51
|
Chen M, Wang G, Xu Z, Sun J, Liu B, Chang L, Gu J, Ruan Y, Gao X, Song S. Loss of RACK1 promotes glutamine addiction via activating AKT/mTOR/ASCT2 axis to facilitate tumor growth in gastric cancer. Cell Oncol (Dordr) 2024; 47:113-128. [PMID: 37578594 DOI: 10.1007/s13402-023-00854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear. METHODS GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections. RESULTS Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR. CONCLUSION Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Gaojia Wang
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Zhijian Xu
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Jie Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Bo Liu
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, People's Republic of China
| | - Jianxin Gu
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Shushu Song
- Department of Biochemistry and Molecular Biology & NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
52
|
Liu N, He Y, Chen X, Qiu G, Wu Y, Shen Y. Changes in cuproptosis-related gene expression in periodontitis: An integrated bioinformatic analysis. Life Sci 2024; 338:122388. [PMID: 38181851 DOI: 10.1016/j.lfs.2023.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Periodontitis causes inflammatory destruction of tooth-supporting tissues; however, the complex mechanism underlying its etiology remains unclear. Cuproptosis is a type of cell death caused by an imbalance in intracellular copper homeostasis that leads to excess copper. However, changes in the expression and biological function of cuproptosis-related genes (CRGs) in periodontitis are not yet fully understood. This study investigated the comprehensive effects of differentially expressed CRGs (DE-CRGs) on periodontitis via bioinformatic analysis. Nine DE-CRGs were discovered using normal and periodontitis gingival samples, and single-cell RNA sequencing data were analyzed to identify them changes in diverse cell clusters. We then detected the correlation between DE-CRGs and immune infiltration, immune factors, mitochondrial dysfunction, diagnostic efficacy, and predicted drugs. Moreover, changes of DE-CRG in whole periodontitis tissue and a human gingival fibroblast cell line (HGF-1) were confirmed and copper content changes in HGF-1 cells were investigated. Most DE-CRG expression trends were reversed between the periodontal tissues and cell clusters, which may be related to the proportion of cell clusters changes caused periodontitis. Furthermore, most DE-CRG trends in periodontitis cell clusters were inconsistent with the effects of cuproptosis. In HGF-1 cells treated with Porphyromonas gingivalis lipopolysaccharide (Pg-LPS), the intracellular copper content increased by more than threefold, indicating that although some periodontitis cells had excess copper, the amount may not have been sufficient to trigger cuproptosis. Additionally, DE-CRGs were closely associated with multiple biological functions, antibiotic drugs, and natural herbal medicines. Our findings may provide an overview of DE-CRGs in the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- Na Liu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yeqing He
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xiaomin Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Guopeng Qiu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Ying Wu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China.
| |
Collapse
|
53
|
Guz W, Podgórski R, Bober Z, Aebisher D, Truszkiewicz A, Olek M, Machorowska Pieniążek A, Kawczyk-Krupka A, Bartusik-Aebisher D. In Vitro MRS of Cells Treated with Trastuzumab at 1.5 Tesla. Int J Mol Sci 2024; 25:1719. [PMID: 38338997 PMCID: PMC10855746 DOI: 10.3390/ijms25031719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.
Collapse
Affiliation(s)
- Wiesław Guz
- Department of Diagnostic Imaging and Nuclear Medicine, Medical College of Rzeszów University, 35-959 Rzeszów, Poland;
| | - Rafal Podgórski
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| | - Zuzanna Bober
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Adrian Truszkiewicz
- Department of Photomedicine and Physical Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (Z.B.); (A.T.)
| | - Marcin Olek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Agnieszka Machorowska Pieniążek
- Department of Densitry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland (A.M.P.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of Rzeszów University, 35-959 Rzeszów, Poland; (R.P.); (D.B.-A.)
| |
Collapse
|
54
|
Shapourian H, Ghanadian M, Eskandari N, Shokouhi A, Demirel GY, Bazhin AV, Ganjalikhani-Hakemi M. TIM-3/Galectin-9 interaction and glutamine metabolism in AML cell lines, HL-60 and THP-1. BMC Cancer 2024; 24:125. [PMID: 38267906 PMCID: PMC10809689 DOI: 10.1186/s12885-024-11898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is a cell surface molecule that was first discovered on T cells. However, recent studies revealed that it is also highly expressed in acute myeloid leukemia (AML) cells and it is related to AML progression. As, Glutamine appears to play a prominent role in malignant tumor progression, especially in their myeloid group, therefore, in this study we aimed to evaluate the relation between TIM-3/Galectin-9 axis and glutamine metabolism in two types of AML cell lines, HL-60 and THP-1. METHODS Cell lines were cultured in RPMI 1640 which supplemented with 10% FBS and 1% antibiotics. 24, 48, and 72 h after addition of recombinant Galectin-9 (Gal-9), RT-qPCR analysis, RP-HPLC and gas chromatography techniques were performed to evaluate the expression of glutaminase (GLS), glutamate dehydrogenase (GDH) enzymes, concentration of metabolites; Glutamate (Glu) and alpha-ketoglutarate (α-KG) in glutaminolysis pathway, respectively. Western blotting and MTT assay were used to detect expression of mammalian target of rapamycin complex (mTORC) as signaling factor, GLS protein and cell proliferation rate, respectively. RESULTS The most mRNA expression of GLS and GDH in HL-60 cells was seen at 72 h after Gal-9 treatment (p = 0.001, p = 0.0001) and in THP-1 cell line was observed at 24 h after Gal-9 addition (p = 0.001, p = 0.0001). The most mTORC and GLS protein expression in HL-60 and THP-1 cells was observed at 72 and 24 h after Gal-9 treatment (p = 0.0001), respectively. MTT assay revealed that Gal-9 could promote cell proliferation rate in both cell lines (p = 0.001). Glu concentration in HL-60 and α-KG concentration in both HL-60 (p = 0.03) and THP-1 (p = 0.0001) cell lines had a decreasing trend. But, Glu concentration had an increasing trend in THP-1 cell line (p = 0.0001). CONCLUSION Taken together, this study suggests TIM-3/Gal-9 interaction could promote glutamine metabolism in HL-60 and THP-1 cells and resulting in AML development.
Collapse
Affiliation(s)
- Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abolfazl Shokouhi
- Department of Endocrine and metabolism research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
55
|
Chen W, Liao Y, Sun P, Tu J, Zou Y, Fang J, Chen Z, Li H, Chen J, Peng Y, Wen L, Xie X. Construction of an ER stress-related prognostic signature for predicting prognosis and screening the effective anti-tumor drug in osteosarcoma. J Transl Med 2024; 22:66. [PMID: 38229155 PMCID: PMC10792867 DOI: 10.1186/s12967-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant primary bone tumor in infants and adolescents. The lack of understanding of the molecular mechanisms underlying osteosarcoma progression and metastasis has contributed to a plateau in the development of current therapies. Endoplasmic reticulum (ER) stress has emerged as a significant contributor to the malignant progression of tumors, but its potential regulatory mechanisms in osteosarcoma progression remain unknown. METHODS In this study, we collected RNA sequencing and clinical data of osteosarcoma from The TCGA, GSE21257, and GSE33382 cohorts. Differentially expressed analysis and the least absolute shrinkage and selection operator regression analysis were conducted to identify prognostic genes and construct an ER stress-related prognostic signature (ERSRPS). Survival analysis and time dependent ROC analysis were performed to evaluate the predictive performance of the constructed prognostic signature. The "ESTIMATE" package and ssGSEA algorithm were utilized to evaluate the differences in immune cells infiltration between the groups. Cell-based assays, including CCK-8, colony formation, and transwell assays and co-culture system were performed to assess the effects of the target gene and small molecular drug in osteosarcoma. Animal models were employed to assess the anti-osteosarcoma effects of small molecular drug. RESULTS Five genes (BLC2, MAGEA3, MAP3K5, STC2, TXNDC12) were identified to construct an ERSRPS. The ER stress-related gene Stanniocalcin 2 (STC2) was identified as a risk gene in this signature. Additionally, STC2 knockdown significantly inhibited osteosarcoma cell proliferation, migration, and invasion. Furthermore, the ER stress-related gene STC2 was found to downregulate the expression of MHC-I molecules in osteosarcoma cells, and mediate immune responses through influencing the infiltration and modulating the function of CD8+ T cells. Patients categorized by risk scores showed distinct immune status, and immunotherapy response. ISOX was subsequently identified and validated as an effective anti-osteosarcoma drug through a combination of CMap database screening and in vitro and in vivo experiments. CONCLUSION The ERSRPS may guide personalized treatment decisions for osteosarcoma, and ISOX holds promise for repurposing in osteosarcoma treatment.
Collapse
Affiliation(s)
- Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pengxiao Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongbo Li
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuzhong Peng
- Macau University of Science and Technology, Macau, 999078, China
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
56
|
Wu C, Tan J, Shen H, Deng C, Kleber C, Osterhoff G, Schopow N. Exploring the relationship between metabolism and immune microenvironment in osteosarcoma based on metabolic pathways. J Biomed Sci 2024; 31:4. [PMID: 38212768 PMCID: PMC10785352 DOI: 10.1186/s12929-024-00999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Metabolic remodeling and changes in tumor immune microenvironment (TIME) in osteosarcoma are important factors affecting prognosis and treatment. However, the relationship between metabolism and TIME needs to be further explored. METHODS RNA-Seq data and clinical information of 84 patients with osteosarcoma from the TARGET database and an independent cohort from the GEO database were included in this study. The activity of seven metabolic super-pathways and immune infiltration levels were inferred in osteosarcoma patients. Metabolism-related genes (MRGs) were identified and different metabolic clusters and MRG-related gene clusters were identified using unsupervised clustering. Then the TIME differences between the different clusters were compared. In addition, an MRGs-based risk model was constructed and the role of a key risk gene, ST3GAL4, in osteosarcoma cells was explored using molecular biological experiments. RESULTS This study revealed four key metabolic pathways in osteosarcoma, with vitamin and cofactor metabolism being the most relevant to prognosis and to TIME. Two metabolic pathway-related clusters (C1 and C2) were identified, with some differences in immune activating cell infiltration between the two clusters, and C2 was more likely to respond to two chemotherapeutic agents than C1. Three MRG-related gene clusters (GC1-3) were also identified, with significant differences in prognosis among the three clusters. GC2 and GC3 had higher immune cell infiltration than GC1. GC3 is most likely to respond to immune checkpoint blockade and to three commonly used clinical drugs. A metabolism-related risk model was developed and validated. The risk model has strong prognostic predictive power and the low-risk group has a higher level of immune infiltration than the high-risk group. Knockdown of ST3GAL4 significantly inhibited proliferation, migration, invasion and glycolysis of osteosarcoma cells and inhibited the M2 polarization of macrophages. CONCLUSION The metabolism of vitamins and cofactors is an important prognostic regulator of TIME in osteosarcoma, MRG-related gene clusters can well reflect changes in osteosarcoma TIME and predict chemotherapy and immunotherapy response. The metabolism-related risk model may serve as a useful prognostic predictor. ST3GAL4 plays a critical role in the progression, glycolysis, and TIME of osteosarcoma cells.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hong Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chao Deng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christian Kleber
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Nikolas Schopow
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
57
|
Alfaleh MA, Razeeth Shait Mohammed M, Hashem AM, Abujamel TS, Alhakamy NA, Imran Khan M. Extracellular matrix detached cancer cells resist oxidative stress by increasing histone demethylase KDM6 activity. Saudi J Biol Sci 2024; 31:103871. [PMID: 38107766 PMCID: PMC10724685 DOI: 10.1016/j.sjbs.2023.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs. Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally, the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as anoikis, which is associated with ECM detachment. In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-resistant cancer cells. Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate pathway. Glutamate is crucial for maintaining a pool of reduced glutathione. Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase, lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells. Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate metabolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased ROS levels and triggering cell death in anoikis-resistant cancer cells.
Collapse
Affiliation(s)
- Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia
| |
Collapse
|
58
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
59
|
Yang H, Huang L, Zhao D, Zhao H, Chen Y, Li Y, Zeng Y. Protective effect of wheat gluten peptides against ethanol-stress damage in yeast cell and identification of anti-ethanol peptides. Lebensm Wiss Technol 2024; 192:115732. [DOI: 10.1016/j.lwt.2024.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
60
|
Shin E, Kim B, Kang H, Lee H, Park J, Kang J, Park E, Jo S, Kim HY, Lee JS, Lee JM, Youn H, Youn B. Mitochondrial glutamate transporter SLC25A22 uni-directionally export glutamate for metabolic rewiring in radioresistant glioblastoma. Int J Biol Macromol 2023; 253:127511. [PMID: 37866557 DOI: 10.1016/j.ijbiomac.2023.127511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma Multiforme (GBM) is a malignant primary brain tumor. Radiotherapy, one of the standard treatments for GBM patients, could induce GBM radioresistance via rewiring cellular metabolism. However, the precise mechanism attributing to GBM radioresistance or targeting strategies to overcome GBM radioresistance are lacking. Here, we demonstrate that SLC25A22, a mitochondrial bi-directional glutamate transporter, is upregulated and showed uni-directionality from mitochondria to cytosol in radioresistant GBM cells, resulting in accumulating cytosolic glutamate. However, mitochondrial glutaminolysis-mediated TCA cycle metabolites and OCR are maintained constantly. The accumulated cytosolic glutamate enhances the glutathione (GSH) production and proline synthesis in radioresistant GBM cells. Increased GSH protects cells against ionizing radiation (IR)-induced reactive oxygen species (ROS) whereas increased proline, a rate-limiting substrate for collagen biosynthesis, induces extracellular matrix (ECM) remodeling, leading to GBM invasive phenotypes. Finally, we discover that genetic inhibition of SLC25A22 using miR-184 mimic decreases GBM radioresistance and aggressiveness both in vitro and in vivo. Collectively, our study suggests that SLC25A22 upregulation confers GBM radioresistance by rewiring glutamate metabolism, and SLC25A22 could be a significant therapeutic target to overcome GBM radioresistance.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Junhyung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - JiHoon Kang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Republic of Korea
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea; Nuclear Science Research Institute, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
61
|
Jia Y, Zou K, Zou L. Research progress of metabolomics in cervical cancer. Eur J Med Res 2023; 28:586. [PMID: 38093395 PMCID: PMC10717910 DOI: 10.1186/s40001-023-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Cervical cancer threatens women's health seriously. In recent years, the incidence of cervical cancer is on the rise, and the age of onset tends to be younger. Prevention, early diagnosis and specific treatment have become the main means to change the prognosis of cervical cancer patients. Metabolomics research can directly reflect the changes of biochemical processes and microenvironment in the body, which can provide a comprehensive understanding of the changes of metabolites in the process of disease occurrence and development, and provide new ways for the prevention and diagnosis of diseases. OBJECTIVES The aim of this study is to review the metabolic changes in cervical cancer and the application of metabolomics in the diagnosis and treatment. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2022. RESULTS With the emergence of metabolomics, metabolic regulation and cancer research are further becoming a focus of attention. By directly reflecting the changes in the microenvironment of the body, metabolomics research can provide a comprehensive understanding of the patterns of metabolites in the occurrence and development of diseases, thus providing new ideas for disease prevention and diagnosis. CONCLUSION With the continuous, in-depth research on metabolomics research technology, it will bring more benefits in the screening, diagnosis and treatment of cervical cancer with its advantages of holistic and dynamic nature.
Collapse
Affiliation(s)
- Yuhan Jia
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
62
|
Ni Y, Wang W, Liu Y, Jiang Y. Causal associations between liver traits and Colorectal cancer: a Mendelian randomization study. BMC Med Genomics 2023; 16:316. [PMID: 38057864 PMCID: PMC10699049 DOI: 10.1186/s12920-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the causal associations between several liver traits (liver iron content, percent liver fat, alanine transaminase levels, and liver volume) and colorectal cancer (CRC) risk using a Mendelian randomization (MR) approach to improve our understanding of the disease and its management. METHODS Genetic variants were used as instrumental variables, extracted from genome-wide association studies (GWAS) datasets of liver traits and CRC. The Two-Sample MR package in R was used to conduct inverse variance weighted (IVW), MR Egger, Maximum likelihood, Weighted median, and Inverse variance weighted (multiplicative random effects) MR approaches to generate overall estimates of the effect. MR analysis was conducted with Benjamini-Hochberg method-corrected P values to account for multiple testing (P < 0.013). MR-PRESSO was used to identify and remove outlier genetic variants in Mendelian randomization (MR) analysis. The MR Steiger test was used to assess the validity of the assumption that exposure causes outcomes. Leave-one-out validation, pleiotropy, and heterogeneity testing were also conducted to ensure the reliability of the results. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. RESULTS The MR analysis suggested a causal effect between liver volume and a reduced risk of CRC (OR 0.60; 95% CI, 0.44-0.82; P = 0.0010) but did not provide evidence for causal effects of liver iron content, percent liver fat, or liver alanine transaminase levels. The MR-PRESSO method did not identify any outliers, and the MR Steiger test confirmed that the causal direction of the analysis results was correct in the Mendelian randomization analysis. MR results were consistent with heterogeneity and pleiotropy analyses, and leave-one-out analysis demonstrated the overall values obtained were consistent with estimates obtained when all available SNPs were included in the analysis. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. CONCLUSION The study provides tentative evidence for a causal role of liver volume in CRC, while genetically predicted levels of liver iron content, percent liver fat, and liver alanine transaminase levels were not associated with CRC risk. The findings may inform the development of targeted therapeutic interventions for colorectal liver metastasis (CRLM) patients, and the study highlights the importance of MR as a powerful epidemiological tool for investigating causal associations between exposures and outcomes.
Collapse
Affiliation(s)
- Ying Ni
- Beijing Normal University, 100875, Beijing, China
| | - Wenkai Wang
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 200021, Shanghai, China
| | - Yongming Liu
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 200021, Shanghai, China
- Institute of Traumatology & Orthopedics, Shanghai Academy of Traditional Chinese Medicine, 200021, Shanghai, China
| | - Yun Jiang
- Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
63
|
Qi Y, Ma N, Zhang J. Tripartite motif containing 33 demonstrated anticancer effect by degrading c‑Myc: Limitation of glutamine metabolism and proliferation in endometrial carcinoma cells. Int J Oncol 2023; 63:133. [PMID: 37859625 PMCID: PMC10622177 DOI: 10.3892/ijo.2023.5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Tripartite motif containing 33 (TRIM33) has been reported to be involved in various tumor progression. However, its role in endometrial carcinoma (EC) remains to be elucidated. By mining the publicly available databases UALCAN and TIMER, low expression of TRIM33 was found in tumor tissues of EC patients. Clinically, downregulation of TRIM33 in EC tissues was positively correlated with the extensive muscle invasion and poor differentiation grade. In vitro, experiments performed on human HEC‑1‑A and AN3CA cells showed that overexpression of TRIM33 inhibited the proliferation, migration and invasion of EC cells, whereas TRIM33 knockdown resulted in the opposite results. Furthermore, upregulation of TRIM33 significantly inhibited the glutamine uptake and decreased the intracellular glutamate in EC cells, which is evidenced by the reduction of solute carrier family 1 member 5 and glutaminase. In vivo, TRIM33 also dramatically inhibited tumor growth and glutamine metabolism. Additionally, co‑immunoprecipitation assay confirmed the interaction between TRIM33 and c‑Myc. Overexpression of TRIM33 could reduce the protein stability of c‑Myc by promoting its degradation. In addition, upregulation of c‑Myc could reverse the effects of TRIM33 on EC cells. Together, the present study demonstrated that TRIM33 acted as a tumor suppressor in EC, which is manifested in its inhibition of glutamine metabolism and cell growth via promoting c‑Myc protein degradation.
Collapse
Affiliation(s)
| | | | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
64
|
Linder SJ, Bernasocchi T, Martínez-Pastor B, Sullivan KD, Galbraith MD, Lewis CA, Ferrer CM, Boon R, Silveira GG, Cho HM, Vidoudez C, Shroff S, Oliveira-Costa JP, Ross KN, Massri R, Matoba Y, Kim E, Rueda BR, Stott SL, Gottlieb E, Espinosa JM, Mostoslavsky R. Inhibition of the proline metabolism rate-limiting enzyme P5CS allows proliferation of glutamine-restricted cancer cells. Nat Metab 2023; 5:2131-2147. [PMID: 37957387 DOI: 10.1038/s42255-023-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
Glutamine is a critical metabolite for rapidly proliferating cells as it is used for the synthesis of key metabolites necessary for cell growth and proliferation. Glutamine metabolism has been proposed as a therapeutic target in cancer and several chemical inhibitors are in development or in clinical trials. How cells subsist when glutamine is limiting is poorly understood. Here, using an unbiased screen, we identify ALDH18A1, which encodes P5CS, the rate-limiting enzyme in the proline biosynthetic pathway, as a gene that cells can downregulate in response to glutamine starvation. Notably, P5CS downregulation promotes de novo glutamine synthesis, highlighting a previously unrecognized metabolic plasticity of cancer cells. The glutamate conserved from reducing proline synthesis allows cells to produce the key metabolites necessary for cell survival and proliferation under glutamine-restricted conditions. Our findings reveal an adaptive pathway that cancer cells acquire under nutrient stress, identifying proline biosynthesis as a previously unrecognized major consumer of glutamate, a pathway that could be exploited for developing effective metabolism-driven anticancer therapies.
Collapse
Affiliation(s)
- Samantha J Linder
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tiziano Bernasocchi
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| | - Bárbara Martínez-Pastor
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline A Lewis
- The Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina M Ferrer
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Galapagos de Wittelaan, Mechelen, Belgium
| | - Giorgia G Silveira
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hyo Min Cho
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Stuti Shroff
- Department of Pathology, The Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao P Oliveira-Costa
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Kenneth N Ross
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rami Massri
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yusuke Matoba
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shannon L Stott
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Engineering in Medicine and Surgery, The Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- MD Anderson Cancer Center, Houston, TX, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raul Mostoslavsky
- The Krantz Family Center for Cancer Research, The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Denver, CO, USA.
| |
Collapse
|
65
|
Hunt H, Leape S, Sidhu JS, Ajmera I, Lynch JP, Ratcliffe RG, Sweetlove LJ. A role for fermentation in aerobic conditions as revealed by computational analysis of maize root metabolism during growth by cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1553-1570. [PMID: 37831626 DOI: 10.1111/tpj.16478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
The root is a well-studied example of cell specialisation, yet little is known about the metabolism that supports the transport functions and growth of different root cell types. To address this, we used computational modelling to study metabolism in the elongation zone of a maize lateral root. A functional-structural model captured the cell-anatomical features of the root and modelled how they changed as the root elongated. From these data, we derived constraints for a flux balance analysis model that predicted metabolic fluxes of the 11 concentric rings of cells in the root. We discovered a distinct metabolic flux pattern in the cortical cell rings, endodermis and pericycle (but absent in the epidermis) that involved a high rate of glycolysis and production of the fermentation end-products lactate and ethanol. This aerobic fermentation was confirmed experimentally by metabolite analysis. The use of fermentation in the model was not obligatory but was the most efficient way to meet the specific demands for energy, reducing power and carbon skeletons of expanding cells. Cytosolic acidification was avoided in the fermentative mode due to the substantial consumption of protons by lipid synthesis. These results expand our understanding of fermentative metabolism beyond that of hypoxic niches and suggest that fermentation could play an important role in the metabolism of aerobic tissues.
Collapse
Affiliation(s)
- Hilary Hunt
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefan Leape
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jagdeep Singh Sidhu
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ishan Ajmera
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
66
|
Muranaka H, Billet S, Cruz-Hernández C, Ten Hoeve J, Gonzales G, Elmadbouh O, Zhang L, Smith B, Tighiouart M, You S, Edderkaoui M, Hendifar A, Pandol S, Gong J, Bhowmick N. Supraphysiological glutamine as a means of depleting intracellular amino acids to enhance pancreatic cancer chemosensitivity. RESEARCH SQUARE 2023:rs.3.rs-3647514. [PMID: 38076821 PMCID: PMC10705710 DOI: 10.21203/rs.3.rs-3647514/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.
Collapse
|
67
|
Chen X, Deng M, Wang Z, Huang C. MMP3C: an in-silico framework to depict cancer metabolic plasticity using gene expression profiles. Brief Bioinform 2023; 25:bbad471. [PMID: 38145946 PMCID: PMC10749788 DOI: 10.1093/bib/bbad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Metabolic plasticity enables cancer cells to meet divergent demands for tumorigenesis, metastasis and drug resistance. Landscape analysis of tumor metabolic plasticity spanning different cancer types, in particular, metabolic crosstalk within cell subpopulations, remains scarce. Therefore, we proposed a new in-silico framework, termed as MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to depict tumor metabolic plasticity based on transcriptome data. Next, we performed an extensive metabo-plastic analysis of over 6000 tumors comprising 13 cancer types. The metabolic plasticity within distinct cell subpopulations, particularly interplay with tumor microenvironment, were explored at single-cell resolution. Ultimately, the metabo-plastic events were screened out for multiple clinical applications via machine learning methods. The pilot research indicated that 6 out of 13 cancer types exhibited signs of the Warburg effect, implying its high reliability and robustness. Across 13 cancer types, high metabolic organized heterogeneity was found, and four metabo-plastic subtypes were determined, which link to distinct immune and metabolism patterns impacting prognosis. Moreover, MMP3C analysis of approximately 60 000 single cells of eight breast cancer patients unveiled several metabo-plastic events correlated to tumorigenesis, metastasis and immunosuppression. Notably, the metabolic features screened out by MMP3C are potential biomarkers for diagnosis, tumor classification and prognosis. MMP3C is a practical cross-platform tool to capture tumor metabolic plasticity, and our study unveiled a core set of metabo-plastic pairs among diverse cancer types, which provides bases toward improving response and overcoming resistance in cancer therapy.
Collapse
Affiliation(s)
- Xingyu Chen
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Min Deng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Zihan Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Chen Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| |
Collapse
|
68
|
Denis AA, Toledo D, Hakim QA, Quintana AA, Escobar CR, Oluwole SA, Costa A, Garcia EG, Hill AR, Agatemor C. Ligand-Independent Activation of Aryl Hydrocarbon Receptor and Attenuation of Glutamine Levels by Natural Deep Eutectic Solvent. Chembiochem 2023; 24:e202300540. [PMID: 37615422 DOI: 10.1002/cbic.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Natural deep eutectic solvents (NADESs) are emerging sustainable alternatives to conventional organic solvents. Beyond their role as laboratory solvents, NADESs are increasingly explored in drug delivery and as therapeutics. Their increasing applications notwithstanding, our understanding of how they interact with biomolecules at multiple levels - metabolome, proteome, and transcriptome - within human cell remain poor. Here, we deploy integrated metabolomics, proteomics, and transcriptomics to probe how NADESs perturb the molecular landscape of human cells. In a human cell line model, we found that an archetypal NADES derived from choline and geranic acid (CAGE) significantly altered the metabolome, proteome, and transcriptome. CAGE upregulated indole-3-lactic acid and 4-hydroxyphenyllactic acid levels, resulting in ligand-independent activation of aryl hydrocarbon receptor to signal the transcription of genes with implications for inflammation, immunomodulation, cell development, and chemical detoxification. Further, treating the cell line with CAGE downregulated glutamine biosynthesis, a nutrient rapidly proliferating cancer cells require. CAGE's ability to attenuate glutamine levels is potentially relevant for cancer treatment. These findings suggest that NADESs, even when derived from natural components like choline, can indirectly modulate cell biology at multiple levels, expanding their applications beyond chemistry to biomedicine and biotechnology.
Collapse
Affiliation(s)
| | - Daniela Toledo
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | | | | | | | - Arthur Costa
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
| | | | - Anaya Rose Hill
- Department of Biology, University of Miami, Miami, FL-33146, USA
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Miami, FL-33146, USA
- Department of Biology, University of Miami, Miami, FL-33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, University of Miami, Miami, FL-33136, USA
| |
Collapse
|
69
|
Lin X, Zhou W, Liu Z, Cao W, Lin C. Targeting cellular metabolism in head and neck cancer precision medicine era: A promising strategy to overcome therapy resistance. Oral Dis 2023; 29:3101-3120. [PMID: 36263514 DOI: 10.1111/odi.14411] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancer worldwide, with the most severe impact on quality of life of patients. Despite the development of multimodal therapeutic approaches, the clinical outcomes of HNSCC are still unsatisfactory, mainly caused by relatively low responsiveness to treatment and severe drug resistance. Metabolic reprogramming is currently considered to play a pivotal role in anticancer therapeutic resistance. This review aimed to define the specific metabolic programs and adaptations in HNSCC therapy resistance. An extensive literature review of HNSCC was conducted via the PubMed including metabolic reprogramming, chemo- or immune-therapy resistance. Glucose metabolism, fatty acid metabolism, and amino acid metabolism are closely related to the malignant biological characteristics of cancer, anti-tumor drug resistance, and adverse clinical results. For HNSCC, pyruvate, lactate and almost all lipid categories are related to the occurrence and maintenance of drug resistance, and targeting amino acid metabolism can prevent tumor development and enhance the response of drug-resistant tumors to anticancer therapy. This review will provide a better understanding of the altered metabolism in therapy resistance of HNSCC and promote the development of new therapeutic strategies against HNSCC, thereby contribute to a more efficacious precision medicine.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheqi Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Chengzhong Lin
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
70
|
Dai W, Mo W, Xu W, Han D, Xu X. Systematic analysis of glutamine metabolism family genes and exploration of the biological role of GPT in colorectal cancer. Aging (Albany NY) 2023; 15:11811-11830. [PMID: 37851339 PMCID: PMC10683594 DOI: 10.18632/aging.205079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignancy of the digestive system with high incidence rate and mortality, and reliable diagnostic and prognostic markers for CRC are still lacking. Glutamine metabolism is crucial to the occurrence and development of CRC. However, no research has systematically analyzed the biological role of glutamine metabolism-related genes (GMRGs) in CRC. METHODS We downloaded gene expression data and clinical data of CRC patients from the TCGA database. The UCSC database downloads pan-cancer gene expression data and prognosis data. Characteristic GMRGs were screened out using differential analysis and two types of machine learning (SVM-REF and RandomForest). Single-cell RNA-sequencing data from CRC patients were downloaded from GEO data. ROC curve was used to evaluate the diagnostic value. Kaplan-Meier method and univariate Cox regression analysis were used to evaluate the prognostic value. The oncopredict package is used to calculate IC50 values for common drugs in CRC patients. RESULTS A total of 31 differentially expressed GMRGs were identified, 9 of which were identified as characteristic GMRGs. Further evaluation of diagnostic and prognostic value finally identified GPT as the most important GMRGs in CRC. scRNA-seq analysis revealed that GPT is almost exclusively expressed in epithelial cells. GPT expression is closely related to the tumor microenvironment and can effectively distinguish the sensitivity of different CRC patients to clinical drugs. In addition, pan-cancer analysis showed that GPT is an excellent diagnostic and prognostic marker for multiple cancers. CONCLUSIONS GPT is a reliable diagnostic, prognostic marker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenqiang Xu
- Department of Gastroenterology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Dengyu Han
- Department of Gastroenterology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
71
|
Huang Y, Yuan J, Mu R, Kubiak RJ, Ball K, Cao M, Hussmann GP, de Mel N, Liu D, Roskos LK, Liang M, Rosenbaum AI. Multiplex Bioanalytical Methods for Comprehensive Characterization and Quantification of the Unique Complementarity-Determining-Region Deamidation of MEDI7247, an Anti-ASCT2 Pyrrolobenzodiazepine Antibody-Drug Conjugate. Antibodies (Basel) 2023; 12:66. [PMID: 37873863 PMCID: PMC10594446 DOI: 10.3390/antib12040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Deamidation, a common post-translational modification, may impact multiple physiochemical properties of a therapeutic protein. MEDI7247, a pyrrolobenzodiazepine (PBD) antibody-drug conjugate (ADC), contains a unique deamidation site, N102, located within the complementarity-determining region (CDR), impacting the affinity of MEDI7247 to its target. Therefore, it was necessary to monitor MEDI7247 deamidation status in vivo. Due to the low dose, a sensitive absolute quantification method using immunocapture coupled with liquid chromatography-tandem mass spectrometry (LBA-LC-MS/MS) was developed and qualified. We characterized the isomerization via Electron-Activated Dissociation (EAD), revealing that deamidation resulted in iso-aspartic acid. The absolute quantification of deamidation requires careful assay optimization in order not to perturb the balance of the deamidated and nondeamidated forms. Moreover, the selection of capture reagents essential for the correct quantitative assessment of deamidation was evaluated. The final assay was qualified with 50 ng/mL LLOQ for ADC for total and nondeamidated antibody quantification, with qualitative monitoring of the deamidated antibody. The impact of deamidation on the pharmacokinetic characteristics of MEDI7247 from clinical trial NCT03106428 was analyzed, revealing a gradual reduction in the nondeamidated form of MEDI7247 in vivo. Careful quantitative biotransformation analyses of complex biotherapeutic conjugates help us understand changes in product PTMs after administration, thus providing a more complete view of in vivo pharmacology.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA; (Y.H.); (J.Y.); (R.M.); (M.L.)
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA; (Y.H.); (J.Y.); (R.M.); (M.L.)
| | - Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA; (Y.H.); (J.Y.); (R.M.); (M.L.)
| | - Robert J. Kubiak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (R.J.K.); (L.K.R.)
| | - Kathryn Ball
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK;
| | - Mingyan Cao
- Department of Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (M.C.); (G.P.H.); (N.d.M.); (D.L.)
| | - G. Patrick Hussmann
- Department of Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (M.C.); (G.P.H.); (N.d.M.); (D.L.)
| | - Niluka de Mel
- Department of Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (M.C.); (G.P.H.); (N.d.M.); (D.L.)
| | - Dengfeng Liu
- Department of Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (M.C.); (G.P.H.); (N.d.M.); (D.L.)
| | - Lorin K. Roskos
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA; (R.J.K.); (L.K.R.)
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA; (Y.H.); (J.Y.); (R.M.); (M.L.)
| | - Anton I. Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Boulevard, South San Francisco, CA 94080, USA; (Y.H.); (J.Y.); (R.M.); (M.L.)
| |
Collapse
|
72
|
Kim Y, Ju H, Yoo SY, Jeong J, Heo J, Lee S, Park JM, Yoon SY, Jeong SU, Lee J, Yun H, Ryu CM, Lee J, Nam YJ, Kwon H, Son J, Jeong G, Oh JH, Sung CO, Jeong EM, An J, Won S, Hong B, Lee JL, Cho YM, Shin DM. Glutathione dynamics is a potential predictive and therapeutic trait for neoadjuvant chemotherapy response in bladder cancer. Cell Rep Med 2023; 4:101224. [PMID: 37797616 PMCID: PMC10591055 DOI: 10.1016/j.xcrm.2023.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/23/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Radical cystectomy with preoperative cisplatin-based neoadjuvant chemotherapy (NAC) is the standard care for muscle-invasive bladder cancers (MIBCs). However, the complete response rate to this modality remains relatively low, and current clinicopathologic and molecular classifications are inadequate to predict NAC response in patients with MIBC. Here, we demonstrate that dysregulation of the glutathione (GSH) pathway is fundamental for MIBC NAC resistance. Comprehensive analysis of the multicohort transcriptomes reveals that GSH metabolism and immune-response genes are enriched in NAC-resistant and NAC-sensitive MIBCs, respectively. A machine-learning-based tumor/stroma classifier is applied for high-throughput digitalized immunohistochemistry analysis, finding that GSH dynamics proteins, including glutaminase-1, are associated with NAC resistance. GSH dynamics is activated in cisplatin-resistant MIBC cells, and combination treatment with a GSH dynamics modulator and cisplatin significantly suppresses tumor growth in an orthotopic xenograft animal model. Collectively, these findings demonstrate the predictive and therapeutic values of GSH dynamics in determining the NAC response in MIBCs.
Collapse
Affiliation(s)
- YongHwan Kim
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyein Ju
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Yeon Yoo
- Pathology Center, Seegene Medical Foundation, Seoul 04805, Korea
| | - Jinahn Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jinbeom Heo
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seungun Lee
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ja-Min Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sun Young Yoon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Un Jeong
- Department of Pathology, Ewha Womans University College of Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Korea
| | - Jinyoung Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - HongDuck Yun
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chae-Min Ryu
- Center for Cell Therapy, Asan Medical Center, Seoul 05505, Korea
| | - Jinah Lee
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yun Ji Nam
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyungu Kwon
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaekyoung Son
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gowun Jeong
- AI Recommendation, T3K, SK Telecom, Seoul 04539, Korea
| | - Ji-Hye Oh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eui Man Jeong
- College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Jaehoon An
- Department of Public Health Sciences, Seoul National University, Seoul 08826, Korea; RexSoft, Inc., Seoul 08826, Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul 08826, Korea; RexSoft, Inc., Seoul 08826, Korea
| | - Bumsik Hong
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
73
|
Zhong X, He Z, Yin L, Fan Y, Tong Y, Kang Y, Bi Q. Glutamine metabolism in tumor metastasis: Genes, mechanisms and the therapeutic targets. Heliyon 2023; 9:e20656. [PMID: 37829798 PMCID: PMC10565784 DOI: 10.1016/j.heliyon.2023.e20656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer cells frequently change their metabolism from aerobic glycolysis to lipid metabolism and amino acid metabolism to adapt to the malignant biological behaviours of infinite proliferation and distant metastasis. The significance of metabolic substances and patterns in tumour cell metastasis is becoming increasingly prominent. Tumour metastasis involves a series of significant steps such as the shedding of cancer cells from a primary tumour, resistance to apoptosis, and colonisation of metastatic sites. However, the role of glutamine in these processes remains unclear. This review summarises the key enzymes and transporters involved in glutamine metabolism that are related to the pathogenesis of malignant tumour metastasis. We also list the roles of glutamine in resisting oxidative stress and promoting immune escape. Finally, the significance of targeting glutamine metabolism in inhibiting tumour metastasis was proposed, research in this field improving our understanding of amino acid metabolism rewiring and simultaneously bringing about new and exciting therapeutic prospects.
Collapse
Affiliation(s)
- Xugang Zhong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zeju He
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Yin
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Fan
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Yao Kang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, China
- Department of Orthopedics, Hangzhou Medical College People's Hospital, Hangzhou, China
| |
Collapse
|
74
|
Ammar N, Hildebrandt M, Geismann C, Röder C, Gemoll T, Sebens S, Trauzold A, Schäfer H. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants (Basel) 2023; 12:1818. [PMID: 37891897 PMCID: PMC10604597 DOI: 10.3390/antiox12101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype of PDAC cells compensated for the shortage of glutamine as an essential metabolite for redox homeostasis. Thus, oxidative stress caused by glutamine depletion led to an Nrf2-dependent induction of MCT1 expression in pancreatic T3M4 and A818-6 cells. Moreover, greater MCT1 expression was detected in glutamine-scarce regions within tumor tissues from PDAC patients. MCT1-driven lactate uptake supported the neutralization of reactive oxygen species excessively produced under glutamine shortage and the resulting drop in glutathione levels that were restored by the imported lactate. Consequently, PDAC cells showed greater survival and growth under glutamine depletion when utilizing lactate through MCT1. Likewise, the glutamine uptake inhibitor V9302 and glutaminase-1 inhibitor CB839 induced oxidative stress in PDAC cells, along with cell death and cell cycle arrest that were again compensated by MCT1 upregulation and forced lactate uptake. Our findings show a novel mechanism by which PDAC cells adapt their metabolism to glutamine scarcity and by which they develop resistance against anticancer treatments based on glutamine uptake/metabolism inhibition.
Collapse
Affiliation(s)
- Nourhane Ammar
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Maya Hildebrandt
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Claudia Geismann
- Department of Internal Medicine and Gastroenterology, Carl-von-Ossietzky University Oldenburg, Philosophenweg 36, 26121 Oldenburg, Germany;
| | - Christian Röder
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Susanne Sebens
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Ania Trauzold
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Heiner Schäfer
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| |
Collapse
|
75
|
Georgoulis I, Bock C, Lannig G, Pörtner HO, Sokolova IM, Feidantsis K, Giantsis IA, Michaelidis B. Heat hardening enhances metabolite-driven thermoprotection in the Mediterranean mussel Mytilus galloprovincialis. Front Physiol 2023; 14:1244314. [PMID: 37841313 PMCID: PMC10570847 DOI: 10.3389/fphys.2023.1244314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Temperature affects organisms' metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes. Methods: We investigated the "stress memory" effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels' thermal tolerance. Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones. Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels' tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Hans O. Pörtner
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Bremerhaven, Germany
| | - Inna M. Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Fisheries and Aquaculture, University of Patras, Mesolonghi, Greece
| | - Ioannis A. Giantsis
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Kozani, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Environmental Control and Research Laboratory, Region of Central Macedonia, Thessaloniki, Greece
| |
Collapse
|
76
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
77
|
Mitsui Y, Yamabe F, Hori S, Uetani M, Aoki H, Sakurabayashi K, Okawa M, Kobayashi H, Nagao K, Nakajima K. Longitudinal change in castration-resistant prostate cancer biomarker AST/ALT ratio reflects tumor progression. Sci Rep 2023; 13:15292. [PMID: 37714917 PMCID: PMC10504303 DOI: 10.1038/s41598-023-42711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
We investigated whether aspartate transaminase (AST)-to-alanine aminotransferase (ALT) ratio and its change during the course of treatment in castration-resistant prostate cancer (CRPC) patients is associated with tumor condition and lethality. Clinical data from 130 CRPC patients were retrospectively evaluated. AST/ALT ratios at the time of prostate cancer (PC) diagnosis, androgen deprivation therapy (ADT), CRPC diagnosis, and the final follow-up examination after CRPC treatment were calculated for each. The prognostic capabilities of the AST/ALT ratio for overall survival (OS) were analyzed by use of the Kaplan-Meier method and Cox hazard models. The median AST/ALT ratio at PC diagnosis was 1.517 and the optimal value predicting lethality defined by the receiver operating curve was 1.467. The AST/ALT ratio decreased once during ADT and then elevated in a stepwise manner with cancer progression. In surviving patients, the median AST/ALT ratio at the time of PC diagnosis was 1.423, which did not change longitudinally, whereas that in patients later deceased was significantly higher (1.620) and further elevated after CRPC diagnosis. Kaplan-Meier curves indicated significantly worse OS in patients with an AST/ALT ratio ≥ 1.467, which was confirmed by multivariate analysis. These findings indicate AST/ALT ratio as a prognostic biomarker for CRPC with longitudinal changes reflecting tumor progression.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Fumito Yamabe
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Shunsuke Hori
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masato Uetani
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiroshi Aoki
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Kei Sakurabayashi
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Mizuho Okawa
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hideyuki Kobayashi
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Koichi Nagao
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Koichi Nakajima
- Department of Urology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| |
Collapse
|
78
|
Wang K, Lin X, Wang T, Zhang X, Cheng W, Xu F, Wang L, Li B, Wang M, Wang W, Zhang M, Ding S, Jin G, Zhu Y, Yang W, Hu A, Zhao Q. Synergistic effects of low-dose arsenic and N-methyl-N'-nitro-N-nitrosoguanidine co-exposure by altering gut microbiota and intestinal metabolic profile in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115195. [PMID: 37418937 DOI: 10.1016/j.ecoenv.2023.115195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Biological organisms are exposed to low-dose arsenic or N-nitro compounds (NOCs) alone or in combination worldwide, especially in areas with high cancer prevalence through drinking water or food exposure; however, information on their combined exposure effects is limited. Here, we conducted an in-depth study of the effects on the gut microbiota, metabolomics, and signaling pathways using rat models exposed to arsenic or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), one of the most active carcinogenic NOCs, separately or in combination with metabolomics and high-throughput sequencing. Compared to exposure alone, combined exposure to arsenic and MNNG exacerbated damage to gastric tissue morphology, interfered with intestinal microflora and substance metabolism, and exerted a stronger carcinogenic effect. This may be related to intestinal microbiota disorders, including Dyella, Oscillibacter, Myroides, and metabolic pathways such as glycine, serine, and threonine metabolism, arginine biosynthesis, central carbon metabolism in cancer, and purine and pyrimidine metabolism, thereby enhancing the cancer-causing effects of gonadotrophin-releasing hormone (GnRH), P53, and Wnt signaling pathways.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wuqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Shaopeng Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Guoqing Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
79
|
Szoka L, Nazaruk J, Giegiel J, Isidorov V. Prolidase-proline oxidase axis is engaged in apoptosis induction by birch buds flavonol santin in endometrial adenocarcinoma cell line. Front Mol Biosci 2023; 10:1247536. [PMID: 37745688 PMCID: PMC10512030 DOI: 10.3389/fmolb.2023.1247536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer of the corpus uteri and cervix uteri, collectively ranks second among new cancer cases in women after breast cancer. Therefore, investigation of new anticancer agents and identifying new molecular targets presents a challenge to improve effectiveness of chemotherapy. In this study, antiproliferative activity of flavonoids derived from the buds of silver birch and downy birch was evaluated in endometrial cancer Ishikawa cells and cervical cancer HeLa cells. It was found that flavanol santin reduced viability of both cell lines better than other flavonoids, including apigenin and luteolin. Moreover, this activity was slightly higher than that induced by the chemotherapy drug, cisplatin. Santin promoted intrinsic and extrinsic apoptosis pathways in cancer cells, but it had low toxicity in normal fibroblasts. The mechanisms of impairing cancer cell viability included induction of oxidative proline catabolism, however in different ways in the cell lines used. In HeLa cells, increase of proline oxidation was due to activation of p53 leading to proline oxidase upregulation. In contrast, in Ishikawa cells, having basal proline oxidase level significantly higher than HeLa cells, santin treatment decreased its expression. Nevertheless, proline oxidation was induced in these cells since santin increased expression and activity of prolidase, an enzyme providing proline from protein degradation. In both cell lines, proline oxidation was associated with generation of reactive oxygen species leading to reduction in cell viability. Our findings reveal the involvement of proline oxidase in induction of apoptosis by santin and identify a role of prolidase in proline oxidase-dependent apoptosis.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Bialystok, Białystok, Poland
| | - Joanna Giegiel
- Department of Medicinal Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Valery Isidorov
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| |
Collapse
|
80
|
Huang R, Wang H, Hong J, Wu J, Huang O, He J, Chen W, Li Y, Chen X, Shen K, Wang Z. Targeting glutamine metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative breast cancer. Front Immunol 2023; 14:1251643. [PMID: 37731509 PMCID: PMC10507177 DOI: 10.3389/fimmu.2023.1251643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a heterogeneous disease that is characterized by metabolic disruption. Metabolic reprogramming and tumor cell immune escape play indispensable roles in the tumorigenesis that leads to TNBC. Methods In this study, we constructed and validated two prognostic glutamine metabolic gene models, Clusters A and B, to better discriminate between groups of TNBC patients based on risk. Compared with the risk Cluster A patients, the Cluster B patients tended to exhibit better survival outcomes and higher immune cell infiltration. In addition, we established a scoring system, the glutamine metabolism score (GMS), to assess the pattern of glutamine metabolic modification. Results We found that solute carrier family 7 member 5 (SLC7A5), an amino acid transporter, was the most important gene and plays a vital role in glutamine metabolism reprogramming in TNBC cells. Knocking down SLC7A5 significantly inhibited human and mouse TNBC cell proliferation, migration, and invasion. In addition, downregulation of SLC7A5 increased CD8+ T-cell infiltration. The combination of a SLC7A5 blockade mediated via JPH203 treatment and an anti-programmed cell death 1 (PD-1) antibody synergistically increased the immune cell infiltration rate and inhibited tumor progression. Conclusions Hence, our results highlight the molecular mechanisms underlying SLC7A5 effects and lead to a better understanding of the potential benefit of targeting glutamine metabolism in combination with immunotherapy as a new therapy for TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
81
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
82
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
83
|
Hwang Y, Yun HJ, Jeong JW, Kim M, Joo S, Lee HK, Chang HS, Kim SM, Fang S. Co-inhibition of glutaminolysis and one-carbon metabolism promotes ROS accumulation leading to enhancement of chemotherapeutic efficacy in anaplastic thyroid cancer. Cell Death Dis 2023; 14:515. [PMID: 37573361 PMCID: PMC10423221 DOI: 10.1038/s41419-023-06041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive tumors with an extremely poor prognosis. Based on the several biological features related to glutamine metabolism in ATC, we hypothesized glutaminolysis inhibition induces cell death in ATC cells. However, glutamine metabolism inhibition triggered cell growth arrest independent of cell death in ATC, suggesting that other signaling pathways avoid glutamine metabolism inhibition-induced stress exist. To investigate the functional mechanism against glutamine metabolism inhibition, we conducted mRNA and ATAC-Sequencing data analysis and found that glutamine deprivation increased ATF4-mediated one-carbon metabolism. When we inhibited PHGDH, the first rate-limiting enzyme for one-carbon metabolism, cell growth arrest was promoted upon glutamine metabolism inhibition by accumulating intracellular ROS. We next observed that the co-inhibition of glutamine and one-carbon metabolism could augment the anticancer effects of drugs used in patients with ATC. Finally, single-cell RNA sequencing analysis revealed that one-carbon metabolism was strengthened through the evolutionary process from PTC to ATC. Collectively, our data demonstrate that one-carbon metabolism has a potential role of modulation of cell fate in metabolic stress and can be a therapeutic target for enhancing antitumor effects in ATC.
Collapse
Affiliation(s)
- Yeseong Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woong Jeong
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minki Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Seyeon Joo
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hae-Kyung Lee
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea.
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
84
|
Ye Y, Yu B, Wang H, Yi F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1242059. [PMID: 37635935 PMCID: PMC10452011 DOI: 10.3389/fmolb.2023.1242059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease with limited management strategies and poor prognosis. Metabolism alternations have been frequently unveiled in HCC, including glutamine metabolic reprogramming. The components of glutamine metabolism, such as glutamine synthetase, glutamate dehydrogenase, glutaminase, metabolites, and metabolite transporters, are validated to be potential biomarkers of HCC. Increased glutamine consumption is confirmed in HCC, which fuels proliferation by elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism also serves as a nitrogen source for amino acid or nucleotide anabolism. In addition, more glutamine converts to glutathione as an antioxidant in HCC to protect HCC cells from oxidative stress. Moreover, glutamine metabolic reprogramming activates the mTORC signaling pathway to support tumor cell proliferation. Glutamine metabolism targeting therapy includes glutamine deprivation, related enzyme inhibitors, and transporters inhibitors. Together, glutamine metabolic reprogramming plays a pivotal role in HCC identification, proliferation, and progression.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bodong Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
85
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
86
|
Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN. Oleic acid as potential immunostimulant in metabolism pathways of hybrid grouper fingerlings (Epinephelus fuscoguttatus × Epinephelus lanceolatus) infected with Vibrio vulnificus. Sci Rep 2023; 13:12830. [PMID: 37553472 PMCID: PMC10409752 DOI: 10.1038/s41598-023-40096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
Collapse
Affiliation(s)
- Maya Erna Natnan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chen-Fei Low
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Chou-Min Chong
- Laboratory of Immunogenomics, Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidun Bunawan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
87
|
Peng S, Wang Z, Tang P, Wang S, Huang Y, Xie Q, Wang Y, Tan X, Tang T, Yan X, Xu J, Lan W, Wang L, Zhang D, Wang B, Pan T, Qin J, Jiang J, Liu Q. PHF8-GLUL axis in lipid deposition and tumor growth of clear cell renal cell carcinoma. SCIENCE ADVANCES 2023; 9:eadf3566. [PMID: 37531433 PMCID: PMC10396305 DOI: 10.1126/sciadv.adf3566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiubo Xie
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xuzhi Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tiejun Pan
- Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, Hubei, P.R. China
| | - Jun Qin
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
88
|
Taurino G, Chiu M, Bianchi MG, Griffini E, Bussolati O. The SLC38A5/SNAT5 amino acid transporter: from pathophysiology to pro-cancer roles in the tumor microenvironment. Am J Physiol Cell Physiol 2023; 325:C550-C562. [PMID: 37458433 DOI: 10.1152/ajpcell.00169.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/β-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.
Collapse
Affiliation(s)
- Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| | - Erika Griffini
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- MRH-Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
89
|
Zhang X, Liu Y, Sosa F, Gunewardena S, Crawford PA, Zielen AC, Orwig KE, Wang N. Transcriptional metabolic reprogramming implements meiotic fate decision in mouse testicular germ cells. Cell Rep 2023; 42:112749. [PMID: 37405912 PMCID: PMC10529640 DOI: 10.1016/j.celrep.2023.112749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Nutrient starvation drives yeast meiosis, whereas retinoic acid (RA) is required for mammalian meiosis through its germline target Stra8. Here, by using single-cell transcriptomic analysis of wild-type and Stra8-deficient juvenile mouse germ cells, our data show that the expression of nutrient transporter genes, including Slc7a5, Slc38a2, and Slc2a1, is downregulated in germ cells during meiotic initiation, and this process requires Stra8, which binds to these genes and induces their H3K27 deacetylation. Consequently, Stra8-deficient germ cells sustain glutamine and glucose uptake in response to RA and exhibit hyperactive mTORC1/protein kinase A (PKA) activities. Importantly, expression of Slc38a2, a glutamine importer, is negatively correlated with meiotic genes in the GTEx dataset, and Slc38a2 knockdown downregulates mTORC1/PKA activities and induces meiotic gene expression. Thus, our study indicates that RA via Stra8, a chordate morphogen pathway, induces meiosis partially by generating a conserved nutrient restriction signal in mammalian germ cells by downregulating their nutrient transporter expression.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Yan Liu
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Froylan Sosa
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amanda C Zielen
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
90
|
Hubalek S, Melke J, Pawlica P, Post MJ, Moutsatsou P. Non-ammoniagenic proliferation and differentiation media for cultivated adipose tissue. Front Bioeng Biotechnol 2023; 11:1202165. [PMID: 37555077 PMCID: PMC10405928 DOI: 10.3389/fbioe.2023.1202165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Ammonia (Amm), and its aqueous solved state, ammonium, which is produced from glutamine (Gln) metabolism, is a known inhibitor of stem cell proliferation in vitro. In the context of cultivated beef, primary bovine fibro-adipogenic progenitor cells (FAPs) need to be grown and differentiated for several weeks in vitro for the production of cultivated fat. In this study, the ammonium sensitivity of these cells was investigated by introducing ammonium chloride, which was found to inhibit their proliferation when above 5 mM and their adipogenic differentiation when above 2 mM. Novel serum-free proliferation and differentiation media were hence developed with the aim to suppress Amm production during expansion and adipogenesis. Glutamine substitutes, such as a-ketoglutarate (aKG), glutamate (Glt) and pyruvate (Pyr) were investigated. It was found that aKG based proliferation medium (PM) was the most effective in promoting and maintaining FAPs growth over several passages while the specific Amm production rate was reduced more than 5-fold. In terms of differentiation capacity, the substitution of glucose (Gluc) and Gln with galactose (Gal) and Pyr was shown to be the most effective in promoting FAPs differentiation into mature adipocytes, resulting in over 2-fold increase of fat volume per cell, while suppressing Amm production. Our findings suggest that FAPs do not require Gln as an essential nutrient but, on the contrary, possess all the necessary metabolic pathways to proliferate and subsequently differentiate in a Gln-free medium, resulting in decreased Amm production rates and seemingly synthesising glutamine de novo. These findings are important for prolonging the lifespan of culture medium, allowing for reduced costs and process interventions.
Collapse
Affiliation(s)
- S. Hubalek
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- CARIM, School of Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - J. Melke
- Mosa Meat BV, Maastricht, Netherlands
| | | | - M. J. Post
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- CARIM, School of Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - P. Moutsatsou
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
91
|
Song GQ, Wu P, Dong XM, Cheng LH, Lu HQ, Lin YY, Tang WY, Xie T, Zhou JL. Elemene induces cell apoptosis via inhibiting glutathione synthesis in lung adenocarcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116409. [PMID: 37003401 DOI: 10.1016/j.jep.2023.116409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Curcuma wenyujin Y.H. Chen & C. Ling, also known as Wen-E-Zhu, has been used for cancer treatment since ancient times, with roots dating back to the Song Dynasty. Elemene (EE), a sesquiterpene extract with potent anticancer properties, is extracted from Wen-E-Zhu, with β-elemene (BE) being its main active compound, along with trace amounts of β-caryophyllene (BC), γ-elemene and δ-elemene isomers. EE has demonstrated broad-spectrum anti-cancer effects and is commonly used in clinical treatments for various types of malignant cancers, including lung cancer. Studies have shown that EE can arrest the cell cycle, inhibit cancer cell proliferation, and induce apoptosis and autophagy. However, the exact mechanism of its anti-lung cancer activity remains unclear and requires further research and investigation. AIM OF THE STUDY In this study, the possible mechanism of EE and its main active components, BE and BC, against lung adenocarcinoma was investigated by using A549 and PC9 cell lines. MATERIALS AND METHODS The subcutaneous tumor model of nude mice was constructed to evaluate the efficacy of EE in vivo, then the in vitro half-inhibitory concentration (IC50) of EE and its main active components, BE and BC, on A549 and PC9 cells at different concentrations were determined by CCK-8. Flow cytometry was used to detect the apoptosis and cycle of A549 and PC9 cells treated with different concentrations of BE and BC for 24 h. Non-targeted metabolomics analysis was performed on A549 cells to explore potential target pathways, which were subsequently verified through kit detection and western blot analysis. RESULTS Injection of EE in A549 tumor-bearing mice effectively suppressed cancer growth in vivo. The IC50 of EE and its main active components, BE and BC, was around 60 μg/mL. Flow cytometry analysis showed that BE and BC blocked the G2/M and S phases of lung adenocarcinoma cells and induced apoptosis, leading to a significant reduction in mitochondrial membrane potential (MMP). Results from non-targeted metabolomics analysis indicated that the glutathione metabolism pathway in A549 cells was altered after treatment with the active components. Kit detection revealed a decrease in glutathione (GSH) levels and an increase in the levels of oxidized glutathione (GSSG) and reactive oxygen (ROS). Supplementation of GSH reduced the inhibitory activity of the active components on lung cancer and also decreased the ROS content of cells. Analysis of glutathione synthesis-related proteins showed a decrease in the expression of glutaminase, cystine/glutamate reverse transporter (SLC7A11), and glutathione synthase (GS), while the expression of glutamate cysteine ligase modified subunit (GCLM) was increased. In the apoptosis-related pathway, Bax protein and cleaved caspase-9/caspase-9 ratio were up-regulated and Bcl-2 protein was down-regulated. CONCLUSIONS EE, BE, and BC showed significant inhibitory effects on the growth of lung adenocarcinoma cells, and the mechanism of action was linked to the glutathione system. By down-regulating the expression of proteins related to GSH synthesis, EE and its main active components BE and BC disrupted the cellular redox system and thereby promoted cell apoptosis.
Collapse
Affiliation(s)
- Gao-Qian Song
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Innovative Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Long-Hui Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hua-Qiu Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Wei-Yang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
92
|
Zhang Y, Chen X, Mo X, Xiao R, Cheng Q, Wang H, Liu L, Xie P. Enterogenic metabolomics signatures of depression: what are the possibilities for the future. Expert Rev Proteomics 2023; 20:397-418. [PMID: 37934939 DOI: 10.1080/14789450.2023.2279984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yangdong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xiaolong Mo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qisheng Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
93
|
Li S, Pei L, Zhou Q, Fu Z, Zhang L, Liu P, Yan N, Xi S. SLC1A5 regulates cell proliferation and self-renewal through β-catenin pathway mediated by redox signaling in arsenic-treated uroepithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115204. [PMID: 37393816 DOI: 10.1016/j.ecoenv.2023.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Arsenic exposure increases the risk of bladder cancer in humans, but its underlying mechanisms remain elusive. The alanine, serine, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is frequently overexpressed in cancer cells. The aim of this study was to evaluate the effects of arsenic on SLC1A5, and to determine the role of SLC1A5 in the proliferation and self-renewal of uroepithelial cells. F344 rats were exposed to 87 mg/L NaAsO2 or 200 mg/L DMAV for 12 weeks. The SV-40 immortalized human uroepithelial (SV-HUC-1) cells were cultured in medium containing 0.5 μM NaAsO2 for 40 weeks. Arsenic increased the expression levels of SLC1A5 and β-catenin both in vivo and in vitro. SLC1A5 promoted cell proliferation and self-renewal by activating β-catenin, which in turn was dependent on maintaining GSH/ROS homeostasis. Our results suggest that SLC1A5 is a potential therapeutic target for arsenic-induced proliferation and self-renewal of uroepithelial cells.
Collapse
Affiliation(s)
- Sihao Li
- Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China
| | - Liang Pei
- Department of Pediatric, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Qing Zhou
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Zhushan Fu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Lei Zhang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Pinya Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China
| | - Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Shuhua Xi
- Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, China; School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning Province, China.
| |
Collapse
|
94
|
Vahid F, Hajizadeghan K, Khodabakhshi A. Nutritional Metabolomics in Diet-Breast Cancer Relations: Current Research, Challenges, and Future Directions-A Review. Biomedicines 2023; 11:1845. [PMID: 37509485 PMCID: PMC10377267 DOI: 10.3390/biomedicines11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide, and its incidence is increasing. Diet has been identified as a modifiable risk factor for breast cancer, but the complex interplay between diet, metabolism, and cancer development is not fully understood. Nutritional metabolomics is a rapidly evolving field that can provide insights into the metabolic changes associated with dietary factors and their impact on breast cancer risk. The review's objective is to provide a comprehensive overview of the current research on the application of nutritional metabolomics in understanding the relationship between diet and breast cancer. The search strategy involved querying several electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar. The search terms included combinations of relevant keywords such as "nutritional metabolomics", "diet", "breast cancer", "metabolites", and "biomarkers". In this review, both in vivo and in vitro studies were included, and we summarize the current state of knowledge on the role of nutritional metabolomics in understanding the diet-breast cancer relationship, including identifying specific metabolites and metabolic pathways associated with breast cancer risk. We also discuss the challenges associated with nutritional metabolomics research, including standardization of analytical methods, interpretation of complex data, and integration of multiple-omics approaches. Finally, we highlight future directions for nutritional metabolomics research in studying diet-breast cancer relations, including investigating the role of gut microbiota and integrating multiple-omics approaches. The application of nutritional metabolomics in the study of diet-breast cancer relations, including 2-amino-4-cyano butanoic acid, piperine, caprate, rosten-3β,17β-diol-monosulfate, and γ-carboxyethyl hydrochroman, among others, holds great promise for advancing our understanding of the role of diet in breast cancer development and identifying personalized dietary recommendations for breast cancer prevention, control, and treatment.
Collapse
Affiliation(s)
- Farhad Vahid
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
| | - Kimia Hajizadeghan
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Adeleh Khodabakhshi
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
95
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
96
|
Mendes C, Lemos I, Francisco I, Almodôvar T, Cunha F, Albuquerque C, Gonçalves LG, Serpa J. NSCLC presents metabolic heterogeneity, and there is still some leeway for EGF stimuli in EGFR-mutated NSCLC. Lung Cancer 2023; 182:107283. [PMID: 37379672 DOI: 10.1016/j.lungcan.2023.107283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Metabolic remodeling is crucial in carcinogenesis and cancer progression. Oncogenic mutations may promote metabolic reprogramming in cancer cells to support their energy and biomass requirements. EGFR mutations are commonly found in non-small cell lung cancer (NSCLC) and may induce NSCLC metabolic rewiring. Whether EGFR-driven metabolic reprogramming triggers cell vulnerabilities with therapeutic potential remains unknown. METHODS The role of EGFR signaling activation by EGF was investigated using NSCLC cell lines with different EGFR and KRAS status: A549 (EGFR WT and KRAS c.34G > A), H292 (EGFR WT and KRAS WT) and PC-9 (EGFR exon 19 E746-A750 deletion and KRAS WT). The effect of EGF on NSCLC cell death and cell cycle was evaluated using flow cytometry, and cell migration was assessed through wound healing. EGFR, HER2, MCT1, and MCT4 expression was analyzed through immunofluorescence or western blotting. We explored the impact of glucose and lactate bioavailability on NSCLC cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy. Moreover, the expression of several relevant metabolic genes in NSCLC cells or patient samples was determined by RT-qPCR. RESULTS We showed that cell lines presented different metabolic profiles, and PC-9 cells were the most responsive to EGF stimulus, as they showed higher rates of cell proliferation and migration, together with altered metabolic behavior. By inhibiting EGFR with gefitinib, a decrease in glucose consumption was observed, which may be related to the fact that despite PC-9 harbor EGFR mutation, they still express the EGFR WT allele. The analysis of NSCLC patients' RNA showed a correlation between MCT1/MCT4 and GLUT1 expression in most cases, indicating that the metabolic information can serve as a reference in patients' follow-up. CONCLUSION Together, this study shows that NSCLC cell lines have heterogeneous metabolic profiles, which may be underlaid by different genetic profiles, revealing an opportunity to identify and stratify patients who can benefit from metabolism-targeted therapies.
Collapse
Affiliation(s)
- Cindy Mendes
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Inês Francisco
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Teresa Almodôvar
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Fernando Cunha
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cristina Albuquerque
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB Nova), Oeiras, Portugal
| | - Jacinta Serpa
- NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
97
|
Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol 2023; 13:1185093. [PMID: 37409257 PMCID: PMC10318188 DOI: 10.3389/fonc.2023.1185093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
98
|
Haraguchi Y, Kato Y, Inabe K, Kondo A, Hasunuma T, Shimizu T. Circular cell culture for sustainable food production using recombinant lactate-assimilating cyanobacteria that supplies pyruvate and amino acids. Arch Microbiol 2023; 205:266. [PMID: 37328623 DOI: 10.1007/s00203-023-03607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Recently, we reported a circular cell culture (CCC) system using microalgae and animal muscle cells for sustainable culture food production. However, lactate accumulation excreted by animal cells in the system characterized by medium reuse was a huge problem. To solve the problem, as an advanced CCC, we used a lactate-assimilating cyanobacterium Synechococcus sp. PCC 7002, using gene-recombination technology that synthesises pyruvate from lactate. We found that the cyanobacteria and animal cells mutually exchanged substances via their waste media: (i) cyanobacteria used lactate and ammonia excreted by animal muscle cells, and (ii) the animal cells used pyruvate and some amino acids excreted by the cyanobacteria. Because of this, animal muscle C2C12 cells were amplified efficiently without animal serum in cyanobacterial culture waste medium in two cycles (first cycle: 3.6-fold; second cycle: 3.9-fold/three days-cultivation) using the same reuse medium. We believe that this advanced CCC system will solve the problem of lactate accumulation in cell culture and lead to efficient cultured food production.
Collapse
Affiliation(s)
- Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, TWIns, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
99
|
Qiu H, Shao N, Liu J, Zhao J, Chen C, Li Q, He Z, Zhao X, Xu L. Amino acid metabolism in tumor: New shine in the fog? Clin Nutr 2023:S0261-5614(23)00184-X. [PMID: 37321900 DOI: 10.1016/j.clnu.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Alterations in amino acid metabolism is closely related to the occurrence of clinical diseases. The mechanism of tumorigenesis is complex, involving the complicated relationship between tumor cells and immune cells in local tumor microenvironment. A series of recent studies have shown that metabolic remodeling is intimately related to tumorigenesis. And amino acid metabolic reprogramming is one of the important characteristics of tumor metabolic remodeling, which participates in tumor cells growth, survival as well as the immune cell activation and function in the local tumor microenvironment, thereby affecting tumor immune escape. Recent studies have further shown that controlling the intake of specific amino acids can significantly improve the effect of clinical intervention in tumors, suggesting that amino acid metabolism is gradually becoming one of the new promising targets of clinical intervention in tumors. Therefore, developing new intervention strategies based on amino acid metabolism has broad prospects. In this article, we review the abnormal changes in the metabolism of some typical amino acids, including glutamine, serine, glycine, asparagine and so on in tumor cells and summarize the relationship among amino acid metabolism, tumor microenvironment and the function of T cells. In particular, we discuss the current issues that need to be addressed in the related fields of tumor amino acid metabolism, aiming to provide a theoretical basis for the development of new strategies for clinical interventions in tumors based on amino acid metabolism reprogramming.
Collapse
Affiliation(s)
- Hui Qiu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Nan Shao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Jing Liu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Qihong Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi Guizhou 563000, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China
| | - Xu Zhao
- School of Medicine, Guizhou University, Guizhou Guiyang, 550025 China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China.
| | - Lin Xu
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563000, China.
| |
Collapse
|
100
|
Zhu TY, Hong LL, Ling ZQ. Oncofetal protein IGF2BPs in human cancer: functions, mechanisms and therapeutic potential. Biomark Res 2023; 11:62. [PMID: 37280679 PMCID: PMC10245617 DOI: 10.1186/s40364-023-00499-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent and well-characterized internal chemical modification in eukaryotic RNA, influencing gene expression and phenotypic changes by controlling RNA fate. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) preferentially function as m6A effector proteins, promoting stability and translation of m6A-modified RNAs. IGF2BPs, particularly IGF2BP1 and IGF2BP3, are widely recognized as oncofetal proteins predominantly expressed in cancer rather than normal tissues, playing a critical role in tumor initiation and progression. Consequently, IGF2BPs hold potential for clinical applications and serve as a good choice for targeted treatment strategies. In this review, we discuss the functions and mechanisms of IGF2BPs as m6A readers and explore the therapeutic potential of targeting IGF2BPs in human cancer.
Collapse
Affiliation(s)
- Tian-Yu Zhu
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China
- Jinhua People's Hospital, No.267 Danxi East Road, Jinhua, 321000 Zhejiang, China
| | - Lian-Lian Hong
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Qiang Ling
- Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, China.
- The Second School of Clinical Medicine, Wenzhou Medical University, No.109 Xueyuan West Road, Wenzhou, 325027 Zhejiang, China.
| |
Collapse
|