51
|
Aizawa H, Yamashita T, Kato H, Kimura T, Kwak S. Impaired Nucleoporins Are Present in Sporadic Amyotrophic Lateral Sclerosis Motor Neurons that Exhibit Mislocalization of the 43-kDa TAR DNA-Binding Protein. J Clin Neurol 2019; 15:62-67. [PMID: 30618218 PMCID: PMC6325357 DOI: 10.3988/jcn.2019.15.1.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Disruption of nucleoporins has been reported in the motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS). However, the precise changes in the morphology of nucleoporins associated with the pathology of the 43-kDa TAR DNA-binding protein (TDP-43) in the disease process remain unknown. We investigated the expression of nucleoporins that constitute the nuclear pore complex (NPC) in spinal motor neurons that exhibit sALS in relation to TDP-43 pathology, which is a reliable neuropathological hallmark of sALS. METHODS Paraffin-embedded sections of the lumbar spinal cord were obtained for immunofluorescence analysis from seven control subjects and six sALS patients. Anti-TDP-43 antibody, anti-nucleoporin p62 (NUP62) antibody, and anti-karyopherin beta 1 (KPNB1) antibody were applied as primary antibodies, and then visualized using appropriate secondary antibodies. The sections were then examined under a fluorescence microscope. RESULTS NUP62 and KPNB1 immunoreactivity appeared as a smooth round rim bordering the nuclear margin in normal spinal motor neurons that exhibited nuclear TDP-43 immunoreactivity. sALS spinal motor neurons with apparent TDP-43 mislocalization demonstrated irregular, disrupted nuclear staining for NUP62 or KPNB1. Some atrophic sALS spinal motor neurons with TDP-43 mislocalization presented no NUP62 immunoreactivity. CONCLUSIONS Our findings suggest a close relationship between NPC alterations and TDP-43 pathology in the degenerative process of the motor neurons of sALS patients.
Collapse
Affiliation(s)
- Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, Tokyo, Japan.
| | - Takenari Yamashita
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhisa Kato
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, National Hospital Organization, Asahikawa, Japan
| | - Shin Kwak
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
52
|
Hosaka T, Yamashita T, Teramoto S, Hirose N, Tamaoka A, Kwak S. ADAR2-dependent A-to-I RNA editing in the extracellular linear and circular RNAs. Neurosci Res 2018; 147:48-57. [PMID: 30448461 DOI: 10.1016/j.neures.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Currently, no reliable biomarkers of amyotrophic lateral sclerosis (ALS) exist. In sporadic ALS, RNA editing at the glutamine/arginine site of GluA2 mRNA is specifically reduced in the motor neurons due to the downregulation of adenosine deaminase acting on RNA 2 (ADAR2). Furthermore, TDP-43 pathology, the pathological hallmark of ALS, is observed in the ADAR2-lacking motor neurons in ALS patients and conditional ADAR2 knockout mice, suggesting a pivotal role of ADAR2 downregulation in the ALS pathogenesis. Extracellular RNAs were shown to represent potential disease biomarkers and the editing efficiencies at their ADAR2-dependent sites may reflect cellular ADAR2 activity, suggesting that these RNAs isolated from the body fluids may represent the biomarkers of ALS. We searched for ADAR2-dependent sites in the mouse motor neurons and human-derived cultured cells and found 10 sites in five host RNAs expressed in SH-SY5Y cells and their culture medium. Of these, the arginine/glycine site of SON mRNA was newly identified as an ADAR2-dependent site. Furthermore, we detected a circular RNA with an ADAR2-dependent site in the SH-SY5Y cells and their culture medium. Therefore, the changes in the editing efficiencies at the identified host RNA sites isolated from the body fluids may represent potential biomarkers of ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Pathophysiology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Sayaka Teramoto
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Hirose
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
53
|
Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal 2018; 29:846-863. [PMID: 28762759 DOI: 10.1089/ars.2017.7295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Adenosine deamination in transcriptome results in the formation of inosine, a process that is called A-to-I RNA editing. Adenosine deamination is one of the more than 140 described RNA modifications. A-to-I RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes and is essential for life. Recent Advances: Accumulating evidence supports a critical role of RNA editing in all aspects of RNA metabolism, including mRNA stability, splicing, nuclear export, and localization, as well as in recoding of proteins. These advances have significantly enhanced the understanding of mechanisms involved in development and in homeostasis. Furthermore, recent studies have indicated that RNA editing may be critically involved in cancer, aging, neurological, autoimmune, or cardiovascular diseases. CRITICAL ISSUES This review summarizes recent and significant achievements in the field of A-to-I RNA editing and discusses the importance and translational value of this RNA modification for gene expression, cellular, and organ function, as well as for disease development. FUTURE DIRECTIONS Elucidation of the exact RNA editing-dependent mechanisms in a single-nucleotide level may pave the path toward the development of novel therapeutic strategies focusing on modulation of ADAR function in the disease context. Antioxid. Redox Signal. 29, 846-863.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Nikolaos Vlachogiannis
- 5 Rheumatology Unit, First Department of Propaedeutic Internal Medicine and Joint Rheumatology Academic Program, School of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Federica Francesca Lunella
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,2 Department of Biosciences, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Marco Sachse
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| | - Konstantinos Stellos
- 1 Institute of Cardiovascular Regeneration, Center of Molecular Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,3 Department of Cardiology, Center of Internal Medicine, JW Goethe University Frankfurt , Frankfurt, Germany .,4 German Center of Cardiovascular Research (DZHK) , Rhein-Main Partner Site, Frankfurt, Germany
| |
Collapse
|
54
|
Yamashita T, Kwak S. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS. Neurosci Res 2018; 144:4-13. [PMID: 29944911 DOI: 10.1016/j.neures.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca2+, which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca2+-dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Neurology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
55
|
Franzén O, Ermel R, Sukhavasi K, Jain R, Jain A, Betsholtz C, Giannarelli C, Kovacic JC, Ruusalepp A, Skogsberg J, Hao K, Schadt EE, Björkegren JL. Global analysis of A-to-I RNA editing reveals association with common disease variants. PeerJ 2018; 6:e4466. [PMID: 29527417 PMCID: PMC5844249 DOI: 10.7717/peerj.4466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
RNA editing modifies transcripts and may alter their regulation or function. In humans, the most common modification is adenosine to inosine (A-to-I). We examined the global characteristics of RNA editing in 4,301 human tissue samples. More than 1.6 million A-to-I edits were identified in 62% of all protein-coding transcripts. mRNA recoding was extremely rare; only 11 novel recoding sites were uncovered. Thirty single nucleotide polymorphisms from genome-wide association studies were associated with RNA editing; one that influences type 2 diabetes (rs2028299) was associated with editing in ARPIN. Twenty-five genes, including LRP11 and PLIN5, had editing sites that were associated with plasma lipid levels. Our findings provide new insights into the genetic regulation of RNA editing and establish a rich catalogue for further exploration of this process.
Collapse
Affiliation(s)
- Oscar Franzén
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Raili Ermel
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rajeev Jain
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anamika Jain
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala Universitet, Uppsala, Sweden
| | - Chiara Giannarelli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Institute of Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jason C. Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ke Hao
- Institute of Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Eric E. Schadt
- Institute of Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Johan L.M. Björkegren
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Clinical Gene Networks AB, Stockholm, Sweden
| |
Collapse
|
56
|
Starr A, Sattler R. Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD. Brain Res 2018; 1693:98-108. [PMID: 29453960 DOI: 10.1016/j.brainres.2018.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration of upper and lower motor neurons, resulting in fatal paralysis due to denervation of the muscle. Due to genetic, pathological and symptomatic overlap, ALS is now considered a spectrum disease together with frontotemporal dementia (FTD), the second most common cause of dementia in individuals under the age of 65. Interestingly, in both diseases, there is a large prevalence of RNA binding proteins (RBPs) that are mutated and considered disease-causing, or whose dysfunction contribute to disease pathogenesis. The most common shared genetic mutation in ALS/FTD is a hexanucleuotide repeat expansion within intron 1 of C9ORF72 (C9). Three potentially overlapping, putative toxic mechanisms have been proposed: loss of function due to haploinsufficient expression of the C9ORF72 mRNA, gain of function of the repeat RNA aggregates, or RNA foci, and repeat-associated non-ATG-initiated translation (RAN) of the repeat RNA into toxic dipeptide repeats (DPRs). Regardless of the causative mechanism, disease symptoms are ultimately caused by a failure of neurotransmission in three regions: the brain, the spinal cord, and the neuromuscular junction. Here, we review C9 ALS/FTD-associated synaptic dysfunction and aberrant neuronal excitability in these three key regions, focusing on changes in morphology and synapse formation, excitability, and excitotoxicity in patients, animal models, and in vitro models. We compare these deficits to those seen in other forms of ALS and FTD in search of shared pathways, and discuss the potential targeting of synaptic dysfunctions for therapeutic intervention in ALS and FTD patients.
Collapse
Affiliation(s)
- Alexander Starr
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States
| | - Rita Sattler
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, United States.
| |
Collapse
|
57
|
Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM, Chouhan AK, Gane AB, Perkins EM, Dando O, Lillico SG, Lee YB, Nishimura AL, Poreci U, Thankamony S, Pray M, Vasistha NA, Magnani D, Borooah S, Burr K, Story D, McCampbell A, Shaw CE, Kind PC, Aitman TJ, Whitelaw CBA, Wilmut I, Smith C, Miles GB, Hardingham GE, Wyllie DJA, Chandran S. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca 2+-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 2018; 9:347. [PMID: 29367641 PMCID: PMC5783946 DOI: 10.1038/s41467-017-02729-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in C9ORF72 are the most common cause of familial amyotrophic lateral sclerosis (ALS). Here, through a combination of RNA-Seq and electrophysiological studies on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs), we show that increased expression of GluA1 AMPA receptor (AMPAR) subunit occurs in MNs with C9ORF72 mutations that leads to increased Ca2+-permeable AMPAR expression and results in enhanced selective MN vulnerability to excitotoxicity. These deficits are not found in iPSC-derived cortical neurons and are abolished by CRISPR/Cas9-mediated correction of the C9ORF72 repeat expansion in MNs. We also demonstrate that MN-specific dysregulation of AMPAR expression is also present in C9ORF72 patient post-mortem material. We therefore present multiple lines of evidence for the specific upregulation of GluA1 subunits in human mutant C9ORF72 MNs that could lead to a potential pathogenic excitotoxic mechanism in ALS. Repeat expansion mutation in C9ORF72 is the most common cause of familial ALS. Here, the authors generate motor neurons from cells of patients with C9ORF72 mutations, and characterize changes in gene expression in these motor neurons compared to genetically corrected lines, which suggest that glutamate receptor subunit GluA1 is dysregulated in this form of ALS.
Collapse
Affiliation(s)
- Bhuvaneish T Selvaraj
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Chen Zhao
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jenna M Gregory
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owain T James
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elaine M Cleary
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Amit K Chouhan
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Angus B Gane
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Emma M Perkins
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Simon G Lillico
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Youn-Bok Lee
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Agnes L Nishimura
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Urjana Poreci
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Sai Thankamony
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Meryll Pray
- Global Biomarker and Drug Discovery, Biogen, Cambridge, MA, 02142, USA
| | - Navneet A Vasistha
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Dario Magnani
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Shyamanga Borooah
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Karen Burr
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David Story
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Christopher E Shaw
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 8AF, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India
| | - Timothy J Aitman
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - C Bruce A Whitelaw
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Ian Wilmut
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Colin Smith
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Gareth B Miles
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Giles E Hardingham
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - David J A Wyllie
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India.
| | - Siddharthan Chandran
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK. .,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK. .,Centre for Brain Development and Repair, inStem, Bangalore, 560065, India. .,UK DRI Institute at Edinburgh, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
58
|
Abstract
The molecular process of RNA editing allows changes in RNA transcripts that increase genomic diversity. These highly conserved RNA editing events are catalyzed by a group of enzymes known as adenosine deaminases acting on double-stranded RNA (ADARs). ADARs are necessary for normal development, they bind to over thousands of genes, impact millions of editing sites, and target critical components of the central nervous system (CNS) such as glutamate receptors, serotonin receptors, and potassium channels. Dysfunctional ADARs are known to cause alterations in CNS protein products and therefore play a role in chronic or acute neurodegenerative and psychiatric diseases as well as CNS cancer. Here, we review how RNA editing deficiency impacts CNS function and summarize its role during disease pathogenesis.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Barrow Neurological Institute, Department of Neurobiology, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Stephen Moore
- Barrow Neurological Institute, Department of Neurobiology, Dignity Health, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| | - Rita Sattler
- Department of Neurobiology and Neurology, Dignityhealth St. Joseph's Hospital, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
59
|
Nakano M, Nakajima M. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharmacol Ther 2018; 181:13-21. [DOI: 10.1016/j.pharmthera.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
60
|
Qureshi IA, Mehler MF. Epigenetic mechanisms underlying nervous system diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:43-58. [PMID: 29325627 DOI: 10.1016/b978-0-444-63233-3.00005-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues.
Collapse
Affiliation(s)
- Irfan A Qureshi
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences and Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mark F Mehler
- Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine; Institute for Brain Disorders and Neural Regeneration; Departments of Neurology, Neuroscience, Psychiatry and Behavioral Sciences; Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities; Einstein Cancer Center; Ruth L. and David S. Gottesman Stem Cell Institute; and Center for Epigenomics and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
61
|
Ganem NS, Ben-Asher N, Lamm AT. In cancer, A-to-I RNA editing can be the driver, the passenger, or the mechanic. Drug Resist Updat 2017; 32:16-22. [PMID: 29145975 DOI: 10.1016/j.drup.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, A-to-I RNA modifications performed by the Adenosine Deaminase Acting on RNA (ADAR) protein family were found to be expressed at altered levels in multiple human malignancies. A-to-I RNA editing changes adenosine to inosine on double stranded RNA, thereby changing transcript sequence and structure. Although A-to-I RNA editing have the potential to change essential mRNA transcripts, affecting their corresponding protein structures, most of the human editing sites identified to date reside in non-coding repetitive transcripts such as Alu elements. Therefore, the impact of the hypo- or hyper-editing found in specific cancers remains unknown. Moreover, it is yet unclear whether or not changes in RNA editing and ADAR expression levels facilitate or even drive cancer progression or are just a byproduct of other affected pathways. In both cases, however, the levels of RNA editing and ADAR enzymes can possibly be used as specific biomarkers, as their levels change differently in specific malignancies. More significantly, recent studies suggest that ADAR enzymes can be used to reverse the oncogenic process, suggesting a potential for gene therapies. This review focuses on new findings that suggest that RNA editing by ADARs can affect cancer progression and even formation. We also discuss new possibilities of using ADAR enzymes and RNA editing as cancer biomarkers, indicators of chemotherapeutic drug sensitivity, and even to be themselves potential therapeutic tools.
Collapse
Affiliation(s)
- Nabeel S Ganem
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Noa Ben-Asher
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
62
|
Gallo A, Vukic D, Michalík D, O’Connell MA, Keegan LP. ADAR RNA editing in human disease; more to it than meets the I. Hum Genet 2017; 136:1265-1278. [DOI: 10.1007/s00439-017-1837-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
|
63
|
Keegan L, Khan A, Vukic D, O'Connell M. ADAR RNA editing below the backbone. RNA (NEW YORK, N.Y.) 2017; 23:1317-1328. [PMID: 28559490 PMCID: PMC5558901 DOI: 10.1261/rna.060921.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems.
Collapse
Affiliation(s)
- Liam Keegan
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Anzer Khan
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Dragana Vukic
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| | - Mary O'Connell
- CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic
| |
Collapse
|
64
|
Hussain S. Shaping and Reshaping Transcriptome Plasticity during Evolution. Trends Biochem Sci 2017; 42:682-684. [DOI: 10.1016/j.tibs.2017.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
|
65
|
D'Erchia AM, Gallo A, Manzari C, Raho S, Horner DS, Chiara M, Valletti A, Aiello I, Mastropasqua F, Ciaccia L, Locatelli F, Pisani F, Nicchia GP, Svelto M, Pesole G, Picardi E. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci Rep 2017; 7:10046. [PMID: 28855684 PMCID: PMC5577269 DOI: 10.1038/s41598-017-10488-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
ALS is a devastating and debilitating human disease characterized by the progressive death of upper and lower motor neurons. Although much effort has been made to elucidate molecular determinants underlying the onset and progression of the disorder, the causes of ALS remain largely unknown. In the present work, we have deeply sequenced whole transcriptome from spinal cord ventral horns of post-mortem ALS human donors affected by the sporadic form of the disease (which comprises ~90% of the cases but which is less investigated than the inherited form of the disease). We observe 1160 deregulated genes including 18 miRNAs and show that down regulated genes are mainly of neuronal derivation while up regulated genes have glial origin and tend to be involved in neuroinflammation or cell death. Remarkably, we find strong deregulation of SNAP25 and STX1B at both mRNA and protein levels suggesting impaired synaptic function through SNAP25 reduction as a possible cause of calcium elevation and glutamate excitotoxicity. We also note aberrant alternative splicing but not disrupted RNA editing.
Collapse
Affiliation(s)
- Anna Maria D'Erchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Angela Gallo
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Caterina Manzari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Susanna Raho
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Alessio Valletti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Italia Aiello
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy
| | - Francesca Mastropasqua
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Loredana Ciaccia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Franco Locatelli
- Department of Pediatric Oncohaematology, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy. .,Center of Excellence in Comparative Genomics, University of Bari, Piazza Umberto I, 70121, Bari, Italy.
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126, Bari, Italy. .,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 165/A, 70126, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Viale Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
66
|
Calpain-Dependent Degradation of Nucleoporins Contributes to Motor Neuron Death in a Mouse Model of Chronic Excitotoxicity. J Neurosci 2017; 37:8830-8844. [PMID: 28821644 DOI: 10.1523/jneurosci.0730-17.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 01/07/2023] Open
Abstract
Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST+/-/GLT1-cKO). GLAST+/-/GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor.SIGNIFICANCE STATEMENT Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor neuronal death and hindlimb paralysis. Further, our novel mutant exhibits the nuclear irregularities and calpain-mediated progressive nuclear pore complex degradation. Our study reveals that glial glutamate transporter dysfunction is sufficient to cause motor neuronal death in vivo.
Collapse
|
67
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
68
|
Altered Intracellular Milieu of ADAR2-Deficient Motor Neurons in Amyotrophic Lateral Sclerosis. Genes (Basel) 2017; 8:genes8020060. [PMID: 28208729 PMCID: PMC5333049 DOI: 10.3390/genes8020060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA-binding protein (TDP-43) pathology, and failure of A-to-I conversion (RNA editing) at the glutamine/arginine (Q/R) site of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of most patients with amyotrophic lateral sclerosis (ALS). Adenosine deaminase acting on RNA 2 (ADAR2) specifically catalyzes GluA2 Q/R site-RNA editing. Furthermore, conditional ADAR2 knockout mice (AR2) exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons, which is the most reliable pathological marker of ALS. Therefore, the evidence indicates that ADAR2 downregulation is a causative factor in ALS, and AR2 mice exhibit causative molecular changes that occur in ALS. We discuss the contributors to ADAR2 downregulation and TDP-43 pathology in AR2 mouse motor neurons. We describe mechanisms of exaggerated Ca2+ influx amelioration via AMPA receptors, which is neuroprotective in ADAR2-deficient motor neurons with normalization of TDP-43 pathology in AR2 mice. Development of drugs to treat diseases requires appropriate animal models and a sensitive method of evaluating efficacy. Therefore, normalization of disrupted intracellular environments resulting from ADAR2 downregulation may be a therapeutic target for ALS. We discuss the development of targeted therapy for ALS using the AR2 mouse model.
Collapse
|
69
|
Uchida H, Matsumura S, Okada S, Suzuki T, Minami T, Ito S. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury. FASEB J 2017; 31:1847-1855. [PMID: 28126736 DOI: 10.1096/fj.201600950r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
Transcriptional and post-translational regulations are important in peripheral nerve injury-induced neuropathic pain, but little is known about the role of post-transcriptional modification. Our objective was to determine the possible effect of adenosine deaminase acting on RNA (ADAR) enzymes, which catalyze post-transcriptional RNA editing, in tactile allodynia, a hallmark of neuropathic pain. Seven days after L5 spinal nerve transection (SNT) in adult mice, we found an increase in ADAR2 expression and a decrease in ADAR3 expression in the injured, but not in the uninjured, dorsal root ganglions (DRGs). These changes were accompanied by elevated levels of editing at the D site of the serotonin (5-hydroxytryptamine) 2C receptor (5-HT2CR), at the I/V site of coatomer protein complex subunit α (COPA), and at the R/G site of AMPA receptor subunit GluA2 in the injured DRG. Compared to Adar2+/+/Gria2R/R littermate controls, Adar2-/-/Gria2R/R mice completely lacked the increased editing of 5-HT2CR, COPA, and GluA2 transcripts in the injured DRG and showed attenuated tactile allodynia after SNT. Furthermore, the antidepressant fluoxetine inhibited neuropathic allodynia after injury and reduced the COPA I/V site editing in the injured DRG. These findings suggest that ADAR2 is a mediator of injury-induced tactile allodynia and thus a potential therapeutic target for the treatment of neuropathic pain.-Uchida, H., Matsumura, S., Okada, S., Suzuki, T., Minami, T., Ito, S. RNA editing enzyme ADAR2 is a mediator of neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Hitoshi Uchida
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan; and
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan; and
| | - Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan;
| |
Collapse
|
70
|
Yamashita T, Hatakeyama T, Sato K, Fukui Y, Hishikawa N, Ohta Y, Nishiyama Y, Kawai N, Tamiya T, Abe K. Flow-metabolism uncoupling in the cervical spinal cord of ALS patients. Neurol Sci 2017; 38:659-665. [PMID: 28120243 DOI: 10.1007/s10072-017-2823-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/16/2017] [Indexed: 12/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. In ALS, both glucose consumption and neuronal intensity reportedly decrease in the cerebral motor cortex when measured by positron emission tomography (PET). In this study, we evaluated cervical spinal glucose metabolism, blood flow, and neuronal intensity of 10 ALS patients with upper extremity (U/E) atrophy both with 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) PET and 11C-flumazenil (11C-FMZ) PET. On the ipsilateral side of C5 and T1 levels, 18F-FDG uptake increased significantly (*p < 0.05), and was correlated with the rate of progression of the ALS FRS-R-U/E score (R = 0.645, *p = 0.041). Despite this hyperglucose metabolism, the 11C-FMZ PET study did not show a coupled increase of spinal blood flow even though neuronal intensity did not decrease. These results indicate a strong correlation between hyperglucose metabolism and ALS progression alongside the uncoupling of flow-metabolism. This mechanism, which could result in subsequent motor neuronal death, may be a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yasuyuki Ohta
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Nobuyuki Kawai
- Department of Neurological Surgery, Kagawa General Rehabilitation Hospital, Kagawa, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmacy, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan.
| |
Collapse
|
71
|
Yamashita T, Aizawa H, Teramoto S, Akamatsu M, Kwak S. Calpain-dependent disruption of nucleo-cytoplasmic transport in ALS motor neurons. Sci Rep 2017; 7:39994. [PMID: 28045133 PMCID: PMC5206745 DOI: 10.1038/srep39994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022] Open
Abstract
Nuclear dysfunction in motor neurons has been hypothesized to be a principal cause of amyotrophic lateral sclerosis (ALS) pathogenesis. Here, we investigated the mechanism by which the nuclear pore complex (NPC) is disrupted in dying motor neurons in a mechanistic ALS mouse model (adenosine deaminase acting on RNA 2 (ADAR2) conditional knockout (AR2) mice) and in ALS patients. We showed that nucleoporins (Nups) that constituted the NPC were cleaved by activated calpain via a Ca2+-permeable AMPA receptor-mediated mechanism in dying motor neurons lacking ADAR2 expression in AR2 mice. In these neurons, nucleo-cytoplasmic transport was disrupted, and the level of the transcript elongation enzyme RNA polymerase II phosphorylated at Ser2 was significantly decreased. Analogous changes were observed in motor neurons lacking ADAR2 immunoreactivity in sporadic ALS patients. Therefore, calpain-dependent NPC disruption may participate in ALS pathogenesis, and inhibiting Ca2+-mediated cell death signals may be a therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Sayaka Teramoto
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Megumi Akamatsu
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin Kwak
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Clinical Research Center for Medicine, International University of Health and Welfare, 6-1-14 Konodai, Ichikawa, Chiba 272-0827, Japan
| |
Collapse
|
72
|
Meier JC, Kankowski S, Krestel H, Hetsch F. RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 2016; 9:124. [PMID: 27932948 PMCID: PMC5120146 DOI: 10.3389/fnmol.2016.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.
Collapse
Affiliation(s)
- Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Svenja Kankowski
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Heinz Krestel
- Neurology, Universitätsspital und Universität Bern Bern, Switzerland
| | - Florian Hetsch
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
73
|
Jaworska E, Kozlowska E, Switonski PM, Krzyzosiak WJ. Modeling simple repeat expansion diseases with iPSC technology. Cell Mol Life Sci 2016; 73:4085-100. [PMID: 27261369 PMCID: PMC11108530 DOI: 10.1007/s00018-016-2284-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
A number of human genetic disorders, including Huntington's disease, myotonic dystrophy type 1, C9ORF72 form of amyotrophic lateral sclerosis and several spinocerebellar ataxias, are caused by the expansion of various microsatellite sequences in single implicated genes. The neurodegenerative and neuromuscular nature of the repeat expansion disorders considerably limits the access of researchers to appropriate cellular models of these diseases. This limitation, however, can be overcome by the application of induced pluripotent stem cell (iPSC) technology. In this paper, we review the current knowledge on the modeling of repeat expansion diseases with human iPSCs and iPSC-derived cells, focusing on the disease phenotypes recapitulated in these models. In subsequent sections, we provide basic practical knowledge regarding iPSC generation, characterization and differentiation into neurons. We also cover disease modeling in iPSCs, neuronal stem cells and specialized neuronal cultures. Furthermore, we also summarize the therapeutic potential of iPSC technology in repeat expansion diseases.
Collapse
Affiliation(s)
- Edyta Jaworska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Emilia Kozlowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Pawel M Switonski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704, Poznan, Poland.
| |
Collapse
|
74
|
Filippini A, Bonini D, La Via L, Barbon A. The Good and the Bad of Glutamate Receptor RNA Editing. Mol Neurobiol 2016; 54:6795-6805. [DOI: 10.1007/s12035-016-0201-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
|
75
|
Misawa H, Inomata D, Kikuchi M, Maruyama S, Moriwaki Y, Okuda T, Nukina N, Yamanaka T. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers. Genesis 2016; 54:568-572. [PMID: 27596971 DOI: 10.1002/dvg.22979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
Abstract
VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology.
Collapse
Affiliation(s)
- Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Daijiro Inomata
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Miseri Kikuchi
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sae Maruyama
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takashi Okuda
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| |
Collapse
|
76
|
Patai R, Nógrádi B, Engelhardt JI, Siklós L. Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage? Biochem Biophys Res Commun 2016; 483:1031-1039. [PMID: 27545602 DOI: 10.1016/j.bbrc.2016.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Roland Patai
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Bernát Nógrádi
- Foundation for the Future of Biomedical Sciences in Szeged, Pálfy u. 52/d, 6725 Szeged, Hungary
| | - József I Engelhardt
- Department of Neurology, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary.
| |
Collapse
|
77
|
Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S. The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 2016; 6:28649. [PMID: 27350567 PMCID: PMC4923865 DOI: 10.1038/srep28649] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023] Open
Abstract
Both TDP-43 pathology and failure of RNA editing of AMPA receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of the majority of patients with amyotrophic lateral sclerosis (ALS). AR2 mice, in which an RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is conditionally knocked out in the motor neurons, exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons through a Ca2+-permeable AMPA receptor-mediated mechanism. Therefore, amelioration of the increased Ca2+ influx by AMPA receptor antagonists may be a potential ALS therapy. Here, we showed that orally administered perampanel, a selective, non-competitive AMPA receptor antagonist significantly prevented the progression of the ALS phenotype and normalized the TDP-43 pathology-associated death of motor neurons in the AR2 mice. Given that perampanel is an approved anti-epileptic drug, perampanel is a potential candidate ALS drug worthy of a clinical trial.
Collapse
Affiliation(s)
- Megumi Akamatsu
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takenari Yamashita
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoki Hirose
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Teramoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shin Kwak
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Clinical Research Center for Medicine, International University of Health and Welfare, Ichikawa, Chiba, Japan
| |
Collapse
|
78
|
Aizawa H, Hideyama T, Yamashita T, Kimura T, Suzuki N, Aoki M, Kwak S. Deficient RNA-editing enzyme ADAR2 in an amyotrophic lateral sclerosis patient with a FUS(P525L) mutation. J Clin Neurosci 2016; 32:128-9. [PMID: 27343041 DOI: 10.1016/j.jocn.2015.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/08/2015] [Accepted: 12/12/2015] [Indexed: 11/30/2022]
Abstract
Mutations in the fused in sarcoma (FUS) gene can cause amyotrophic lateral sclerosis (ALS), and FUS gene mutations have been reported in sporadic ALS patients with basophilic cytoplasmic inclusions. Deficiency of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme that specifically catalyzes GluA2 Q/R site-editing, has been reported in considerable proportions of spinal motor neurons of the majority of sporadic ALS patients. We describe the relationship between GluA2 Q/R site-editing efficiency and FUS-positive inclusions in a patient with FUS(P525L). A 24-year-old woman with ALS presented with basophilic cytoplasmic inclusions, significantly reduced GluA2 Q/R site-editing efficiency in the spinal motor neurons, and markedly decreased ADAR2 mRNA levels. Neuropathologic examination showed that not all spinal motor neurons expressed ADAR2 and revealed FUS-positive cytoplasmic inclusions in motor neurons irrespective of ADAR2 immunoreactivity. There were no phosphorylated transactive response (TAR) DNA-binding protein 43 kDa (TDP-43)-positive inclusions, indicating that there was no tight correlation between ADAR2 deficiency and TDP-43 deposition. ADAR2 deficiency can occur in ALS patients with a FUS(P525L) mutation and is unrelated to the presence of FUS-positive inclusions. FUS-associated ALS may share neurodegenerative characteristics with classical sporadic ALS.
Collapse
Affiliation(s)
- Hitoshi Aizawa
- Department of Neurology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan.
| | - Takuto Hideyama
- Department of Neurology, Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| | - Takenari Yamashita
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Kimura
- Department of Neurology, Asahikawa Medical Center, National Hospital Organization, Asahikawa 070-8644, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi 980-8577, Japan
| | - Shin Kwak
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Clinical Research Center of Medicine, International University of Health and Welfare, Minato-ku, Tokyo 108-8329, Japan
| |
Collapse
|
79
|
Abstract
All true metazoans modify their RNAs by converting specific adenosine residues to inosine. Because inosine binds to cytosine, it is a biological mimic for guanosine. This subtle change, termed RNA editing, can have diverse effects on various RNA-mediated cellular pathways, including RNA interference, innate immunity, retrotransposon defense and messenger RNA recoding. Because RNA editing can be regulated, it is an ideal tool for increasing genetic diversity, adaptation and environmental acclimation. This review will cover the following themes related to RNA editing: (1) how it is used to modify different cellular RNAs, (2) how frequently it is used by different organisms to recode mRNA, (3) how specific recoding events regulate protein function, (4) how it is used in adaptation and (5) emerging evidence that it can be used for acclimation. Organismal biologists with an interest in adaptation and acclimation, but with little knowledge of RNA editing, are the intended audience.
Collapse
Affiliation(s)
- Joshua J C Rosenthal
- Universidad de Puerto Rico, Recinto de Ciencias Medicas, Instituto de Neurobiologia, 201 Blvd. del Valle, San Juan, PR 00901, USA
| |
Collapse
|
80
|
Yamashita T, Teramoto S, Kwak S. Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD. Neurosci Res 2016; 107:63-9. [DOI: 10.1016/j.neures.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
|
81
|
ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat Commun 2016; 7:10512. [PMID: 26813350 PMCID: PMC4737855 DOI: 10.1038/ncomms10512] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023] Open
Abstract
It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity. Sleep is postulated to offset buildup in net synaptic strength that occurs during waking experience. Here, the authors identify a role for the RNA editing gene Adar in regulating glutamatergic synaptic plasticity and show that disruption in Adar expression impairs normal waking in flies.
Collapse
|
82
|
King AE, Woodhouse A, Kirkcaldie MT, Vickers JC. Excitotoxicity in ALS: Overstimulation, or overreaction? Exp Neurol 2016; 275 Pt 1:162-71. [DOI: 10.1016/j.expneurol.2015.09.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/30/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
83
|
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference.
Collapse
|
84
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
85
|
Bonini D, Filippini A, La Via L, Fiorentini C, Fumagalli F, Colombi M, Barbon A. Chronic glutamate treatment selectively modulates AMPA RNA editing and ADAR expression and activity in primary cortical neurons. RNA Biol 2015; 12:43-53. [PMID: 25625181 DOI: 10.1080/15476286.2015.1008365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine-to-inosine RNA editing is a post-transcriptional process, catalyzed by ADAR enzymes, with an important role in diversifying the number of proteins derived from a single gene. In neurons, editing of ionotropic AMPA glutamate receptors has been shown to be altered under several experimental conditions, including severe pathologies, thus highlighting the potential significance of its modulation. In this study, we treated rat primary cortical cell cultures with a sub-lethal dose of glutamate (10 μM), focusing on RNA editing and ADAR activity. We found that chronic glutamate treatment down-regulates RNA editing levels at the R/G site of GluA2-4 subunits of AMPA receptors and at the K/E site of CYFIP2. These changes are site-specific since they were not observed either for the GluA2 Q/R site or for other non-glutamatergic sites. Glutamate treatment also down-regulates the protein expression levels of both ADAR1 and ADAR2 enzymes, through a pathway that is Ca(2+)- and calpain-dependent. Given that AMPA receptors containing unedited subunits show a slower recovery rate from desensitization compared to those containing edited forms, the reduced editing at the R/G site may, at least in part, compensate for glutamate over-stimulation, perhaps through the reduced activation of postsynaptic receptors. In summary, our data provide direct evidence of the involvement of ADAR1 and ADAR2 activity as a possible compensatory mechanism for neuronal protection following glutamate over-stimulation.
Collapse
Affiliation(s)
- Daniela Bonini
- a Biology and Genetic Division; Department of Molecular and Translational Medicine; National Institute of Neuroscience; University of Brescia ; Brescia , Italy
| | | | | | | | | | | | | |
Collapse
|
86
|
Mannion N, Arieti F, Gallo A, Keegan LP, O'Connell MA. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins. Biomolecules 2015; 5:2338-62. [PMID: 26437436 PMCID: PMC4693238 DOI: 10.3390/biom5042338] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.
Collapse
Affiliation(s)
- Niamh Mannion
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 21 Shelley Road, Glasgow G12 0ZD, UK.
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Angela Gallo
- Oncohaematoogy Department, Ospedale Pediatrico Bambino Gesù (IRCCS) Viale di San Paolo, Roma 15-00146, Italy.
| | - Liam P Keegan
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Mary A O'Connell
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| |
Collapse
|
87
|
RNA rewriting, recoding, and rewiring in human disease. Trends Mol Med 2015; 21:549-59. [DOI: 10.1016/j.molmed.2015.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 11/15/2022]
|
88
|
Autophagy in spinal motor neurons of conditional ADAR2-knockout mice: An implication for a role of calcium in increased autophagy flux in ALS. Neurosci Lett 2015; 598:79-84. [DOI: 10.1016/j.neulet.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/03/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022]
|
89
|
Nussbacher JK, Batra R, Lagier-Tourenne C, Yeo GW. RNA-binding proteins in neurodegeneration: Seq and you shall receive. Trends Neurosci 2015; 38:226-36. [PMID: 25765321 PMCID: PMC4403644 DOI: 10.1016/j.tins.2015.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
As critical players in gene regulation, RNA binding proteins (RBPs) are taking center stage in our understanding of cellular function and disease. In our era of bench-top sequencers and unprecedented computational power, biological questions can be addressed in a systematic, genome-wide manner. Development of high-throughput sequencing (Seq) methodologies provides unparalleled potential to discover new mechanisms of disease-associated perturbations of RNA homeostasis. Complementary to candidate single-gene studies, these innovative technologies may elicit the discovery of unexpected mechanisms, and enable us to determine the widespread influence of the multifunctional RBPs on their targets. Given that the disruption of RNA processing is increasingly implicated in neurological diseases, these approaches will continue to provide insights into the roles of RBPs in disease pathogenesis.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ranjan Batra
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Department of Cellular and Molecule Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Department of Physiology, National University of Singapore, Singapore.
| |
Collapse
|
90
|
Yamashita T, Kwak S. [Calpain plays a crucial role in TDP-43 pathology]. Rinsho Shinkeigaku 2015; 54:1151-4. [PMID: 25672733 DOI: 10.5692/clinicalneurol.54.1151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease affecting healthy middle-aged individuals. Mislocalization of TAR DNA binding protein of 43 kDa (TDP-43) or TDP-43 pathology observed in the spinal motor neurons is the pathological hallmark of ALS. The mechanism generating TDP-43 pathology remained uncertain. Several reports suggested that cleavage of TDP-43 into aggregation-prone fragments might be the earliest event. Therefore, elucidation of the protease(s) that is responsible for TDP-43 cleavage in the motor neurons is awaited. ALS-specific molecular abnormalities other than TDP-43 pathology in the motor neurons of sporadic ALS patients include inefficient RNA editing at the GluA2 glutamine/arginine (Q/R) site, which is specifically catalyzed by adenosine deaminase acting on RNA 2 (ADAR2). We have developed the conditional ADAR2 knockout (AR2) mice, in which the ADAR2 gene is targeted in motor neurons. We found that Ca(2+)-dependent cysteine protease calpain cleaved TDP-43 into aggregation-prone fragments, which initiated TDP-43 mislocalization in the motor neurons expressing abnormally abundant Ca(2+)-permeable AMPA receptors. Here we summarized the molecular cascade leading to TDP-43 pathology observed in the motor neurons of AR2 mice and discussed possible roles of dysregulation of calpain-dependent cleavage of TDP-43 in TDP-43 pathology observed in neurological diseases in general.
Collapse
Affiliation(s)
- Takenari Yamashita
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo
| | | |
Collapse
|
91
|
Abstract
Modified RNA molecules have recently been shown to regulate nervous system functions. This mini-review and associated mini-symposium provide an overview of the types and known functions of novel modified RNAs in the nervous system, including covalently modified RNAs, edited RNAs, and circular RNAs. We discuss basic molecular mechanisms involving RNA modifications as well as the impact of modified RNAs and their regulation on neuronal processes and disorders, including neural fate specification, intellectual disability, neurodegeneration, dopamine neuron function, and substance use disorders.
Collapse
|
92
|
Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I. Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 2015; 18:309-18. [PMID: 26383032 DOI: 10.3109/10253890.2015.1073254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific. We trained C57/Bl6 mice in trace and contextual fear conditioning protocols, and examined editing levels at GRIK1 and GluA2 Q/R sites in the amygdala (CeA) and hippocampus (CA1 and CA3), at two time points after training. We also examined experience-dependent changes in the expression of RNA editing enzymes and editing targets. Animals trained in the trace fear conditioning protocol exhibited a transient increase in unedited GRIK1 RNA in the amygdala, and their learning efficiency correlated with unedited RNA levels in CA1. In line with previous reports, GluA2 RNA editing levels were nearly 100%. Additionally, we observed experience-dependent changes in mRNA expression of the RNA editing enzymes ADAR2 and ADAR1 in amygdala and hippocampus, and a learning-dependent increase in the alternatively spliced inactive form of ADAR2 in the amygdala. Since unedited transcripts code for Ca(2+)-permeable receptor subunits, these findings suggest that RNA editing at Q/R sites of glutamate receptors plays an important role in experience-dependent synaptic modification processes.
Collapse
Affiliation(s)
- Noa Brande-Eilat
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Yaela N Golumbic
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Hiba Zaidan
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Inna Gaisler-Salomon
- a Psychology Department , University of Haifa , Haifa , Israel and
- b Department of Psychiatry , Columbia University , New York , NY , USA
| |
Collapse
|
93
|
Holmgren M, Rosenthal JJ. Regulation of Ion Channel and Transporter Function Through RNA Editing. Curr Issues Mol Biol 2014; 17:23-36. [PMID: 25347917 PMCID: PMC5248560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
A large proportion of the recoding events mediated by RNA editing are in mRNAs that encode ion channels and transporters. The effects of these events on protein function have been characterized in only a few cases. In even fewer instances are the mechanistic underpinnings of these effects understood. This review focuses on how RNA editing affects protein function and higher order physiology. In mammals, particular attention is given to the GluA2, an ionotropic glutamate receptor subunit, and K(v) 1.1, a voltage-dependent K+ channel, because they are particularly well understood. In K(v) addition, work on cephalopod K+ channels and Na+/K+-ATPases has also provided important clues on the rules used by RNA editing to regulate excitability. Finally, we discuss some of the emerging targets for editing and how this process may be used to regulate nervous function in response to a variable environment.
Collapse
Affiliation(s)
- Miguel Holmgren
- Molecular Neurophysiology Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua J.C. Rosenthal
- Institute of Neurobiology and Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
94
|
Yamashita T, Kwak S. The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res 2014; 1584:28-38. [DOI: 10.1016/j.brainres.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 12/12/2022]
|
95
|
Li IC, Chen YC, Wang YY, Tzeng BW, Ou CW, Lau YY, Wu KM, Chan TM, Lin WH, Hwang SPL, Chow WY. Zebrafish Adar2 Edits the Q/R site of AMPA receptor Subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells. PLoS One 2014; 9:e97133. [PMID: 24818983 PMCID: PMC4018279 DOI: 10.1371/journal.pone.0097133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 04/15/2014] [Indexed: 12/13/2022] Open
Abstract
Background Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing) in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor, have been extensively studied, the substrates and functions of zebrafish Adar2 remain elusive. Methods/Principal Findings Expression of Adar2 was perturbed in the adar2 morphant (adar2MO), generated by antisense morpholio oligonucleotides. The Q/R editing of gria2α was reduced in the adar2MO and was enhanced by overexpression of Adar2, demonstrating an evolutionarily conserved activity between zebrafish and mammalian Adar2 in editing the Q/R site of gria2. To delineate the role of Q/R editing of gria2α in the developmental defects observed in the adar2MO, the Q/R editing of gria2α was specifically perturbed in the gria2αQRMO, generated by a morpholio oligonucleotide complementary to the exon complementary sequence (ECS) required for the Q/R editing. Analogous to the adar2-deficient and Q/R-editing deficient mice displaying identical neurological defects, the gria2αQRMO and adar2MO displayed identical developmental defects in the nervous system and cranial cartilages. Knockdown p53 abolished apoptosis and partially suppressed the loss of spinal cord motor neurons in these morphants. However, reducing p53 activity neither replenished the brain neuronal populations nor rescued the developmental defects. The expressions of crestin and sox9b in the neural crest cells were reduced in the adar2MO and gria2αQRMO. Overexpressing the edited GluA2αR in the adar2MO restored normal expressions of cresting and sox9b. Moreover, overexpressing the unedited GluA2αQ in the wild type embryos resulted in reduction of crestin and sox9b expressions. These results argue that an elevated GluA2αQ level is sufficient for generating the cranial neural crest defects observed in the adar2MO. Our results present a link between dysfunction of AMPA receptors and defective development of the nervous system and cranial neural crest in the zebrafish.
Collapse
Affiliation(s)
- I-Chen Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chia Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yun Wang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Wei Tzeng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Wen Ou
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Yan Lau
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Kan-Mai Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Min Chan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Hsiang Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail: (WYC); (SPLH)
| | - Wei-Yuan Chow
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (WYC); (SPLH)
| |
Collapse
|
96
|
The RNA editing enzymes ADARs: mechanism of action and human disease. Cell Tissue Res 2014; 356:527-32. [PMID: 24770896 DOI: 10.1007/s00441-014-1863-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
A-to-I RNA editing is a ubiquitous and crucial molecular mechanism able to convert adenosines into inosines (then read as guanosines by several intracellular proteins/enzymes) within RNA molecules, changing the genomic information. The A-to-I deaminase enzymes (ADARs), which modify the adenosine, can alter the splicing and translation machineries, the double-stranded RNA structures and the binding affinity between RNA and RNA-binding proteins. ADAR activity is an essential mechanism in mammals and altered editing has been associated with several human diseases. Many efforts are now being concentrated on modifying ADAR activity in vivo in an attempt to correct RNA editing dysfunction. Concomitantly, ongoing studies aim to show the way that the ADAR deaminase domain can be used as a possible new tool, an intracellular Trojan horse, for the correction of heritage diseases not related to RNA editing events.
Collapse
|
97
|
Sasaki S, Hideyama T, Kwak S. Unique nuclear vacuoles in the motor neurons of conditional ADAR2-knockout mice. Brain Res 2014; 1550:36-46. [PMID: 24440630 DOI: 10.1016/j.brainres.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/17/2022]
Abstract
A reduction in adenosine deaminase acting on RNA 2 (ADAR2) activity causes the death of spinal motor neurons specifically via the GluA2 Q/R site-RNA editing failure in sporadic amyotrophic lateral sclerosis (ALS). We studied, over time, the spinal cords of ADAR2-knockout mice, which are the mechanistic model mice for sporadic ALS, using homozygous ADAR2(flox/flox)/VAChT-Cre.Fast (AR2), homozygous ADAR2(flox/flox)/VAChT-Cre.Slow (AR2Slow), and heterozygous ADAR2(flox/+)/VAChT-Cre.Fast (AR2H) mice. The conditional ADAR2-knockout mice were divided into 3 groups by stage: presymptomatic (AR2H mice), early symptomatic (AR2 mice, AR2H mice) and late symptomatic (AR2Slow mice). Light-microscopically, some motor neurons in AR2 and AR2H mice (presymptomatic) showed simple neuronal atrophy and astrogliosis, and AR2H (early symptomatic) and AR2Slow mice often showed vacuoles predominantly in motor neurons. The number of vacuole-bearing anterior horn neurons decreased with the loss of anterior horn neurons in AR2H mice after 40 weeks of age. Electron-microscopically, in AR2 mice, while the cytoplasm of normal-looking motor neurons was almost always normal-appearing, the interior of dendrites was frequently loose and disorganized. In AR2H and AR2Slow mice, large vacuoles without a limiting membrane were observed in the anterior horns, preferentially in the nuclei of motor neurons, astrocytes and oligodendrocytes. Nuclear vacuoles were not observed in AR2res (ADAR2(flox/flox)/VAChT-Cre.Fast/GluR-B(R/R)) mice, in which motor neurons express edited GluA2 in the absence of ADAR2. These findings suggest that ADAR2-reduction is associated with progressive deterioration of nuclear architecture, resulting in vacuolated nuclei due to a Ca(2+)-permeable AMPA receptor-mediated mechanism.
Collapse
Affiliation(s)
- Shoichi Sasaki
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takuto Hideyama
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Japan
| | - Shin Kwak
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Japan
| |
Collapse
|
98
|
Abstract
A-to-I RNA editing is a post-transcriptional modification that converts adenosines to inosines in both coding and noncoding RNA transcripts. It is catalyzed by ADAR (adenosine deaminase acting on RNA) enzymes, which exist throughout the body but are most prevalent in the central nervous system. Inosines exhibit properties that are most similar to those of guanosines. As a result, ADAR-mediated editing can post-transcriptionally alter codons, introduce or remove splice sites, or affect the base pairing of the RNA molecule with itself or with other RNAs. A-to-I editing is a mechanism that regulates and diversifies the transcriptome, but the full biological significance of ADARs is not understood. ADARs are highly conserved across vertebrates and are essential for normal development in mammals. Aberrant ADAR activity has been associated with a wide range of human diseases, including cancer, neurological disorders, metabolic diseases, viral infections and autoimmune disorders. ADARs have been shown to contribute to disease pathologies by editing of glutamate receptors, editing of serotonin receptors, mutations in ADAR genes, and by other mechanisms, including recently identified regulatory roles in microRNA processing. Advances in research into many of these diseases may depend on an improved understanding of the biological functions of ADARs. Here, we review recent studies investigating connections between ADAR-mediated RNA editing and human diseases.
Collapse
Affiliation(s)
- William Slotkin
- Department of Gene Expression and Regulation, The Wistar Institute, Spruce Street, Philadelphia, PA 19104-4268, USA
| | - Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Spruce Street, Philadelphia, PA 19104-4268, USA
| |
Collapse
|
99
|
Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013; 80:415-28. [PMID: 24139042 PMCID: PMC4098943 DOI: 10.1016/j.neuron.2013.10.015] [Citation(s) in RCA: 694] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2013] [Indexed: 12/11/2022]
Abstract
A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.
Collapse
Affiliation(s)
- Christopher J. Donnelly
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Ping-Wu Zhang
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Jacqueline T. Pham
- Department of Cellular and Molecular Medicine, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Aaron R. Heusler
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Nipun A. Mistry
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Svetlana Vidensky
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Elizabeth L. Daley
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Erin M. Poth
- Department of Neuroscience, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Benjamin Hoover
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Daniel M. Fines
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Nicholas Maragakis
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Pentti J. Tienari
- Biomedicum, Research Programs Unit, Molecular Neurology, University of Helsinki; Helsinki University Central Hospital, Department of Neurology, Haartmaninkatu 8, FIN-00290 Helsinki, Finland
| | - Leonard Petrucelli
- Department of Molecular Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Bryan J. Traynor
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, 35 Convent Drive, Room 1A-1000, Bethesda, MD 20892, USA
| | - Jiou Wang
- Department of Neuroscience, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - C. Frank Bennett
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Rita Sattler
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Department of Cellular and Molecular Medicine, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, 855 N Wolfe Street, Rangos 2–270, Baltimore, MD 21205, USA
| |
Collapse
|
100
|
Yamashita T, Chai HL, Teramoto S, Tsuji S, Shimazaki K, Muramatsu SI, Kwak S. Rescue of amyotrophic lateral sclerosis phenotype in a mouse model by intravenous AAV9-ADAR2 delivery to motor neurons. EMBO Mol Med 2013; 5:1710-9. [PMID: 24115583 PMCID: PMC3840487 DOI: 10.1002/emmm.201302935] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 01/08/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease, and the lack of effective therapy results in inevitable death within a few years of onset. Failure of GluA2 RNA editing resulting from downregulation of the RNA-editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) occurs in the majority of ALS cases and causes the death of motor neurons via a Ca2+-permeable AMPA receptor-mediated mechanism. Here, we explored the possibility of gene therapy for ALS by upregulating ADAR2 in mouse motor neurons using an adeno-associated virus serotype 9 (AAV9) vector that provides gene delivery to a wide array of central neurons after peripheral administration. A single intravenous injection of AAV9-ADAR2 in conditional ADAR2 knockout mice (AR2), which comprise a mechanistic mouse model of sporadic ALS, caused expression of exogenous ADAR2 in the central neurons and effectively prevented progressive motor dysfunction. Notably, AAV9-ADAR2 rescued the motor neurons of AR2 mice from death by normalizing TDP-43 expression. This AAV9-mediated ADAR2 gene delivery may therefore enable the development of a gene therapy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- CREST, Japan Science and Technology Agency, Graduate School of Medicine, University of Tokyo, Bunkyo-Ku, Tokyo, Japan; Department of Neurology, Graduate School of Medicine, University of Tokyo, Bunkyo-Ku, Tokyo, Japan; Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|