51
|
Nishizawa M, Nishizawa K. Coupling of S4 helix translocation and S6 gating analyzed by molecular-dynamics simulations of mutated Kv channels. Biophys J 2009; 97:90-100. [PMID: 19580747 DOI: 10.1016/j.bpj.2009.02.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/05/2009] [Accepted: 02/06/2009] [Indexed: 11/24/2022] Open
Abstract
The recently determined crystal structure of a chimeric Kv1.2-Kv2.1 Kv channel at 2.4 A resolution motivated this molecular-dynamics simulation study of the chimeric channel and its mutants embedded in a DPPC membrane. For the channel protein, we used two types of C-terminus: E+ and Eo. E+ contains, and Eo lacks, the EGEE residue quartet located distal to the S6 helix. For both E+ and Eo, the following trend was observed: When S4 helices were restrained at the same position as in the x-ray structure (S4high), the S6 gate remained open for 12 ns. The results were similar when the S4 helices were pulled downward 7 A (S4low). However, S4middle (or S4low) facilitated the S6 gate-narrowing for the following mutated channels (shown in order of increasing effect): 1), E395W; 2), E395W-F401A-F402A; and 3), E395W-F401A-F402A-V478W. The amino acid numbering system is that used for the Shaker channel. Even though all four subunits were set at S4low, S6 gate-narrowing was often brought about by movements of only two opposing S6 helices toward the central axis of the pore, resulting in a twofold symmetry-like structure. A free-energy profile analysis over the ion conduction pathway shows that the two opposing S6 helices whose peptide backbones are approximately 10.4 A distant from each other lead to an energetic barrier of approximately 25 kJ/mol. S6 movement was coupled with translocation of the S4-S5 linker toward the central axis of the same subunit, and the coupling was mediated by salt bridges formed between the inner (intracellular side) end of S4 and that of S6. Simulations in which S4 of only one subunit was pulled down to S4low showed that a weak intersubunit coordination is present for S5 movement, whereas the coupling between the S4-S5 linker and S6 is largely an intrasubunit one. In general, whereas subunit-based behavior appears to be dominant and to permit heteromeric conformations of the pore domain, direct intersubunit coupling of S5 or S6 is weak. Therefore, the "concerted transition" of the pore domain that has been predicted based on electrophysiological analyses is likely to be mediated mainly by the dual effects of S4 and the S4-S5 linker; these segments of one subunit can interact with both S5 of the same subunit and that of the adjacent subunit.
Collapse
Affiliation(s)
- Manami Nishizawa
- Department of Laboratory Medicine, Teikyo University School of Medical Technology, Tokyo 173-8605, Japan
| | | |
Collapse
|
52
|
Zhang X, Bursulaya B, Lee CC, Chen B, Pivaroff K, Jegla T. Divalent cations slow activation of EAG family K+ channels through direct binding to S4. Biophys J 2009; 97:110-20. [PMID: 19580749 DOI: 10.1016/j.bpj.2009.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022] Open
Abstract
Voltage-gated K+ channels share a common voltage sensor domain (VSD) consisting of four transmembrane helices, including a highly mobile S4 helix that contains the major gating charges. Activation of ether-a-go-go (EAG) family K+ channels is sensitive to external divalent cations. We show here that divalent cations slow the activation rate of two EAG family channels (Kv12.1 and Kv10.2) by forming a bridge between a residue in the S4 helix and acidic residues in S2. Histidine 328 in the S4 of Kv12.1 favors binding of Zn2+ and Cd2+, whereas the homologous residue Serine 321 in Kv10.2 contributes to effects of Mg2+ and Ni2+. This novel finding provides structural constraints for the position of transmembrane VSD helices in closed, ion-bound EAG family channels. Homology models of Kv12.1 and Kv10.2 VSD structures based on a closed-state model of the Shaker family K+ channel Kv1.2 match these constraints. Our results suggest close conformational conservation between closed EAG and Shaker family channels, despite large differences in voltage sensitivity, activation rates, and activation thresholds.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Cell Biology, Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
53
|
Choe S, Grabe M. Conformational dynamics of the inner pore helix of voltage-gated potassium channels. J Chem Phys 2009; 130:215103. [PMID: 19508102 DOI: 10.1063/1.3138906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Voltage-gated potassium (Kv) channels control the electrical excitability of neurons and muscles. Despite this key role, how these channels open and close or gate is not fully understood. Gating is usually attributed to the bending and straightening of pore-lining helices at glycine and proline residues. In this work we focused on the role of proline in the Pro-Val-Pro (PVP) motif of the inner S6 helix in the Kv1.2 channel. We started by developing a simple hinged-rod model to fully explore the configurational space of bent helices and we related these configurations to the degree of pore opening. We then carried out fully atomistic simulations of the S6 helices and compared these simulations to the hinged-rod model. Both methods suggest that Kv1 channels are not tightly closed when the inner helices are straight, unlike what is seen in the non-PVP containing channels KcsA and KirBac. These results invite the possibility that the S6 helices may be kinked when Kv1 channels are closed. Our simulations indicate that the wild-type helix adopts multiple spatially distinct configurations, which is consistent with its role in adopting a closed state and an open state. The two most dominant configurational basins correspond to a 6 A movement of the helix tail accompanied by the PVP region undergoing a local alpha-helix to 3(10)-helix transition. We explored how single point mutations affect the propensity of the S6 helix to adopt particular configurations. Interestingly, mutating the first proline, P405 (P473 in Shaker), to alanine completely removed the bistable nature of the S6 helix possibly explaining why this mutation compromises the channel. Next, we considered four other mutations in the area known to affect channel gating and we saw similarly dramatic changes to the helix's dynamics and range of motion. Our results suggest a possible mechanism of helix pore closure and they suggest differences in the closed state of glycine-only channels, like KcsA, and PVP containing channels.
Collapse
Affiliation(s)
- Seungho Choe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
54
|
Unnerståle S, Lind J, Papadopoulos E, Mäler L. Solution structure of the HsapBK K+ channel voltage-sensor paddle sequence. Biochemistry 2009; 48:5813-21. [PMID: 19456106 DOI: 10.1021/bi9004599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Voltage-gated potassium channels open and close in response to changes in the membrane potential. In this study, we have determined the NMR solution structure of the putative S3b-S4 voltage-sensor paddle fragment, the part that moves to mediate voltage gating, of the HsapBK potassium channel in dodecylphosphocholine (DPC) micelles. This paper presents the first structure of the S3b-S4 fragment from a BK channel. Diffusion coefficients as determined from PFG NMR experiments showed that a well-defined complex between the peptide and DPC molecules was formed. The structure reveals a helix-turn-helix motif, which is in agreement with crystal structures of other voltage-gated potassium channels, thus indicating that it is feasible to study the isolated fragment. The paddle motifs generally contain several basic residues, implicated in the gating. The critical Arg residues in this structure all reside on the surface, which is in agreement with crystal structures of K(v) channels. Similarities in the structure of the S3b-S4 fragment in BK and K(v) channels as well as important differences are seen, which may be important for explaining the details in paddle movement within a bilayer.
Collapse
Affiliation(s)
- Sofia Unnerståle
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
55
|
Chetwynd AP, Scott KA, Mokrab Y, Sansom MSP. CGDB: A database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations. Mol Membr Biol 2009; 25:662-9. [DOI: 10.1080/09687680802446534] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
56
|
Treptow W, Tarek M, Klein ML. Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 2009; 131:2107-9. [PMID: 19175309 DOI: 10.1021/ja807330g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early transition events of the voltage sensor (VS) of Kv1.2 potassium channel embedded in a lipid membrane are triggered using full atomistic molecular dynamics (MD) simulations. When subject to an applied hyperpolarized transmembrane (TM) voltage, the VS undergoes conformational changes and reaches a stable kinetic intermediate state, beta', within 20 ns. The gating charge ( approximately 2e) associated with this fast transition results mainly from salt-bridge rearrangements involving negative charges in S2 and S3 and all but the two top residues R(294) and R(297) of S4. Interactions of the latter with phosphomoieties of the lipid head groups appear to stabilize the kinetic state beta'.
Collapse
Affiliation(s)
- Werner Treptow
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
57
|
Khalili-Araghi F, Gumbart J, Wen PC, Sotomayor M, Tajkhorshid E, Schulten K. Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol 2009; 19:128-37. [PMID: 19345092 DOI: 10.1016/j.sbi.2009.02.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 11/27/2022]
Abstract
Membrane transport constitutes one of the most fundamental processes in all living cells with proteins as major players. Proteins as channels provide highly selective diffusive pathways gated by environmental factors, and as transporters furnish directed, energetically uphill transport consuming energy. X-ray crystallography of channels and transporters furnishes a rapidly growing number of atomic resolution structures, permitting molecular dynamics (MD) simulations to reveal the physical mechanisms underlying channel and transporter function. Ever increasing computational power today permits simulations stretching up to 1 micros, that is, to physiologically relevant time scales. Membrane protein simulations presently focus on ion channels, on aquaporins, on protein-conducting channels, as well as on various transporters. In this review we summarize recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
58
|
Bjelkmar P, Niemelä PS, Vattulainen I, Lindahl E. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel. PLoS Comput Biol 2009; 5:e1000289. [PMID: 19229308 PMCID: PMC2632863 DOI: 10.1371/journal.pcbi.1000289] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/06/2009] [Indexed: 01/15/2023] Open
Abstract
Structure and dynamics of voltage-gated ion channels, in particular the motion of
the S4 helix, is a highly interesting and hotly debated topic in current
membrane protein research. It has critical implications for insertion and
stabilization of membrane proteins as well as for finding how transitions occur
in membrane proteins—not to mention numerous applications in drug
design. Here, we present a full 1 µs atomic-detail molecular dynamics
simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By
applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements,
including up to 120° rotation of the S4 segment, changes in
hydrogen-bonding patterns, but only low amounts of translation. A smaller
rotation (∼35°) of the extracellular end of all S4 segments is
present also in a reference 0.5 µs simulation without applied field,
which indicates that the crystal structure might be slightly different from the
natural state of the voltage sensor. The conformation change upon
hyperpolarization is closely coupled to an increase in 310 helix
contents in S4, starting from the intracellular side. This could support a model
for transition from the crystal structure where the hyperpolarization
destabilizes S4–lipid hydrogen bonds, which leads to the helix
rotating to keep the arginine side chains away from the hydrophobic phase, and
the driving force for final relaxation by downward translation is partly
entropic, which would explain the slow process. The coordinates of the
transmembrane part of the simulated channel actually stay closer to the recently
determined higher-resolution Kv1.2 chimera channel than the starting structure
for the entire second half of the simulation (0.5–1 µs).
Together with lipids binding in matching positions and significant thinning of
the membrane also observed in experiments, this provides additional support for
the predictive power of microsecond-scale membrane protein simulations. Proteins that transport ions across the cellular membrane are essential for
cellular life. The proteins conducting positively charged potassium ions are key
players in heart beat and nerve impulse generation because they are regulating
the electrical excitability of the cell (together with proteins transporting
other ions). These particular ion channels open and close in response to voltage
changes across cellular membranes, but the details of this process are still not
fully understood. It is, however, known that the main protein element
responsible is a helical section containing several charges. Through new
computer simulation methods, we have been able to run unprecedentedly long
atomic simulations of an entire potassium channel embedded within a patch of
membrane to help to shed new light on this gating process. Upon changing the
voltage across the membrane, we observe a change in structure of this helical
protein segment that appears to be an early sign of transition from the open to
the closed state of the channel. This has also been previously proposed to be
critical for the gating process. Understanding these structural changes on an
atomic level is essential for both advancing basic science and enabling drug
design targeting of voltage-regulated ion channels.
Collapse
Affiliation(s)
- Pär Bjelkmar
- Center for Biomembrane Research & Stockholm Bioinformatics Center, Department of Biochemistry & Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
59
|
Han M, Zhang JZH. Molecular Dynamic Simulation of the Kv1.2 Voltage-Gated Potassium Channel in Open and Closed State Conformations. J Phys Chem B 2008; 112:16966-74. [DOI: 10.1021/jp807905p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Han
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China, and Department of Chemistry, New York University, New York, New York 10003
| | - John Z. H. Zhang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China, and Department of Chemistry, New York University, New York, New York 10003
| |
Collapse
|
60
|
Lewis A, Jogini V, Blachowicz L, Lainé M, Roux B. Atomic constraints between the voltage sensor and the pore domain in a voltage-gated K+ channel of known structure. ACTA ACUST UNITED AC 2008; 131:549-61. [PMID: 18504314 PMCID: PMC2391244 DOI: 10.1085/jgp.200809962] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In voltage-gated K+ channels (Kv), membrane depolarization promotes a structural reorganization of each of the four voltage sensor domains surrounding the conducting pore, inducing its opening. Although the crystal structure of Kv1.2 provided the first atomic resolution view of a eukaryotic Kv channel, several components of the voltage sensors remain poorly resolved. In particular, the position and orientation of the charged arginine side chains in the S4 transmembrane segments remain controversial. Here we investigate the proximity of S4 and the pore domain in functional Kv1.2 channels in a native membrane environment using electrophysiological analysis of intersubunit histidine metallic bridges formed between the first arginine of S4 (R294) and residues A351 or D352 of the pore domain. We show that histidine pairs are able to bind Zn2+ or Cd2+ with high affinity, demonstrating their close physical proximity. The results of molecular dynamics simulations, consistent with electrophysiological data, indicate that the position of the S4 helix in the functional open-activated state could be shifted by ∼7–8 Å and rotated counterclockwise by 37° along its main axis relative to its position observed in the Kv1.2 x-ray structure. A structural model is provided for this conformation. The results further highlight the dynamic and flexible nature of the voltage sensor.
Collapse
Affiliation(s)
- Anthony Lewis
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
61
|
Calvo F, Dugourd P. Folding of gas-phase polyalanines in a static electric field: alignment, deformations, and polarization effects. Biophys J 2008; 95:18-32. [PMID: 18223004 PMCID: PMC2426642 DOI: 10.1529/biophysj.107.124685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 12/28/2007] [Indexed: 11/18/2022] Open
Abstract
Monte Carlo simulations of the temperature-induced unfolding of small gas-phase polyalanines in a static, homogeneous electric field are reported, based on the AMBER ff96 force field. The peptides exhibit a structural transition from the native alpha-helix state to entropically favored beta-sheet conformations, before eventually turning to extended coil at higher temperatures. Upon switching the electric field, the molecules undergo preferential alignment of their dipole moment vector toward the field axis and a shift of the alpha-beta transition to higher temperatures. At higher field strengths (>10(8) V/m) the molecules stretch and the alpha-beta and beta-coil transitions merge. A simple three-state model is shown to account for the observed behavior. Under even higher fields, density functional theory calculations and a polarizable force field both show that electronic rearrangements tend to further increase the dipole moment, polarization effects being approximately half in magnitude with respect to stretching effect. Finally a tentative (temperature, field-strength) phase diagram is sketched.
Collapse
Affiliation(s)
- F Calvo
- Centre National de la Recherche Scientifique, Laboratoire de Spectrometrie Ionique et Moleculaire, Université de Lyon, Université Lyon 1, Villeurbanne, France.
| | | |
Collapse
|
62
|
Double bilayers and transmembrane gradients: a molecular dynamics study of a highly charged peptide. Biophys J 2008; 95:3161-73. [PMID: 18586841 DOI: 10.1529/biophysj.108.134049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The position and extent of movement of a charged peptide within a membrane bilayer provides much controversy. In our study, we have examined the nature of the highly charged helix-turn-helix motif (S3b and S4) to address how a highly charged peptide is stabilized within a bilayer in the presence of various transmembrane electrical potentials. Our double-bilayer simulation results show how the variation of the salt concentrations between the inner and outer bath establishes a transmembrane potential. Our results also show that important features of the peptide affected by changes in electrical potential are the center of mass depth, the swivel/kink degrees of conformation, and the hydrogen-bonding patterns. As the voltage gradient across the bilayer increased, the center of mass of the peptide shifted in a direction toward the outer bath. The peptide also has a higher percent helical content and the swivel/kink conformation is more rigid for nonpolarized systems where no voltage drop occurred between salt baths. Our results also provide some suggestions for how this domain may be affected by environmental changes as part of the voltage sensor in a K-channel.
Collapse
|
63
|
Chakrapani S, Cuello LG, Cortes DM, Perozo E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 2008; 16:398-409. [PMID: 18334215 DOI: 10.1016/j.str.2007.12.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/30/2007] [Accepted: 12/16/2007] [Indexed: 10/22/2022]
Abstract
A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here, using EPR spectroscopy, we show that the isolated VSD of KvAP can remain monomeric in a reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extending deep into the membrane around S3, a scaffold conducive to transport of protons/cations, are intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and suggests a rotation of 70 degrees -100 degrees relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels, and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs.
Collapse
Affiliation(s)
- Sudha Chakrapani
- Institute for Biophysical Dynamics, Center for Integrative Science, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
64
|
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field. Biophys J 2008; 95:1729-44. [PMID: 18487312 DOI: 10.1529/biophysj.108.130658] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this article, we present the results of the molecular dynamics simulations of amphiphilic helix peptides of 13 amino-acid residues, placed at the lipid-water interface of dipalmitoylphosphatidylcholine bilayers. The peptides are identical with, or are derivatives of, the N-terminal segment of the S4 helix of voltage-dependent K channel KvAP, containing four voltage-sensing arginine residues (R1-R4). Upon changing the direction of the externally applied electric field, the tilt angle of the wild-type peptide changes relative to the lipid-water interface, with the N-terminus heading up with an outward electric field. These movements were not observed using an octane membrane in place of the dipalmitoylphosphatidylcholine membrane, and were markedly suppressed by 1), substituting Phe located one residue before the first arginine (R1) with a hydrophilic residue (Ser, Thr); or 2), changing the periodicity rule of Rs from at-every-third to at-every-fourth position; or 3), replacing R1 with a lysine residue (K). These and other findings suggest that the voltage-dependent movement requires deep positioning of Rs when the resting (inward) electric field is present. Later, we performed simulations of the voltage sensor domain (S1-S4) of Kv1.2 channel. In simulations with a strong electric field (0.1 V/nm or above) and positional restraints on the S1 and S2 helices, S4 movement was observed consisting of displacement along the S4 helix axis and a screwlike axial rotation. Gating-charge-carrying Rs were observed to make serial interactions with E183 in S1 and E226 in S2, in the outer water crevice. A 30-ns-backward simulation started from the open-state model gave rise to a structure similar to the recent resting-state model, with S4 moving vertically approximately 6.7 A. The energy landscape around the movement of S4 appears very ragged due to salt bridges formed between gating-charge-carrying residues and negatively charged residues of S1, S2, and S3 helices. Overall, features of S3 and S4 movements are consistent with the recent helical-screw model. Both forward and backward simulations show the presence of at least two stable intermediate structures in which R2 and R3 form salt bridges with E183 or E226, respectively. These structures are the candidates for the states postulated in previous gating kinetic models, such as the Zagotta-Hoshi-Aldrich model, to account for more than one transition step per subunit for activation.
Collapse
|
65
|
Hénin J, Shinoda W, Klein ML. United-atom acyl chains for CHARMM phospholipids. J Phys Chem B 2008; 112:7008-15. [PMID: 18481889 DOI: 10.1021/jp800687p] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In all-atom simulations of lipid membranes, explicit hydrogen atoms contained in the hydrocarbon region are described by a large number of degrees of freedom, although they convey only limited physical information. We propose an implicit-hydrogen model for saturated and monounsaturated acyl chains, aimed at complementing the all-atom CHARMM27 model for phospholipid headgroups. Torsional potentials and nonbonded parameters were fitted to reproduce experimental data and free energy surfaces of all-atom model systems. Comparative simulations of fluid-phase POPC bilayers were performed using the all-hydrogen force field and the present model. The hybrid model accelerates a typical bilayer simulation by about 50% while sacrificing a minimal amount of detail with respect to the fully atomistic description. In addition, the united-atom description is energetically compatible with all-atom CHARMM models, making it suitable for simulations of complex membrane systems.
Collapse
Affiliation(s)
- Jérôme Hénin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA.
| | | | | |
Collapse
|
66
|
Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans 2008; 36:27-32. [PMID: 18208379 DOI: 10.1042/bst0360027] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An understanding of the interactions of membrane proteins with a lipid bilayer environment is central to relating their structure to their function and stability. A high-throughput approach to prediction of membrane protein interactions with a lipid bilayer based on coarse-grained Molecular Dynamics simulations is described. This method has been used to develop a database of CG simulations (coarse-grained simulations) of membrane proteins (http://sbcb.bioch.ox.ac.uk/cgdb). Comparison of CG simulations and AT simulations (atomistic simulations) of lactose permease reveals good agreement between the two methods in terms of predicted lipid headgroup contacts. Both CG and AT simulations predict considerable local bilayer deformation by the voltage sensor domain of the potassium channel KvAP.
Collapse
|
67
|
Treptow W, Marrink SJ, Tarek M. Gating Motions in Voltage-Gated Potassium Channels Revealed by Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2008; 112:3277-82. [DOI: 10.1021/jp709675e] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Werner Treptow
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Biophysical Chemistry, University of Groningen, The Netherlands, and UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy-University, CNRS, France
| | - Siewert-J Marrink
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Biophysical Chemistry, University of Groningen, The Netherlands, and UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy-University, CNRS, France
| | - Mounir Tarek
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Biophysical Chemistry, University of Groningen, The Netherlands, and UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy-University, CNRS, France
| |
Collapse
|
68
|
Roux B. Chapter 13 A Brief Introduction to Voltage-Gated K+ Channels. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
69
|
Chapter 15 Charged Protein Side Chain Movement in Lipid Bilayers Explored with Free Energy Simulation. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
70
|
Jogini V, Roux B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys J 2007; 93:3070-82. [PMID: 17704179 PMCID: PMC2025645 DOI: 10.1529/biophysj.107.112540] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/20/2007] [Indexed: 11/18/2022] Open
Abstract
All-atom molecular dynamics simulations are used to better understand the dynamic environment experienced by the Kv1.2 channel in a lipid membrane. The structure of the channel is stable during the trajectories. The pore domain keeps a well-defined conformation, whereas the voltage-sensing domains undergo important lateral fluctuations, consistent with their modular nature. A channel-like region at the center of the S1-S4 helical bundle fills rapidly with water, reminiscent of the concept of high-dielectric aqueous crevices. The first two arginines along S4 (R294 and R297) adopt an interfacial position where they interact favorably with water and the lipid headgroups. The following two arginines (R300 and R303) interact predominantly with water and E226 in S2. Despite the absence of a structurally permanent gating pore formed by protein residues and surrounding the S4 helix, as traditionally pictured, the charged residues are located in a favorable environment and are not extensively exposed to the membrane nonpolar region. Continuum electrostatic computations indicate that the transmembrane potential sensed by the charged residues in the voltage sensor varies abruptly over the outer half of the membrane in the arginine-rich region of S4; thus, the voltage gradient or membrane electric field is "focused". Interactions of basic residues with the lipid headgroups at the intracellular membrane-solution interface reduce the membrane thickness near the channel, resulting in an increased transmembrane field.
Collapse
Affiliation(s)
- Vishwanath Jogini
- Institute of Molecular Pediatric Sciences, Gordon Center for Integrative Science, The University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
71
|
Affiliation(s)
- Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
72
|
|
73
|
|
74
|
Blanchet J, Chahine M. Accessibility of four arginine residues on the S4 segment of the Bacillus halodurans sodium channel. J Membr Biol 2007; 215:169-80. [PMID: 17568977 DOI: 10.1007/s00232-007-9016-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 02/28/2007] [Indexed: 01/22/2023]
Abstract
The voltage-gated Na(+) channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1-S6), with a pore-forming region composed of segments S5 and S6 and a voltage-sensing domain composed of segments S1-S4. The S4 segment forms the core of the voltage sensor. We explored the accessibility of four arginine residues on the S4 segment of NaChBac, which are positioned at every third position from each other. These arginine residues on the S4 segment were replaced with cysteines using site-directed mutagenesis. Na(+) currents were recorded using the whole-cell configuration of the patch-clamp technique. We tested the effect of the sulfhydryl reagents applied from inside and outside the cellular space in the open and closed conformations. Structural models of the voltage sensor of NaChBac were constructed based on the recently crystallized KvAP and Kv1.2 K(+) channels to visualize arginine residue accessibility. Our results suggest that arginine accessibility did not change significantly between the open and closed conformations, supporting the idea of a small movement of the S4 segment during gating. Molecular modeling of the closed conformation also supported a small movement of S4, which is mainly characterized by a rotation and a tilt along the periphery of the pore. Interestingly, the second arginine residue of the S4 segment (R114) was accessible to sulfhydryl reagents from both sides of the membrane in the closed conformation and, based on our model, seemed to be at the junction of the intracellular and extracellular water crevices.
Collapse
Affiliation(s)
- Jonathan Blanchet
- Department of Medicine, Le Centre de recherche Université Laval Robert-Giffard, Québec, QC, Canada
| | | |
Collapse
|
75
|
Campos FV, Chanda B, Roux B, Bezanilla F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc Natl Acad Sci U S A 2007; 104:7904-9. [PMID: 17470814 PMCID: PMC1876545 DOI: 10.1073/pnas.0702638104] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is now well established that the voltage-sensing S4 segment in voltage-dependent ion channels undergoes a conformational change in response to varying membrane potential. However, the magnitude of the movement of S4 relative to the membrane and the rest of the protein remains controversial. Here, by using histidine scanning mutagenesis in the Shaker K channel, we identified mutants I241H (S1 segment) and I287H (S2 segment) that generate inward currents at hyperpolarized potentials, suggesting that these residues are part of a hydrophobic plug that separates the water-accessible crevices. Additional experiments with substituted cysteine residues showed that, at hyperpolarized potentials, both I241C and I287C can spontaneously form disulphide and metal bridges with R362C, the position of the first charge-carrying residue in S4. These results constrain unambiguously the closed-state positions of the S4 segment with respect to the S1 and S2 segments, which are known to undergo little or no movement during gating. To satisfy these constraints, the S4 segment must undergo an axial rotation of approximately 180 degrees and a transmembrane (vertical) movement of approximately 6.5 A at the level of R362 in going from the open to the closed state of the channel, moving the gating charge across a focused electric field.
Collapse
Affiliation(s)
- Fabiana V. Campos
- *Institute for Molecular Pediatric Sciences, Department of Pediatrics and Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| | - Baron Chanda
- Department of Physiology, University of Wisconsin, Madison, WI 53706
| | - Benoît Roux
- *Institute for Molecular Pediatric Sciences, Department of Pediatrics and Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
| | - Francisco Bezanilla
- *Institute for Molecular Pediatric Sciences, Department of Pediatrics and Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
76
|
Sands ZA, Sansom MS. How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain. Structure 2007; 15:235-44. [PMID: 17292841 PMCID: PMC1885962 DOI: 10.1016/j.str.2007.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/14/2006] [Accepted: 01/04/2007] [Indexed: 11/17/2022]
Abstract
The nature of voltage sensing by voltage-activated ion channels is a key problem in membrane protein structural biology. The way in which the voltage-sensor (VS) domain interacts with its membrane environment remains unclear. In particular, the known structures of Kv channels do not readily explain how a positively charged S4 helix is able to stably span a lipid bilayer. Extended (2 × 50 ns) molecular dynamics simulations of the high-resolution structure of the isolated VS domain from the archaebacterial potassium channel KvAP, embedded in zwitterionic and in anionic lipid bilayers, have been used to explore VS/lipid interactions at atomic resolution. The simulations reveal penetration of water into the center of the VS and bilayer. Furthermore, there is significant local deformation of the lipid bilayer by interactions between lipid phosphate groups and arginine side chains of S4. As a consequence of this, the electrostatic field is “focused” across the center of the bilayer.
Collapse
Affiliation(s)
- Zara A. Sands
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
- Corresponding author
| |
Collapse
|
77
|
Blanchet J, Pilote S, Chahine M. Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel. Biophys J 2007; 92:3513-23. [PMID: 17325004 PMCID: PMC1853154 DOI: 10.1529/biophysj.106.090464] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The voltage-sensing domain of voltage-gated ion channels is characterized by specific, conserved, charged residues. Positively charged residues on segment S4 are the main contributors to voltage-sensing and negatively charged residues on the S2 and S3 segments are believed to participate to the process. However, their function in the voltage sensor is not well understood. To probe the role of three acidic residues in NaChBac (D-58 and E-68 in S2, and D-91 in S3), we employed site-directed mutagenesis to substitute native acidic residues with cysteine (neutral), lysine (positive charge), or either aspartate or glutamate (negative charge). We used a combination of the patch-clamp technique to record Na+ currents and molecular modeling to visualize interacting amino acid residues. We suggest that the acidic residues on the S2 and S3 segments form specific interactions with adjacent amino acids in the voltage-sensor domain. The main interactions in NaChBac are D-58 (S2) with A-97-G-98 (S3) and R-120 (S4), E-68 (S2) with R-129 (L4-5), and D-91 (S3) with R-72 (S2). Changing these acidic residues modified the interactions, which in turn altered the sensitivity of the voltage sensor.
Collapse
Affiliation(s)
- Jonathan Blanchet
- Research Centre and Department of Medicine, Hôpital Laval, Quebec City, Quebec, Canada G1V 4G5
| | | | | |
Collapse
|
78
|
Bond PJ, Sansom MSP. Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proc Natl Acad Sci U S A 2007; 104:2631-6. [PMID: 17301243 PMCID: PMC1797625 DOI: 10.1073/pnas.0606822104] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coarse-grained molecular dynamics simulations are used to explore the interaction with a phospholipid bilayer of the voltage sensor (VS) domain and the S4 helix from the archaebacterial voltage-gated potassium (Kv) channel KvAP. Multiple 2-mus self-assembly simulations reveal that the isolated S4 helix may adopt either interfacial or transmembrane (TM) locations with approximately equal probability. In the TM state, the insertion of the voltage-sensing region of S4 is facilitated via local bilayer deformation that, combined with side chain "snorkeling," enables its Arg side chains to interact with lipid headgroups and water. Multiple 0.2-mus self-assembly simulations of the VS domain are also performed, along with simulations of MscL and KcsA, to permit comparison with more "canonical" integral membrane protein structures. All three stably adopt a TM orientation within a bilayer. For MscL and KcsA, there is no significant bilayer deformation. In contrast, for the VS, there is considerable local deformation, which is again primarily due to the lipid-exposed S4. It is shown that for both the VS and isolated S4 helix, the positively charged side chains of S4 are accommodated within the membrane through a combination of stabilizing interactions with lipid glycerol and headgroup regions, water, and anionic side chains. Our results support the possibility that bilayer deformation around key gating charge residues in Kv channels may result in "focusing" of the electrostatic field, and indicate that, when considering competing models of voltage-sensing, it is essential to consider the dynamics and structure of not only the protein but also of the local lipid environment.
Collapse
Affiliation(s)
- Peter J. Bond
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 1 3QU, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford 1 3QU, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Nguyen HD, Reddy VS, Brooks CL. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. NANO LETTERS 2007; 7:338-44. [PMID: 17297998 DOI: 10.1021/nl062449h] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Self-assembly of viral proteins into icosahedral capsids is an interesting yet poorly understood phenomenon of which elucidation may aid the exploration of beneficial applications of capsids in materials science and medicine. Using molecular dynamics simulations of coarse-grained models for capsid proteins, we show that the competition between the formation of full capsids and nonidealized structures is strongly dependent upon the protein concentration and temperature, occurring kinetically as a cascade of elementary reactions in which free monomers are added to the growing oligomers on a downhill free-energy landscape. However, the insertion of the final subunits is the rate-limiting, energetically unfavorable step in viral capsid assembly. A phase diagram has been constructed to show the regions where capsids or nonidealized structures are stable at each concentration and temperature. We anticipate that our findings will provide guidance in identifying suitable conditions required for in vitro viral capsid assembly experiments.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Molecular Biology, TPC6, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
80
|
Abstract
Voltage-sensor (VS) domains cause the pore of voltage-gated ion channels to open and close in response to changes in transmembrane potential. Recent experimental studies suggest that VS domains are independent structural units. This independence is revealed dramatically by a voltage-dependent proton-selective channel (Hv), which has a sequence homologous to the VS domains of voltage-gated potassium channels (Kv). Here we show by means of molecular dynamics simulations that the isolated open-state VS domain of the KvAP channel in a lipid membrane has a configuration consistent with a water channel, which we propose as a common feature underlying the conductance of protons, and perhaps other cations, through VS domains.
Collapse
Affiliation(s)
- J Alfredo Freites
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
81
|
Treptow W, Tarek M. K+ conduction in the selectivity filter of potassium channels is monitored by the charge distribution along their sequence. Biophys J 2006; 91:L81-3. [PMID: 16980355 PMCID: PMC1630468 DOI: 10.1529/biophysj.106.095992] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potassium channels display a high conservation of sequence of the selectivity filter (SF), yet nature has designed a variety of channels that present a wide range of absolute rates of K(+) permeation. In KcsA, the structural archetype for K channels, under physiological concentrations, two K(+) ions reside in the SF in configurations 1,3 (up state) and 2,4 (down state) and ion conduction is believed to follow a throughput cycle involving a transition between these states. Using free-energy calculations of KcsA, Kv1.2, and mutant channels, we show that this transition is characterized by a channel-dependent energy barrier. This barrier is strongly influenced by the charges partitioned along the sequence of each channel. These results unveil therefore how, for similar structures of the SF, the rate of K(+) turnover may be fine-tuned within the family of potassium channels.
Collapse
Affiliation(s)
- Werner Treptow
- UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy-University, Centre National de la Recherche Scientifique, Nancy, France
| | | |
Collapse
|
82
|
Treptow W, Tarek M. Molecular restraints in the permeation pathway of ion channels. Biophys J 2006; 91:L26-8. [PMID: 16751240 PMCID: PMC1563749 DOI: 10.1529/biophysj.106.087437] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 05/31/2006] [Indexed: 11/18/2022] Open
Abstract
Ion channels assist and control the diffusion of ions through biological membranes. The conduction process depends on the structural characteristics of these nanopores, among which are the hydrophobicity and the afforded diameter of the conduction pathway. In this contribution, we use full atomistic free-energy molecular dynamics simulations to estimate the effect of such characteristics on the energetics of ion conduction through the activation gate of voltage-gated potassium (Kv) channels. We consider specifically the ionic translocation through three different permeation pathways, corresponding to the activation gate of an atomistic model of Shaker channels in closed and partially opened conformations, and that of the open conformation of the Kv1.2 channel. In agreement with experiments, we find that the region of Val(478) constitutes the main gate. The conduction is unfavorable through this gate when the constriction is smaller than an estimated threshold of 4.5-5.0 A, mainly due to incomplete coordination-hydration of the ion. Above this critical size, e.g., for the Kv1.2, the valine gate is wide enough to allow fully coordination of the ion and therefore its diffusion on a flat energy surface. Similar to other ion channels, Kv channels appear therefore to regulate diffusion by constricting hydrophobic regions of the permeation pathway.
Collapse
Affiliation(s)
- Werner Treptow
- UMR Structure et Réactivité des Systèmes Moléculaires Complexes, Nancy-University, CNRS, Nancy, France
| | | |
Collapse
|