51
|
Cai H, Cao T, Zhou X, Yao JK. Neurosteroids in Schizophrenia: Pathogenic and Therapeutic Implications. Front Psychiatry 2018; 9:73. [PMID: 29568275 PMCID: PMC5852066 DOI: 10.3389/fpsyt.2018.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Neurosteroids are a group of important endogenous molecules affecting many neural functions in the brain. Increasing evidence suggests a possible role of these neurosteroids in the pathology and symptomatology of schizophrenia (SZ) and other mental disorders. The aim of this review is to summarize the current knowledge about the neural functions of neurosteroids in the brain, and to evaluate the role of the key neurosteroids as candidate modulators in the etiology and therapeutics of SZ. The present paper provides a brief introduction of neurosteroid metabolism and distribution, followed by a discussion of the mechanisms underlying neurosteroid actions in the brain. The content regarding the modulation of the GABAA receptor is elaborated, given the considerable knowledge of its interactions with other neurotransmitter and neuroprotective systems, as well as its ameliorating effects on stress that may play a role in the SZ pathophysiology. In addition, several preclinical and clinical studies suggested a therapeutic benefit of neurosteroids in SZ patients, even though the presence of altered neurosteroid pathways in the circulating blood and/or brain remains debatable. Following treatment of antipsychotic drugs in SZ, therapeutic benefits have also been linked to the regulation of neurosteroid signaling. Specifically, the neurosteroids such as pregnenolone and dehydroepiandrosterone affect a broad spectrum of behavioral functions through their unique molecular characteristics and may represent innovative therapeutic targets for SZ. Future investigations in larger cohorts with long-term follow-ups will be required to ascertain the neuropsychopharmacological role of this yet unexploited class of neurosteroid agents.
Collapse
Affiliation(s)
- HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- The Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiang Zhou
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Jeffrey K. Yao
- Medical Research Service, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
52
|
Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 2018; 30. [PMID: 29265686 DOI: 10.1111/jne.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death pivotally involved in neurodegenerative diseases. Both BR351 and BR297 had notable advantages over AP in protecting SH-SY5Y cells against oxidative stress-induced death. Thus, BR297 appears to be a potent neuroprotective compound devoid of cell-proliferative activity. Altogether, our results suggest promising perspectives for the development of neurosteroid-based selective and effective strategies against neuroendocrine and/or neurodegenerative disorders.
Collapse
Affiliation(s)
- O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - V Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - P Geoffroy
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - M Miesch
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - A-G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
53
|
Belelli D, Brown AR, Mitchell SJ, Gunn BG, Herd MB, Phillips GD, Seifi M, Swinny JD, Lambert JJ. Endogenous neurosteroids influence synaptic GABA A receptors during postnatal development. J Neuroendocrinol 2018; 30. [PMID: 28905487 DOI: 10.1111/jne.12537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/12/2022]
Abstract
GABA plays a key role in both embryonic and neonatal brain development. For example, during early neonatal nervous system maturation, synaptic transmission, mediated by GABAA receptors (GABAA Rs), undergoes a temporally specific form of synaptic plasticity to accommodate the changing requirements of maturing neural networks. Specifically, the duration of miniature inhibitory postsynaptic currents (mIPSCs), resulting from vesicular GABA activating synaptic GABAA Rs, is reduced, permitting neurones to appropriately influence the window for postsynaptic excitation. Conventionally, programmed expression changes to the subtype of synaptic GABAA R are primarily implicated in this plasticity. However, it is now evident that, in developing thalamic and cortical principal- and inter-neurones, an endogenous neurosteroid tone (eg, allopregnanolone) enhances synaptic GABAA R function. Furthermore, a cessation of steroidogenesis, as a result of a lack of substrate, or a co-factor, appears to be primarily responsible for early neonatal changes to GABAergic synaptic transmission, followed by further refinement, which results from subsequent alterations of the GABAA R subtype. The timing of this cessation of neurosteroid influence is neurone-specific, occurring by postnatal day (P)10 in the thalamus but approximately 1 week later in the cortex. Neurosteroid levels are not static and change dynamically in a variety of physiological and pathophysiological scenarios. Given that GABA plays an important role in brain development, abnormal perturbations of neonatal GABAA R-active neurosteroids may have not only a considerable immediate, but also a longer-term impact upon neural network activity. Here, we review recent evidence indicating that changes in neurosteroidogenesis substantially influence neonatal GABAergic synaptic transmission. We discuss the physiological relevance of these findings and how the interference of neurosteroid-GABAA R interaction early in life may contribute to psychiatric conditions later in life.
Collapse
Affiliation(s)
- D Belelli
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - A R Brown
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - S J Mitchell
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - B G Gunn
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M B Herd
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - G D Phillips
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| | - M Seifi
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical & Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J J Lambert
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee, UK
| |
Collapse
|
54
|
Fujita M, Fukuda T, Sato Y, Takasusuki T, Tanaka M. Allopregnanolone suppresses mechanical allodynia and internalization of neurokinin-1 receptors at the spinal dorsal horn in a rat postoperative pain model. Korean J Pain 2018; 31:10-15. [PMID: 29372021 PMCID: PMC5780210 DOI: 10.3344/kjp.2018.31.1.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/24/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background To identify a new strategy for postoperative pain management, we investigated the analgesic effects of allopregnanolone (Allo) in an incisional pain model, and also assessed its effects on the activities of the primary afferent fibers at the dorsal horn. Methods In experiment 1, 45 rats were assigned to Control, Allo small-dose (0.16 mg/kg), and Allo large-dose (1.6 mg/kg) groups (n = 15 in each). The weight bearing and mechanical withdrawal thresholds of the hind limb were measured before and at 2, 24, 48, and 168 h after Brennan's surgery. In experiment 2, 16 rats were assigned to Control and Allo (0.16 mg/kg) groups (n = 8 in each). The degree of spontaneous pain was measured using the grimace scale after the surgery. Activities of the primary afferent fibers in the spinal cord (L6) were evaluated using immunohistochemical staining. Results In experiment 1, the withdrawal threshold of the Allo small-dose group was significantly higher than that of the Control group at 2 h after surgery. Intergroup differences in weight bearing were not significant. In experiment 2, intergroup differences in the grimace scale scores were not significant. Substance P release in the Allo (0.16 mg/kg) group was significantly lower than that in the Control group. Conclusions Systemic administration of Allo inhibited mechanical allodynia and activities of the primary afferent fibers at the dorsal horn in a rat postoperative pain model. Allo was proposed as a candidate for postoperative pain management.
Collapse
Affiliation(s)
- Masahide Fujita
- Department of Anesthesiology, Tsukuba University Hospital, Tsukubba, Japan
| | - Taeko Fukuda
- Department of Anesthesiology, Tsuchiura Center for Medical Education and Training, Faculty of Medicine, University of Tsukuba (National Hospital Organization, Kasumigaura Medical Center), Tsuchiura, Japan
| | - Yasuhiro Sato
- Social Welfare Organization, Mito-Saiseikai Hospital, Mito, Japan
| | - Toshifumi Takasusuki
- Department of Anesthesiology, School of Medicine, Dokkyo Medical University, Mibu, Japan
| | - Makoto Tanaka
- Department of Anesthesiology, University of Tsukuba, Faculty of Medicine, Tsukuba, Japan
| |
Collapse
|
55
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. ACTA ACUST UNITED AC 2018; 8:344-359. [PMID: 30774720 DOI: 10.4172/neuropsychiatry.1000356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is one of the most frequent causes of visual impairment worldwide and involves selective damage to retinal ganglion cells (RGCs) resulting in degeneration of neural pathways connecting retina to visual cortex. It is of interest that similarities in pathological changes have been described in Alzheimer's disease (AD), the most common cause of progressive memory loss and dementia in older people. Accumulation of amyloid-beta (Abeta) and hyperphosphorylated tau is thought to contribute to apoptotic neuronal death in Alzheimer's disease, and similar changes have been linked to apoptotic RGC death in glaucoma. Both glaucoma and Alzheimer's disease also suffer from a lack of effective treatments prompting a search for novel therapeutic interventions. Neurosteroids (NSs) (including oxysterols) are endogenous molecules synthesized in the nervous system from cholesterol that can modulate glutamate and GABA receptors, the primary mediators of fast excitatory and inhibitory neurotransmission in the brain, respectively. Because changes in the glutamate and GABA neurotransmitter systems contribute to the pathogenesis of AD and glaucoma, NSs are possible therapeutic targets for these disorders. In this review, we present recent evidence supporting pathological links between Alzheimer's disease and glaucoma, and focus on the possible role of NSs in these diseases and how NSs might be developed for therapeutic purposes.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University Graduate School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Akita University Graduate School of Medicine, Akita, Japan.,Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan
| | - Charles F Zorumski
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- Taylor Family Institute for Innovative Psychiatric Research, Akita University Graduate School of Medicine, Akita, Japan.,Center for Brain Research in Mood Disorders, Akita University Graduate School of Medicine, Akita, Japan.,Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
56
|
Garg D, Ng SSM, Baig KM, Driggers P, Segars J. Progesterone-Mediated Non-Classical Signaling. Trends Endocrinol Metab 2017; 28:656-668. [PMID: 28651856 DOI: 10.1016/j.tem.2017.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
Abstract
Progesterone is essential for pregnancy maintenance and menstrual cycle regulation. Hormone action has been primarily ascribed to the well-characterized classical signaling pathway involving ligand binding, activation of nuclear progesterone receptors (PRs), and subsequent activation of genes containing progesterone response elements (PREs). Recent studies have revealed progesterone actions via non-classical signaling pathways, often mediated by non-genomic signaling. Progesterone signaling, in conjunction with growth factor signaling, impacts on the function of growth factors and regulates important physiological actions such as cell growth and remodeling, as well as apoptosis. This review focuses on non-classical progesterone signaling pathways, both including and excluding PR, and highlights how research in this area will provide a better understanding of progesterone actions and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Deepika Garg
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, NY 11219, USA
| | - Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - K Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Paul Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
57
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
58
|
Chuang JY, Lo WL, Ko CY, Chou SY, Chen RM, Chang KY, Hung JJ, Su WC, Chang WC, Hsu TI. Upregulation of CYP17A1 by Sp1-mediated DNA demethylation confers temozolomide resistance through DHEA-mediated protection in glioma. Oncogenesis 2017; 6:e339. [PMID: 28530704 PMCID: PMC5523064 DOI: 10.1038/oncsis.2017.31] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Steroidogenesis-mediated production of neurosteroids is important for brain homeostasis. Cytochrome P450 17A1 (CYP17A1), which converts pregnenolone to dehydroepiandrosterone (DHEA) in endocrine organs and the brain, is required for prostate cancer progression and acquired chemotherapeutic resistance. However, whether CYP17A1-mediated DHEA synthesis is involved in brain tumor malignancy, especially in glioma, the most prevalent brain tumor, is unknown. To investigate the role of CYP17A1 in glioma, we determined that CYP17A1 expression is significantly increased in gliomas, which secrete more DHEA than normal astrocytes. We found that as gliomas became more malignant, both CYP17A1 and DHEA were significantly upregulated in temozolomide (TMZ)-resistant cells and highly invasive cells. In particular, the increase of CYP17A1 was caused by Sp1-mediated DNA demethylation, whereby Sp1 competed with DNMT3a for binding to the CYP17A1 promoter in TMZ-resistant glioma cells. CYP17A1 was required for the development of glioma cell invasiveness and resistance to TMZ-induced cytotoxicity. In addition, DHEA markedly attenuated TMZ-induced DNA damage and apoptosis. Together, our results suggest that components of the Sp1-CYP17A1-DHEA axis, which promotes the development of TMZ resistance, may serve as potential biomarkers and therapeutic targets in recurrent glioma.
Collapse
Affiliation(s)
- J-Y Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - W-L Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, Taipei, Taiwan
| | - C-Y Ko
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - S-Y Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - R-M Chen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - K-Y Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - J-J Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - W-C Su
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - W-C Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - T-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
59
|
Meyer A, Wree A, Günther R, Holzmann C, Schmitt O, Rolfs A, Witt M. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann-Pick Disease Type C1. Int J Mol Sci 2017; 18:ijms18040777. [PMID: 28383485 PMCID: PMC5412361 DOI: 10.3390/ijms18040777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
Abstract
Niemann–Pick disease type C1 (NPC1) is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+). Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1.
Collapse
Affiliation(s)
- Anja Meyer
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Günther
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Arndt Rolfs
- Albrecht-Kossel Institute for Neuroregeneration, Rostock University Medical Center, 18147 Rostock, Germany.
| | - Martin Witt
- Institute of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
60
|
Calabrese EJ, Calabrese V, Giordano J. The role of hormesis in the functional performance and protection of neural systems. Brain Circ 2017; 3:1-13. [PMID: 30276298 PMCID: PMC6126232 DOI: 10.4103/2394-8108.203257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
This paper addresses how hormesis, a biphasic dose response, can protect and affect performance of neural systems. Particular attention is directed to the potential role of hormesis in mitigating age-related neurodegenerative diseases, genetically based neurological diseases, as well as stroke, traumatic brain injury, seizure, and stress-related conditions. The hormetic dose response is of particular significance since it mediates the magnitude and range of neuroprotective processes. Consideration of hormetic dose-response concepts can also enhance the quality of study designs, including sample size/statistical power strategies, selection of treatment groups, dose spacing, and temporal/repeat measures’ features.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria, Catania, Italy
| | - James Giordano
- Department of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
61
|
Zamora-Sánchez CJ, Hansberg-Pastor V, Salido-Guadarrama I, Rodríguez-Dorantes M, Camacho-Arroyo I. Allopregnanolone promotes proliferation and differential gene expression in human glioblastoma cells. Steroids 2017; 119:36-42. [PMID: 28119080 DOI: 10.1016/j.steroids.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
Abstract
Allopregnanolone (3α-THP) is one of the main reduced progesterone (P4) metabolites that is recognized as a neuroprotective and myelinating agent. 3α-THP also induces proliferation of different neural cells. It has been shown that P4 favors the progression of glioblastomas (GBM), the most common and aggressive primary brain tumors. However, the role of 3α-THP in the growth of GBMs is unknown. Here, we studied the effects of 3α-THP on the number of cells, proliferation and gene expression in U87 cell line derived from a human GBM. 3α-THP (10, 100nM and 1μM) increased the number of U87 cells, and at 10nM exerted a similar increase in both the number of total and proliferative U87 cells as compared with P4 (10nM). Interestingly, finasteride (F; 100nM), an inhibitor of 5α-reductase (5αR), an enzyme necessary to metabolize P4 and produce 3α-THP, blocked the increase in the number of U87 cells induced by P4. By using RT-qPCR, we determined that U87 cells express 5α-R isoenzymes 1 and 2 (5αR1 and 5αR2), being 5αR1 the predominant one in these cells. 3α-THP (10nM) increased the expression of TGFβ1, EGFR, VEGF and cyclin D1 genes. P4 increased TGFβ1 and EGFR expression, and this effect was blocked by F. These data provide evidence that P4, through its metabolite 3α-THP, can promote in part cell proliferation of human GBM cells by changing the expression of genes involved in tumor progression.
Collapse
Affiliation(s)
- Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
62
|
Atwood CS, Hayashi K, Meethal SV, Gonzales T, Bowen RL. Does the degree of endocrine dyscrasia post-reproduction dictate post-reproductive lifespan? Lessons from semelparous and iteroparous species. GeroScience 2017; 39:103-116. [PMID: 28271270 PMCID: PMC5352586 DOI: 10.1007/s11357-016-9955-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/23/2016] [Indexed: 12/16/2022] Open
Abstract
Post-reproductive lifespan varies greatly among species; human post-reproductive lifespan comprises ~30-50% of their total longevity, while semelparous salmon and dasyurid marsupials post-reproductive lifespan comprises <4% of their total longevity. To examine if the magnitude of hypothalamic-pituitary-gonadal (HPG) axis dyscrasia at the time of reproductive senescence determines post-reproductive lifespan, we examined the difference between pre- and post-reproductive (1) circulating sex hormones and (2) the ratio of sex steroids to gonadotropins (e.g., 17β-estradiol/follicle-stimulating hormone (FSH)), an index of the dysregulation of the HPG axis and the level of dyotic (death) signaling post-reproduction. Animals with a shorter post-reproductive lifespan (<4% total longevity) had a more marked decline in circulating sex steroids and corresponding elevation in gonadotropins compared to animals with a longer post-reproductive lifespan (30-60% total longevity). In semelparous female salmon of short post-reproductive lifespan (1%), these divergent changes in circulating hormone concentration post-reproduction equated to a 711-fold decrease in the ratio of 17β-estradiol/FSH between the reproductive and post-reproductive periods. In contrast, the decrease in the ratio of 17β-estradiol/FSH in iteroparous female mammals with long post-reproductive lifespan was significantly less (1.7-34-fold) post-reproduction. Likewise, in male semelparous salmon, the decrease in the ratio of testosterone/FSH (82-fold) was considerably larger than for iteroparous species (1.3-11-fold). These results suggest that (1) organisms with greater reproductive endocrine dyscrasia more rapidly undergo senescence and die, and (2) the contribution post-reproduction by non-gonadal (and perhaps gonadal) tissues to circulating sex hormones dictates post-reproductive tissue health and longevity. In this way, reproduction and longevity are coupled, with the degree of non-gonadal tissue hormone production dictating the rate of somatic tissue demise post-reproduction and the differences in post-reproductive lifespans between species.
Collapse
Affiliation(s)
- Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, William S. Middleton Memorial VA (GRECC 11G), 2500 Overlook Terrace, Madison, WI, 53705, USA.
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, 53705, USA.
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
| | - Kentaro Hayashi
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, William S. Middleton Memorial VA (GRECC 11G), 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Sivan Vadakkadath Meethal
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, William S. Middleton Memorial VA (GRECC 11G), 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Tina Gonzales
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, William S. Middleton Memorial VA (GRECC 11G), 2500 Overlook Terrace, Madison, WI, 53705, USA
| | - Richard L Bowen
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
63
|
Naylor JC, Kilts JD, Szabo ST, Dunn CE, Keefe FJ, Tupler LA, Shampine LJ, Morey RA, Strauss JL, Hamer RM, Wagner HR, Marx CE. Allopregnanolone Levels Are Inversely Associated with Self-Reported Pain Symptoms in U.S. Iraq and Afghanistan-Era Veterans: Implications for Biomarkers and Therapeutics. PAIN MEDICINE 2016; 17:25-32. [PMID: 26176345 DOI: 10.1111/pme.12860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Pain symptoms are common among Iraq/Afghanistan-era veterans, many of whom continue to experience persistent pain symptoms despite multiple pharmacological interventions. Preclinical data suggest that neurosteroids such as allopregnanolone demonstrate pronounced analgesic properties, and thus represent logical biomarker candidates and therapeutic targets for pain. Allopregnanolone is also a positive GABAA receptor modulator with anxiolytic, anticonvulsant, and neuroprotective actions in rodent models. We previously reported inverse associations between serum allopregnanolone levels and self-reported pain symptom severity in a pilot study of 82 male veterans. METHODS The current study investigates allopregnanolone levels in a larger cohort of 485 male Iraq/Afghanistan-era veterans to attempt to replicate these initial findings. Pain symptoms were assessed by items from the Symptom Checklist-90-R (SCL-90-R) querying headache, chest pain, muscle soreness, and low back pain over the past 7 days. Allopregnanolone levels were quantified by gas chromatography/mass spectrometry. RESULTS Associations between pain ratings and allopregnanolone levels were examined with Poisson regression analyses, controlling for age and smoking. Bivariate nonparametric Mann–Whitney analyses examining allopregnanolone levels across high and low levels of pain were also conducted. Allopregnanolone levels were inversely associated with muscle soreness [P = 0.0028], chest pain [P = 0.032], and aggregate total pain (sum of all four pain items) [P = 0.0001]. In the bivariate analyses, allopregnanolone levels were lower in the group reporting high levels of muscle soreness [P = 0.001]. CONCLUSIONS These findings are generally consistent with our prior pilot study and suggest that allopregnanolone may function as an endogenous analgesic. Thus, exogenous supplementation with allopregnanolone could have therapeutic potential. The characterization of neurosteroid profiles may also have biomarker utility.
Collapse
|
64
|
Lejri I, Grimm A, Miesch M, Geoffroy P, Eckert A, Mensah-Nyagan AG. Allopregnanolone and its analog BR 297 rescue neuronal cells from oxidative stress-induced death through bioenergetic improvement. Biochim Biophys Acta Mol Basis Dis 2016; 1863:631-642. [PMID: 27979708 DOI: 10.1016/j.bbadis.2016.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/10/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022]
Abstract
Allopregnanolone (AP) is supposed to exert beneficial actions including anxiolysis, analgesia, neurogenesis and neuroprotection. However, although mitochondrial dysfunctions are evidenced in neurodegenerative diseases, AP actions against neurodegeneration-induced mitochondrial deficits have never been investigated. Also, the therapeutic exploitation of AP is limited by its difficulty to pass the liver and its rapid clearance after sulfation or glucuronidation of its 3-hydroxyl group. Therefore, the characterization of novel potent neuroprotective analogs of AP may be of great interest. Thus, we synthesized a set of AP analogs (ANS) and investigated their ability to counteract APP-overexpression-evoked bioenergetic deficits and to protect against oxidative stress-induced death of control and APP-transfected SH-SY5Y cells known as a reliable cellular model of Alzheimer's disease (AD). Especially, we examined whether ANS were more efficient than AP to reduce mitochondrial dysfunctions or bioenergetic decrease leading to neuronal cell death. Our results showed that the ANS BR 297 exhibits notable advantages over AP with regards to both protection of mitochondrial functions and reduction of oxidative stress. Indeed, under physiological conditions, BR 297 does not promote cell proliferation but efficiently ameliorates the bioenergetics by increasing cellular ATP level and mitochondrial respiration. Under oxidative stress situations, BR 297 treatment, which decreases ROS levels, improves mitochondrial respiration and cell survival, appears more potent than AP to protect control and APP-transfected cells against H2O2-induced death. Our findings lend further support to the neuroprotective effects of BR 297 emphasizing this analog as a promising therapeutic tool to counteract age- and AD-related bioenergetic deficits.
Collapse
Affiliation(s)
- Imane Lejri
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France; Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Michel Miesch
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Philippe Geoffroy
- Université de Strasbourg, Institut de Chimie - UMR 7177, 1 rue Blaise Pascal, 67008 Strasbourg, France
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular and Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland; Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012 Basel, Switzerland
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
65
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
66
|
Taleb O, Bouzobra F, Tekin-Pala H, Meyer L, Mensah-Nyagan AG, Patte-Mensah C. Behavioral and electromyographic assessment of oxaliplatin-induced motor dysfunctions: Evidence for a therapeutic effect of allopregnanolone. Behav Brain Res 2016; 320:440-449. [PMID: 27789344 DOI: 10.1016/j.bbr.2016.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/13/2022]
Abstract
The antineoplastic oxaliplatin (OXAL) is pivotal for metastatic cancer treatments. However, OXAL evokes sensory and motor side-effects including pain, muscle weakness, motor nerve fiber dysfunctions/neuropathies that significantly impact patients' lives. Therefore, preclinical investigations are struggling to characterize effective analgesics against OXAL-induced painful/sensory symptoms but surprisingly, OXAL-evoked motor dysfunctions received little attention although these neurological symptoms are also disabling for patients. Here, we validated a rat model of OXAL-induced motor neuropathy by using (i) behavioral methods as the wire suspension and balance beam tests to assess muscle weakness and (ii) electrophysiological techniques to record the gastrocnemius electromyography (EMG). The conductance velocity of motor fibers was reduced and compound muscle action potential (CMAP) duration increased in OXAL-treated rats, leading to CMAP dispersion with no modification of the area under the curve, reflecting a heterogeneous demyelination of motor fibers. Functional motor unit analysis revealed a 50 % decrease of their estimated number which was compensated by a motor unit size increase. OXAL-induced motor weakness appeared as a combined consequence of motor fiber demyelination and motor axonopathy. Because we previously observed that allopregnanolone (AP) counteracted OXAL-evoked painful/sensory symptoms, we evaluated its action against OXAL-induced motor neurological dysfunctions. AP treatment successfully corrected motor behaviors, conductance velocity, CMAP duration, motor unit number (MUN) and motor unit size altered by OXAL-chemotherapy. These results, which are the first to show that AP efficiently rescues OXAL-induced motor neuropathy, consolidate the idea that AP-based therapy may be relevant for the treatment of both sensory and motor peripheral neuropathies.
Collapse
Affiliation(s)
- O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - F Bouzobra
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - H Tekin-Pala
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - A G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
67
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
68
|
Zhang H, Ma L, Yin YL, Dong LQ, Cheng GG, Ma YQ, Li YF, Xu BN. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice. Brain Res 2016; 1646:402-409. [DOI: 10.1016/j.brainres.2016.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
|
69
|
Lozano R, Martinez-Cerdeno V, Hagerman RJ. Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder. Curr Pharm Des 2016; 21:4972-4979. [PMID: 26365141 DOI: 10.2174/1381612821666150914121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.
Collapse
Affiliation(s)
- Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, New York, NY USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
70
|
Bennett GA, Palliser HK, Walker D, Hirst J. Severity and timing: How prenatal stress exposure affects glial developmental, emotional behavioural and plasma neurosteroid responses in guinea pig offspring. Psychoneuroendocrinology 2016; 70:47-57. [PMID: 27155257 DOI: 10.1016/j.psyneuen.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022]
Abstract
Prenatal stress has been associated with a variety of developmental changes in offspring, notably those associated with brain development and subsequent risk for neuropathologies later in life. Recently, the importance of the timing and the severity of the stressor during pregnancy has been emphasized with neurosteroids including allopregnanolone implicated in the regulation of stress and also for endogenous neuroprotection in offspring. Prenatal stress was induced using strobe light exposure in pregnant guinea pigs (term 71days) in three defined stress exposure groups (Gestational Age (GA)35-65, GA50-65 and GA60-65). Stress was induced for 2h (9-11am) every 5days via strobe light exposure. A fetal cohort were euthanased at term with fetal brains and plasma collected. Anxiety-like behaviour was evaluated at 18 days of age in a separate cohort of offspring with brains and plasma collected at 21days of age. Markers for mature oligodendrocytes and reactive astrocytes were measured in the CA1 region of the hippocampus and the subcortical white matter. The neurosteroid allopregnanolone was measured by radioimmunoassay in offspring plasma. In the CA1 region of the hippocampus, fetuses from all stress groups showed reduced expression of mature oligodendrocytes and reactive astrocytes. By juvenility, all male stress exposure groups had recovered to levels of unaffected controls with the exception of the GA35-65 stress group. In juvenile females, mature oligodendrocyte marker expression was reduced in all stress groups and reactive astrocyte expression was reduced in the GA35-65 and GA60-65 stress groups by juvenility. Increased reactive astrocyte expression was also apparent in the subcortical white matter in both sexes both at term and at juvenility. Prenatally stressed offspring spent less time exploring in the object exploration test and also entered the inner zone of the open field less than controls at 18days of age. Circulating allopregnanolone concentrations were significantly reduced in GA35-65 and GA 60-65 stress exposed fetuses with those in the GA35-65 stress group remaining reduced by juvenility. This study has shown the effects of differing levels of prenatal stress severity and timing on glial development, emotional behaviour and plasma allopregnanolone concentrations in offspring.
Collapse
Affiliation(s)
- Greer A Bennett
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - David Walker
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jonathan Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
71
|
Rossetti MF, Varayoud J, Lazzarino GP, Luque EH, Ramos JG. Pregnancy and lactation differentially modify the transcriptional regulation of steroidogenic enzymes through DNA methylation mechanisms in the hippocampus of aged rats. Mol Cell Endocrinol 2016; 429:73-83. [PMID: 27040308 DOI: 10.1016/j.mce.2016.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023]
Abstract
In the present study, we examined the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus of young adult (90-days-old) and middle-aged (450-days-old) nulliparous rats, and middle-aged multiparous rats subjected to three pregnancies with and without lactation. Aging decreased the mRNA levels of steroidogenic-related genes, while pregnancy and lactation significantly reduced the effect of aging, maintaining high expression levels of cytochrome P450 side-chain cleavage (P450scc), steroid 5α-reductase-1 (5αR-1), cytochrome P450arom (P450arom) and aldosterone synthase (P450(11β)-2). In addition, pregnancy and lactation diminished the methylation state of the 5αR-1 promoter and increased the transcription of brain-derived neurotrophic factor, synaptophysin and spinophilin. Pregnancy without lactation increased P450scc and 5αR-1 gene expression and decreased the methylation of their promoters. We concluded that the age-related decrease in the mRNA expression of steroidogenic enzymes is differentially attenuated by pregnancy and lactation in the rat hippocampus and that differential methylation mechanisms could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela P Lazzarino
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
72
|
Karout M, Miesch M, Geoffroy P, Kraft S, Hofmann HD, Mensah-Nyagan AG, Kirsch M. Novel analogs of allopregnanolone show improved efficiency and specificity in neuroprotection and stimulation of proliferation. J Neurochem 2016; 139:782-794. [PMID: 27256158 DOI: 10.1111/jnc.13693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/24/2016] [Indexed: 01/28/2023]
Abstract
The natural neurosteroid allopregnanolone exerts beneficial effects in animal models of neurodegenerative diseases, nervous system injury and peripheral neuropathies. It not only has anti-apoptotic activity, but also promotes proliferation of progenitor cells. With respect to using it as a therapeutic tool, such pleiotropic actions might create unwanted side effects. Therefore, we have synthesized allopregnanolone analogs and analyzed their neuroprotective and proliferative effects to identify compounds with higher efficiency and less ambiguous biological actions. Proliferation-promoting effects of 3α and 3β isomers of 3-O-allyl-allopregnanolone and 12 oxo-allopregnanolone were studied in adult subventricular zone stem cell cultures and in primary hippocampal cultures by measuring 5-ethynyl-2'-deoxyuridine incorporation. Neuroprotective activity against amyloid beta 42-induced cell death was determined by quantifying caspase 3/7 activity. The 3α isomers significantly stimulated proliferation in all culture systems, whereas the 3β isomers were ineffective. The stimulatory effect of 3α-O-allyl-allopregnanolone was significantly higher than that of allopregnanolone. In neural stem cell cultures, 3α-O-allyl-allopregnanolone specifically enhanced proliferation of Nestin-positive progenitors. In addition, it promoted the differentiation of doublecortin-positive neurons. In neural stem cell cultures treated with amyloid beta 42, both the α and β isomers of O-allyl- allopregnanolone showed increased neuroprotective activity as compared to allopregnanolone, completely preventing amyloid-induced caspase 3/7 activation. The 12 oxo-allopregnanolone analogs were ineffective. These results identify structural allopregnanolone analogs with higher anti-apoptotic and proliferation-promoting activity than the natural neurosteroid. Interestingly, stereoisomers of the analogs were found to have distinct profiles of activity raising the possibility of exploiting the neuroprotective properties of neurosteroids with or without simultaneously stimulating neurogenesis. Cover Image for this issue: doi: 10.1111/jnc.13344.
Collapse
Affiliation(s)
- Mona Karout
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, ZfN, Faculty of Medicine, University of Freiburg, Albertstr. 23, D-79104, Freiburg, Germany.,Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Michel Miesch
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - Philippe Geoffroy
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - Stephanie Kraft
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, ZfN, Faculty of Medicine, University of Freiburg, Albertstr. 23, D-79104, Freiburg, Germany
| | - Hans-Dieter Hofmann
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, ZfN, Faculty of Medicine, University of Freiburg, Albertstr. 23, D-79104, Freiburg, Germany
| | - Ayikoe Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Matthias Kirsch
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, ZfN, Faculty of Medicine, University of Freiburg, Albertstr. 23, D-79104, Freiburg, Germany
| |
Collapse
|
73
|
Cerebellar Changes in Guinea Pig Offspring Following Suppression of Neurosteroid Synthesis During Late Gestation. THE CEREBELLUM 2016; 16:306-313. [DOI: 10.1007/s12311-016-0802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
74
|
Orefice N, Carotenuto A, Mangone G, Bues B, Rehm R, Cerillo I, Saccà F, Calignano A, Orefice G. Assessment of neuroactive steroids in cerebrospinal fluid comparing acute relapse and stable disease in relapsing-remitting multiple sclerosis. J Steroid Biochem Mol Biol 2016; 159:1-7. [PMID: 26892094 DOI: 10.1016/j.jsbmb.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Previous studies have reported an involvement of neuroactive steroids as neuroprotective and anti-inflammatory agents in neurological disorders such as multiple sclerosis (MS); an analysis of their profile during a specific clinical phase of MS is largely unknown. The pregnenolone (PREG), dehydroepiandrosterone (DHEA), and allopregnanolone (ALLO) profile was evaluated in cerebrospinal fluid (CSF) in relapsing-remitting multiple sclerosis (RR-MS) patients as well as those in patients affected by non-inflammatory neurological (control group I) and without neurological disorders (control group II). An increase of PREG and DHEA values was shown in CSF of male and female RR-MS patients compared to those observed in both control groups. The ALLO values were significantly lower in female RR-MS patients than those found in male RR-MS patients and in female without neurological disorder. During the clinical relapse, we observed female RR-MS patients showing significantly increased PREG values compared to female RR-MS patients in stable phase, while their ALLO values showed a significant decrease compared to male RR-MS patients of the same group. Male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Similary, male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than male without gadolinium-enhanced lesions. Female RR-MS patients with gadolinium-enhanced lesions showed DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Male and female RR-MS patients with gadolinium-enhanced lesions showed ALLO values higher than those found in respective gender groups without gadolinium-enhanced lesions. ALLO values were lower in male than in female RR-MS patients without gadolinium-enhanced lesions. Considering the pharmacological properties of neuroactive steroids and the observation that neurological disorders influence their concentrations, these endogenous compounds may have an important role as prognostic factors of the disease and used as markers of MS activity such as relapses.
Collapse
Affiliation(s)
- Ns Orefice
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - A Carotenuto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - G Mangone
- Clinical Investigation Center for Neurosciences, Pitié-Salpêtrière Hospital, Paris, France.
| | - B Bues
- University Medical Center, Göttingen, Germany.
| | - R Rehm
- University Medical Center, Göttingen, Germany.
| | - I Cerillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - F Saccà
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - A Calignano
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - G Orefice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| |
Collapse
|
75
|
The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 2016; 41:23-43. [PMID: 26989000 DOI: 10.1016/j.yfrne.2016.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 01/22/2023]
Abstract
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.
Collapse
|
76
|
Slattery DA, Hillerer KM. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications. Front Neuroendocrinol 2016; 41:114-28. [PMID: 26828151 DOI: 10.1016/j.yfrne.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
Abstract
The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
77
|
Social behavior, hormones and adult neurogenesis. Front Neuroendocrinol 2016; 41:71-86. [PMID: 26996817 DOI: 10.1016/j.yfrne.2016.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
A variety of experiences have been shown to affect the production of neurons in the adult hippocampus. These effects may be mediated by experience-driven hormonal changes, which, in turn, interact with factors such as sex, age and life history to alter brain plasticity. Although the effects of physical experience and stress have been extensively characterized, various types of social experience across the lifespan trigger profound neuroendocrine changes in parallel with changes in adult neurogenesis. This review article focuses on the influence of specific social experiences on adult neurogenesis in the dentate gyrus and the potential role of hormones in these effects.
Collapse
|
78
|
TSPO ligand PK11195 alleviates neuroinflammation and beta-amyloid generation induced by systemic LPS administration. Brain Res Bull 2016; 121:192-200. [DOI: 10.1016/j.brainresbull.2016.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
|
79
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
80
|
|
81
|
Shimizu H, Ishizuka Y, Yamazaki H, Shirao T. Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling. Neuroscience 2015; 305:139-45. [DOI: 10.1016/j.neuroscience.2015.07.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/15/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
|
82
|
Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid 5α-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412:330-8. [PMID: 26021641 DOI: 10.1016/j.mce.2015.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/16/2022]
Abstract
We analyzed the effects of aging and environmental enrichment on the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus. The effects of aging were evaluated by comparing young adult (90-day-old) and middle-aged (450-day-old) female Wistar rats. To elucidate the effects of environmental enrichment, a subgroup of middle-aged rats exposed to sensory and social stimulation for 105 days was compared to rats housed under standard laboratory conditions. Aging decreased the transcription of neurosteroidogenic-related genes and increased the promoter methylation state of cytochrome P450 side chain cleavage, 3α-hydroxysteroid dehydrogenase (3α-HSD) and 5α-reductase-1. Exposure of middle-aged rats to environmental enrichment increased mRNA levels of 5α-reductase-1, 3α-HSD and cytochrome P450 17α-hydroxylase/c17,20-lyase and decreased the methylation state of the 5α-reductase-1 gene. Thus, sensory and social stimulation attenuate the age-related decline in the mRNA expression of hippocampal steroidogenic enzymes. Epigenetic mechanisms associated with differential promoter methylation could be involved.
Collapse
Affiliation(s)
- María F Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Guillermo S Moreno-Piovano
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
83
|
Qian X, Cao H, Ma Q, Wang Q, He W, Qin P, Ji B, Yuan K, Yang F, Liu X, Lian Q, Li J. Allopregnanolone attenuates Aβ25-35-induced neurotoxicity in PC12 cells by reducing oxidative stress. Int J Clin Exp Med 2015; 8:13610-13615. [PMID: 26550302 PMCID: PMC4612987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
Massive accumulation of amyloid beta (Aβ) has been implicated as a pivotal event in the pathogenesis of Alzheimer's disease. The underlying mechanisms of Aβ-induced neurotoxicity include generation of reactive oxidative species (ROS), inflammation, and neurons loss. Allopregnano-lone (APα), a neurosteroid derive from neuroactive progesterone, has been demonstrated to have neuroprotective properties in vivo and vitro. In the present study, the effects of APα on oxidative damage in Aβ25-35-treated pheochromocytoma (PC12) cells were investigated. Pretreatment of APα significantly attenuated Aβ25-35-induced neuronal death. APα decreased the intracellular ROS generation and reduced lipid peroxidation induced by Aβ25-35. In addition, APα treatment enhanced antioxidant enzyme superoxide dismutase (SOD) activity. This study demonstrates that APα exerts a protective effect against Aβ25-35-induced neurotoxicity in PC12 cells. The protective role of APα likely results from inhibition of oxidative stress.
Collapse
Affiliation(s)
- Xiaowei Qian
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Hong Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Qian Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Qinsai Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Wei He
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Peishun Qin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Bin Ji
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Kaiming Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Fanghua Yang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Xuhua Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Qingquan Lian
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Jun Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
84
|
Irwin RW, Solinsky CM, Loya CM, Salituro FG, Rodgers KE, Bauer G, Rogawski MA, Brinton RD. Allopregnanolone preclinical acute pharmacokinetic and pharmacodynamic studies to predict tolerability and efficacy for Alzheimer's disease. PLoS One 2015; 10:e0128313. [PMID: 26039057 PMCID: PMC4454520 DOI: 10.1371/journal.pone.0128313] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/25/2015] [Indexed: 11/18/2022] Open
Abstract
To develop allopregnanolone as a therapeutic for Alzheimer's disease, we investigated multiple formulations and routes of administration in translationally relevant animal models of both sexes. Subcutaneous, topical (transdermal and intranasal), intramuscular, and intravenous allopregnanolone were bolus-administered. Pharmacokinetic analyses of intravenous allopregnanolone in rabbit and mouse indicated that peak plasma and brain levels (3-fold brain/plasma ratios) at 5min were sufficient to activate neuroregenerative responses at sub-sedative doses. Slow-release subcutaneous suspension of allopregnanolone displayed 5-fold brain/plasma ratio at Cmax at 30min. At therapeutic doses by either subcutaneous or intravenous routes, allopregnanolone mouse plasma levels ranged between 34-51ng/ml by 30min, comparable to published endogenous human level in the third trimester of pregnancy. Exposure to subcutaneous, topical, intramuscular, and intravenous allopregnanolone, at safe and tolerable doses, increased hippocampal markers of neurogenesis including BrdU and PCNA in young 3xTgAD and aged wildtype mice. Intravenous allopregnanolone transiently and robustly phosphorylated CREB within 5min and increased levels of neuronal differentiation transcription factor NeuroD within 4h. Neurogenic efficacy was achieved with allopregnanolone brain exposure of 300-500hr*ng/g. Formulations were tested to determine the no observable adverse effect level (NOAEL) and maximally tolerated doses (MTD) in male and female rats by sedation behavior time course. Sex differences were apparent, males exhibited ≥40% more sedation time compared to females. Allopregnanolone formulated in sulfobutyl-ether-beta-cyclodextrin at optimized complexation ratio maximized allopregnanolone delivery and neurogenic efficacy. To establish the NOAEL and MTD for Allo-induced sedation using a once-per-week intravenous regenerative treatment regimen: In female rats the NOAEL was 0.5mg/kg and MTD 2mg/kg. The predicted MTD in human female is 0.37mg/kg. In male rats the NOAEL and MTD were less than those determined for female. Outcomes of these PK/PD studies predict a safe and efficacious dose range for initial clinical trials of allopregnanolone for Alzheimer's disease. These findings have translational relevance to multiple neurodegenerative conditions.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Christine M. Solinsky
- Clinical and Experimental Therapeutics Program, University of Southern California, Los Angeles, California, United States of America
| | - Carlos M. Loya
- Sage Therapeutics, Cambridge, Massachusetts, United States of America
| | | | - Kathleen E. Rodgers
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics & Policy, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Gerhard Bauer
- Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Michael A. Rogawski
- Department of Neurology, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, Los Angeles, California, United states of America
| |
Collapse
|
85
|
Abstract
Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAA receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.
Collapse
Affiliation(s)
- Mariana Rey
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, (C1428ADN) Ciudad Autónoma de Buenos Aires, Argentina
| | - Héctor Coirini
- Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, (C1428ADN) Ciudad Autónoma de Buenos Aires, Argentina ; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
86
|
Ohashi K, Ando Y, Munetsuna E, Yamada H, Yamazaki M, Nagura A, Taromaru N, Ishikawa H, Suzuki K, Teradaira R. Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring. Nutr Res 2015; 35:259-64. [DOI: 10.1016/j.nutres.2014.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022]
|
87
|
Zheng H, Fridkin M, Youdim M. New approaches to treating Alzheimer's disease. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:1-8. [PMID: 25733799 PMCID: PMC4327405 DOI: 10.4137/pmc.s13210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 01/14/2023]
Abstract
To date, no truly efficacious drugs for Alzheimer’s disease (AD) have been developed; moreover, all new anti-AD drugs developed since 2003 have failed. To succeed where previous ones have failed in drug development, new approaches for AD therapy are needed. Here we discuss the potential application of network medicine as a new approach to AD treatment. Unlike traditional approaches focused on a single target/pathway, network medicine targets and restores disease-disrupted networks through simultaneous modulation of numerous proteins (targets)/pathways involved in AD pathogenesis. We consider several drug candidates under development for AD therapy, including Keap1–Nrf2 regulators, endogenous neurogenic agents, and hypoxia-inducible factor 1 (HIF-1) activators. These drug candidates are multi-target ligands with the potential to further develop as network medicines, since they act as master regulators to initiate a broad range of cellular defense mechanisms/cytoprotective genes that exert their efficacy in a holistic way. We also explore their diverse mechanisms of action and potential disease-modifying effects, which may have profound implications for drug discovery.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medicinal Chemistry, Intra-cellular Therapies Inc., New York, NY, USA
| | - Mati Fridkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
88
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
89
|
Zhang P, Xie MQ, Ding YQ, Liao M, Qi SS, Chen SX, Gu QQ, Zhou P, Sun CY. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice. Neuroscience 2015; 290:214-26. [PMID: 25637494 DOI: 10.1016/j.neuroscience.2015.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 12/12/2022]
Abstract
An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.
Collapse
Affiliation(s)
- P Zhang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - M Q Xie
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Y-Q Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - M Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - S S Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - S X Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Q Q Gu
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - P Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - C Y Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
90
|
Wang X, Wu H, Xue G, Hou Y. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment. Neural Regen Res 2015; 7:1925-30. [PMID: 25624820 PMCID: PMC4298884 DOI: 10.3969/j.issn.1673-5374.2012.25.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022] Open
Abstract
In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.
Collapse
Affiliation(s)
- Xianying Wang
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Honghai Wu
- Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Gai Xue
- Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
91
|
Youssef NA, Bradford DW, Kilts JD, Szabo ST, Naylor JC, Allen TB, Strauss JL, Hamer RM, Brunca M, Shampine LJ, Marx CE. Exploratory Investigation of Biomarker Candidates for Suicide in Schizophrenia and Bipolar Disorder. CRISIS 2015; 36:46-54. [DOI: 10.1027/0227-5910/a000280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Clozapine and lithium increase neurosteroids in rodents, and both drugs demonstrate antisuicidal actions. We therefore hypothesized that neurosteroid levels may be reduced in patients with schizophrenia or bipolar disorder who completed suicide. Aims: To investigate neurosteroid levels in the parietal cortex and posterior cingulate in schizophrenia and bipolar patients who died by suicide, and compare them with patients with these disorders who died of other causes. Method: Neurosteroid levels were quantified by gas chromatography/mass spectrometry in the parietal cortex and posterior cingulate. Mann–Whitney analyses were conducted in exploratory post hoc analyses to investigate neurosteroids as possible biomarker candidates for suicide. Results: The study showed that pregnenolone was significantly decreased in the parietal cortex in the combined group of patients with schizophrenia or bipolar disorder who died by suicide (n = 13) compared with patients with these disorders who died of other causes (n = 17, p = .02). Pregnenolone levels were also lower in the parietal cortex in the individual group of schizophrenia patients who died by suicide (n = 4) compared with schizophrenia patients who died of other causes (n = 11) p = .04). Conclusion: Pregnenolone alterations may be relevant to the neurobiology of suicide in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Nagy A. Youssef
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Daniel W. Bradford
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Jason D. Kilts
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Steven T. Szabo
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Jennifer C. Naylor
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Trina B. Allen
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Jennifer L. Strauss
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
- Center for Health Services Research in Primary Care, Durham, NC, USA
| | - Robert M. Hamer
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Mira Brunca
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Lawrence J. Shampine
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| | - Christine E. Marx
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
92
|
GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol 2015; 36:28-48. [PMID: 24929099 PMCID: PMC4349499 DOI: 10.1016/j.yfrne.2014.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/26/2014] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.
Collapse
|
93
|
Fritschy JM. Significance of GABAA Receptor Heterogeneity. DIVERSITY AND FUNCTIONS OF GABA RECEPTORS: A TRIBUTE TO HANNS MÖHLER, PART B 2015; 73:13-39. [DOI: 10.1016/bs.apha.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
94
|
Lee RJ, Kim JK, Chao D, Kuo L, Mally A, McClean ME, Pemberton HE, Wilmington AR, Wong J, Murphy SP. Progesterone and allopregnanolone improves stroke outcome in male mice via distinct mechanisms but neither promotes neurogenesis. J Neurochem 2014; 132:32-7. [PMID: 25376903 DOI: 10.1111/jnc.12990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 02/01/2023]
Abstract
Based on the outcome of a number of experimental studies, progesterone (PROG) holds promise as a new therapy for stroke. To understand more about the mechanisms involved, we administered PROG (or the major metabolite, allopregnanolone, ALLO), intra-peritoneally, for a period of 24 h after transient middle cerebral artery occlusion to male mice variably expressing intracellular progesterone receptors (iPR) A/B. Effects on infarct volume and neurogenesis were then assessed up to 1 month later. Predictably, infarct volume in wild-type mice receiving either drug was significantly smaller. However, mice heterozygous for iPRs A/B showed protection by ALLO but not by PROG. There was robust amplification of cell division in the wall of the lateral ventricle on the injured side of the brain, these cells migrated into the striatum and lateral cortex, and a significant number survived for at least 3 weeks. However, very few doublecortin-positive cells emerged from the subventricular zone and subsequent expression of NeuN in these newborn neurons was extremely rare. Neither PROG nor ALLO amplified the rate of neurogenesis, suggesting that the long-term benefits of acute drug administration results from tissue preservation. Male mice derive long-lasting benefit from progesterone and allopregnanolone after ischemic stroke. In mice heterozygous for iPRs, only allopregnanolone proved effective, suggesting distinct mechanisms. Abundant newborn cells were found in the wall of the lateral ventricle on the injured side (many doublecortin-positive), some migrated into the striatum and lateral cortex, but very few survived as mature neurons. Neurosteroid administration did not amplify this process.
Collapse
Affiliation(s)
- Rona J Lee
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Marx CE, Lee J, Subramaniam M, Rapisarda A, Bautista DCT, Chan E, Kilts JD, Buchanan RW, Wai EP, Verma S, Sim K, Hariram J, Jacob R, Keefe RSE, Chong SA. Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacology (Berl) 2014; 231:3647-62. [PMID: 25030803 DOI: 10.1007/s00213-014-3673-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Preclinical and clinical data suggest that pregnenolone may be a promising therapeutic in schizophrenia. Pregnenolone is neuroprotective and enhances learning and memory, myelination, and microtubule polymerization. Treatment with pregnenolone elevates allopregnanolone (a neurosteroid that enhances GABAA receptor responses) and pregnenolone sulfate (a positive NMDA receptor modulator). Pregnenolone could thus potentially mitigate GABA dysregulation and/or NMDA receptor hypofunction in schizophrenia via metabolism to other neurosteroids. OBJECTIVE The objective of this study is to conduct a randomized controlled trial of adjunctive pregnenolone in schizophrenia. METHODS Following a placebo lead-in, 120 participants were randomized to pregnenolone or placebo for 8 weeks (Institute for Mental Health, Singapore). Primary endpoints were changes in MATRICS Consensus Cognitive Battery (MCCB) composite scores (cognitive symptoms), UCSD Performance-based Skills Assessment-Brief (UPSA-B) composite scores (functional capacity), and Scale for Assessment of Negative Symptoms (SANS) total scores (negative symptoms). A modified intent-to-treat analysis approach was utilized. RESULTS No significant changes compared to placebo were demonstrated in composite MCCB scores. In contrast, participants randomized to pregnenolone (n = 56) demonstrated greater improvements in functional capacity (UPSA-B composite changes) compared to placebo (n = 55), p = 0.03. Pregnenolone was also superior to placebo in the communication subscale of the UPSA-B (p < 0.001). Serum pregnenolone changes post-treatment were correlated with UPSA-B composite score changes in females (r s = 0.497, p < 0.042, n = 17) but not in males. Mean total SANS scores were very low at baseline and did not improve further post-treatment. Pregnenolone was well-tolerated. CONCLUSIONS Pregnenolone improved functional capacity in participants with schizophrenia, but did not improve cognitive symptoms over an 8-week treatment period. Neurosteroid changes correlated with functional improvements in female participants. Neurosteroid interventions may exhibit promise as new therapeutic leads for schizophrenia.
Collapse
Affiliation(s)
- Christine E Marx
- Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang JM. Allopregnanolone and neurogenesis in the nigrostriatal tract. Front Cell Neurosci 2014; 8:224. [PMID: 25161608 PMCID: PMC4130099 DOI: 10.3389/fncel.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
Reinstalling the neurobiological circuits to effectively change the debilitating course of neurodegenerative diseases is of utmost importance. This reinstallation requires generation of new cells which are able to differentiate into specific types of neurons and modification of the local environment suitable for integration of these new neurons into the neuronal circuits. Allopregnanolone (APα) seems to be involved in both of these processes, and therefore, is a potential neurotrophic agent. Loss of dopamine neurons in the substantia nigra (SN) is one of the main pathological features of Parkinson’s and also in, at least, a subset of Alzheimer’s patients. Therefore, reinstallation of the dopamine neurons in nigrostriatal tract is of unique importance for these neurodegenerative diseases. However, for the neurogenic status and the roles of allopregnanolone in the nigrostriatal tract, the evidence is accumulating and debating. This review summarizes recent studies regarding the neurogenic status in the nigrostriatal tract. Furthermore, special attention is placed on evidence suggesting that reductions in allopregnenalone levels are one of the major pathological features in PD and AD. This evidence has also been confirmed in brains of mice that were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or those bearing neurodegenerative mutations. Lastly, we highlight studies showing that allopregnanalone can augment the number of total cells and dopaminergic neurons via peripheral exogenous administration.
Collapse
Affiliation(s)
- Jun Ming Wang
- Departments of Pathology, Psychiatry and Human Behavior, and Pharmacology and Toxicology, Memory Impairment and Neurodegenerative Dementia Center, University Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
97
|
Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer's disease and other neurological disorders. Front Cell Neurosci 2014; 8:203. [PMID: 25126056 PMCID: PMC4115668 DOI: 10.3389/fncel.2014.00203] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Christine M Solinsky
- Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
98
|
Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci 2014; 8:134. [PMID: 24917787 PMCID: PMC4042158 DOI: 10.3389/fncel.2014.00134] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022] Open
Abstract
The progesterone derivative allopregnanolone (ALLO) is one of the most widely studied compounds among neurosteroids. Through interactions with GABA-A receptors expressed by neurons and glial cells, ALLO has been shown to affect diverse aspects of neural cell physiology, including cell proliferation and survival, migration, and gene expression. Recent data point to important roles for ALLO in different neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). Dysregulation in ALLO biosynthesis pathways has been reported in brain tissue from MS patients as well as in the central nervous system (CNS) tissue derived from MS animal models. Administration of ALLO has been shown to ameliorate neurobehavioral deficits together with neuropathology and inflammation in the CNS of animals with autoimmune demyelination. These findings are in line with previous reports indicating growth- and differentiation-promoting actions of ALLO on neurons and glial cells as well as its neuroprotective effects in the context of other CNS diseases. Nonetheless, these findings have also raised the possibility that ALLO might influence leukocyte biology and associated neuroinflammatory mechanisms independent of its neuroregenerative properties. Herein, we review the current knowledge regarding the role of ALLO in the pathogenesis of MS, and discuss the potential cellular and molecular pathways that might be influenced by ALLO in the context of disease.
Collapse
Affiliation(s)
- Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Glen B Baker
- Department of Psychiatry, University of Alberta Edmonton, AB, Canada
| | - Christopher Power
- Department of Psychiatry, University of Alberta Edmonton, AB, Canada ; Department of Medicine (Neurology), University of Alberta Edmonton, AB, Canada
| |
Collapse
|
99
|
Irwin RW, Brinton RD. Allopregnanolone as regenerative therapeutic for Alzheimer's disease: Translational development and clinical promise. Prog Neurobiol 2014; 113:40-55. [PMID: 24044981 PMCID: PMC10124616 DOI: 10.1016/j.pneurobio.2013.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 10/26/2022]
Abstract
Herein, we review a translational development plan to advance allopregnanolone to the clinic as a regenerative therapeutic for neurodegenerative diseases, in particular Alzheimer's. Allopregnanolone, an endogenous neurosteroid that declines with age and neurodegenerative disease, was exogenously administered and assessed for safety and efficacy to promote neuro-regeneration, cognitive function and reduction of Alzheimer's pathology. Allopregnanolone-induced neurogenesis correlated with restoration of learning and memory function in a mouse model of Alzheimer's disease and was comparably efficacious in aged normal mice. Critical to success was a dosing and treatment regimen that was consistent with the temporal requirements of systems biology of regeneration in brain. A treatment regimen that adhered to regenerative requirements of brain was also efficacious in reducing Alzheimer's pathology. With an optimized dosing and treatment regimen, chronic allopregnanolone administration promoted neurogenesis, oligodendrogenesis, reduced neuroinflammation and beta-amyloid burden while increasing markers of white matter generation and cholesterol homeostasis. Allopregnanolone meets three of the four drug-like physicochemical properties described by Lipinski's rule that predict the success rate of drugs in development for clinical trials. Pharmacokinetic and pharmacodynamic outcomes, securing GMP material, development of clinically translatable formulations and acquiring regulatory approval are discussed. Investigation of allopregnanolone as a regenerative therapeutic has provided key insights into mechanistic targets for neurogenesis and disease modification, dosing requirements, optimal treatment regimen, route of administration and the appropriate formulation necessary to advance to proof of concept clinical studies to determine efficacy of allopregnanolone as a regenerative and disease modifying therapeutic for Alzheimer's disease.
Collapse
|
100
|
Khalifa SAM, de Medina P, Erlandsson A, El-Seedi HR, Silvente-Poirot S, Poirot M. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells. Biochem Biophys Res Commun 2014; 446:681-6. [PMID: 24406163 DOI: 10.1016/j.bbrc.2013.12.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 12/27/2022]
Abstract
Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.
Collapse
Affiliation(s)
| | - Philippe de Medina
- Affichem, Toulouse, France; INSERM UMR 1037, Team "Sterol Metabolism and Therapeutic Innovations in Oncology", Cancer Research Center of Toulouse, F-31052 Toulouse, France
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Sandrine Silvente-Poirot
- INSERM UMR 1037, Team "Sterol Metabolism and Therapeutic Innovations in Oncology", Cancer Research Center of Toulouse, F-31052 Toulouse, France; University of Toulouse III, Toulouse, France; Institut Claudius Regaud, Toulouse, France
| | - Marc Poirot
- INSERM UMR 1037, Team "Sterol Metabolism and Therapeutic Innovations in Oncology", Cancer Research Center of Toulouse, F-31052 Toulouse, France; University of Toulouse III, Toulouse, France; Institut Claudius Regaud, Toulouse, France.
| |
Collapse
|