complex containing as core constituents RIM, Munc13, RIM-BP, α-liprin, and ELKS proteins. This complex docks and primes synaptic vesicles for exocytosis, recruits Ca(2+) channels to the site of exocytosis, and positions the active zone exactly opposite to postsynaptic specializations via transsynaptic cell-adhesion molecules. Moreover, this complex mediates short- and long-term plasticity in response to bursts of action potentials, thus critically contributing to the computational power of a synapse.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94304-5453, USA.
| |
Collapse
|
55
|
Iyer SC, Wang D, Iyer EPR, Trunnell SA, Meduri R, Shinwari R, Sulkowski MJ, Cox DN. The RhoGEF trio functions in sculpting class specific dendrite morphogenesis in Drosophila sensory neurons. PLoS One 2012; 7:e33634. [PMID: 22442703 PMCID: PMC3307743 DOI: 10.1371/journal.pone.0033634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 12/23/2022] Open
Abstract
Background As the primary sites of synaptic or sensory input in the nervous system, dendrites play an essential role in processing neuronal and sensory information. Moreover, the specification of class specific dendrite arborization is critically important in establishing neural connectivity and the formation of functional networks. Cytoskeletal modulation provides a key mechanism for establishing, as well as reorganizing, dendritic morphology among distinct neuronal subtypes. While previous studies have established differential roles for the small GTPases Rac and Rho in mediating dendrite morphogenesis, little is known regarding the direct regulators of these genes in mediating distinct dendritic architectures. Methodology/Principal Findings Here we demonstrate that the RhoGEF Trio is required for the specification of class specific dendritic morphology in dendritic arborization (da) sensory neurons of the Drosophila peripheral nervous system (PNS). Trio is expressed in all da neuron subclasses and loss-of-function analyses indicate that Trio functions cell-autonomously in promoting dendritic branching, field coverage, and refining dendritic outgrowth in various da neuron subtypes. Moreover, overexpression studies demonstrate that Trio acts to promote higher order dendritic branching, including the formation of dendritic filopodia, through Trio GEF1-dependent interactions with Rac1, whereas Trio GEF-2-dependent interactions with Rho1 serve to restrict dendritic extension and higher order branching in da neurons. Finally, we show that de novo dendritic branching, induced by the homeodomain transcription factor Cut, requires Trio activity suggesting these molecules may act in a pathway to mediate dendrite morphogenesis. Conclusions/Significance Collectively, our analyses implicate Trio as an important regulator of class specific da neuron dendrite morphogenesis via interactions with Rac1 and Rho1 and indicate that Trio is required as downstream effector in Cut-mediated regulation of dendrite branching and filopodia formation.
Collapse
Affiliation(s)
- Srividya Chandramouli Iyer
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Dennis Wang
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Eswar Prasad R. Iyer
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Sarah A. Trunnell
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Ramakrishna Meduri
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Riaz Shinwari
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Mikolaj J. Sulkowski
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Daniel N. Cox
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
56
|
Abstract
Both insect and vertebrate visual circuits are organized into orderly arrays of columnar and layered synaptic units that correspond to the array of photoreceptors in the eye. Recent genetic studies in Drosophila have yielded insights into the molecular and cellular mechanisms that pattern the layers and columns and establish specific connections within the synaptic units. A sequence of inductive events and complex cellular interactions coordinates the assembly of visual circuits. Photoreceptor-derived ligands, such as hedgehog and Jelly-Belly, induce target development and expression of specific adhesion molecules, which in turn serve as guidance cues for photoreceptor axons. Afferents are directed to specific layers by adhesive afferent-target interactions mediated by leucine-rich repeat proteins and cadherins, which are restricted spatially and/or modulated dynamically. Afferents are restricted to their topographically appropriate columns by repulsive interactions between afferents and by autocrine activin signaling. Finally, Dscam-mediated repulsive interactions between target neuron dendrites ensure appropriate combinations of postsynaptic elements at synapses. Essentially, all these Drosophila molecules have vertebrate homologs, some of which are known to carry out analogous functions. Thus, the studies of Drosophila visual circuit development would shed light on neural circuit assembly in general.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
57
|
The Liprin homology domain is essential for the homomeric interaction of SYD-2/Liprin-α protein in presynaptic assembly. J Neurosci 2012; 31:16261-8. [PMID: 22072677 DOI: 10.1523/jneurosci.0002-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapses are asymmetric structures that are specialized for neuronal signal transduction. A unique set of proteins is present at the presynaptic active zone, which is a core structure essential for neurotransmitter release. In Caenorhabditis elegans HSN neurons, SYD-2, a Liprin-α family protein, acts together with a GAP protein SYD-1 to promote presynaptic assembly. Previous studies have shown that elevating the activity of syd-2 can bypass the requirement of syd-1. Liprin-α proteins are composed of coiled-coil-rich regions in the N-terminal half, which mediate interactions with adapter proteins at the presynaptic active zone, and three SAM domains in the C terminus, which bind proteins such as LAR receptor tyrosine phosphatase. To address the molecular mechanism by which SYD-2 activity is regulated, we performed structure-function studies. By monitoring the ability of SYD-2 transgenes to rescue syd-2(lf) and to suppress syd-1(lf) phenotypes in HSN neuron synapses, we identified the N-terminal half of SYD-2 as minimally required for rescuing syd-2(lf) phenotypes. A highly conserved short coiled-coil segment named Liprin Homology 1 (LH1) domain is both necessary and sufficient to suppress syd-1(lf) defects. We show that the LH1 domain forms a dimer and promotes further oligomerization and/or complex formation of SYD-2/Liprin-α proteins. The role of the LH1 domain in presynaptic assembly can be partially complemented by artificial dimerization. These findings suggest a model by which the self-assembly of SYD-2/Liprin-α proteins mediated by the coiled-coil LH1 domain is one of the key steps to the accumulation of presynaptic components at nascent synaptic junctions.
Collapse
|
58
|
Wei Z, Zheng S, Spangler SA, Yu C, Hoogenraad CC, Zhang M. Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol Cell 2011; 43:586-98. [PMID: 21855798 DOI: 10.1016/j.molcel.2011.07.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/03/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
Abstract
Liprins are highly conserved scaffold proteins that regulate cell adhesion, cell migration, and synapse development by binding to diverse target proteins. The molecular basis governing liprin/target interactions is poorly understood. The liprin-α2/CASK complex structure solved here reveals that the three SAM domains of liprin-α form an integrated supramodule that binds to the CASK kinase-like domain. As supported by biochemical and cellular studies, the interaction between liprin-α and CASK is unique to vertebrates, implying that the liprin-α/CASK interaction is likely to regulate higher-order brain functions in mammals. Consistently, we demonstrate that three recently identified X-linked mental retardation mutants of CASK are defective in binding to liprin-α. We also solved the liprin-α/liprin-β SAM domain complex structure, which uncovers the mechanism underlying liprin heterodimerizaion. Finally, formation of the CASK/liprin-α/liprin-β ternary complex suggests that liprins can mediate assembly of target proteins into large protein complexes capable of regulating numerous cellular activities.
Collapse
Affiliation(s)
- Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
59
|
Gundelfinger ED, Fejtova A. Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 2011; 22:423-30. [PMID: 22030346 DOI: 10.1016/j.conb.2011.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/25/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023]
Abstract
Regulated neurotransmitter release from presynaptic boutons is crucial for the functioning of chemical synapses, what in turn governs the functional performance of the nervous system. Release occurs at the active zone (AZ), a specialized region of the presynaptic plasma membrane that is defined by a unique and complex meshwork of proteins--the cytomatrix at the AZ (CAZ). Important functions of CAZ proteins include recruitment, docking and priming of synaptic vesicles as well as appropriate localization of voltage-gated calcium channels near vesicle docking sites. We will discuss recent progress in the understanding of the topological localization and the molecular functions of characteristic CAZ proteins as well as emerging molecular mechanisms underlying presynaptic plasticity that involve significant structural CAZ remodeling.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
60
|
Stafford RL, Tang MY, Sawaya MR, Phillips ML, Bowie JU. Crystal structure of the central coiled-coil domain from human liprin-β2. Biochemistry 2011; 50:3807-15. [PMID: 21462929 DOI: 10.1021/bi200141e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-αs and two liprin-βs which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-β2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-β1 and liprin-β2 coiled-coils were also identified. A 2.0 Å crystal structure of the central, protease-resistant core of the liprin-β2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.
Collapse
Affiliation(s)
- Ryan L Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall 611 Charles E. Young Dr. E., Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|