51
|
Rico F, Chu C, Abdulreda MH, Qin Y, Moy VT. Temperature modulation of integrin-mediated cell adhesion. Biophys J 2010; 99:1387-96. [PMID: 20816050 PMCID: PMC2931747 DOI: 10.1016/j.bpj.2010.06.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/02/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022] Open
Abstract
In response to external stimuli, cells modulate their adhesive state by regulating the number and intrinsic affinity of receptor/ligand bonds. A number of studies have shown that cell adhesion is dramatically reduced at room or lower temperatures as compared with physiological temperature. However, the underlying mechanism that modulates adhesion is still unclear. Here, we investigated the adhesion of the monocytic cell line THP-1 to a surface coated with intercellular adhesion molecule-1 (ICAM-1) as a function of temperature. THP-1 cells express the integrin lymphocyte function-associated antigen-1 (LFA-1), a receptor for ICAM-1. Direct force measurements of cell adhesion and cell elasticity were carried out by atomic force microscopy. Force measurements revealed an increase of the work of de-adhesion with temperature that was coupled to a gradual decrease in cellular stiffness. Of interest, single-molecule measurements revealed that the rupture force of the LFA-1/ICAM-1 complex decreased with temperature. A detailed analysis of the force curves indicated that temperature-modulated cell adhesion was mainly due to the enhanced ability of cells to deform and to form a greater number of longer membrane tethers at physiological temperatures. Together, these results emphasize the importance of cell mechanics and membrane-cytoskeleton interaction on the modulation of cell adhesion.
Collapse
Affiliation(s)
- Félix Rico
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| | | | | | | | | |
Collapse
|
52
|
Moorjani S, Nielson R, Chang XA, Shear JB. Dynamic remodeling of subcellular chemical gradients using a multi-directional flow device. LAB ON A CHIP 2010; 10:2139-2146. [PMID: 20544072 DOI: 10.1039/c004627b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Elucidation of the mechanisms by which external chemical cues regulate polarized cellular behaviors requires tools that can rapidly recast chemical landscapes with subcellular resolution. Here, we describe an approach for creating steep microscopic gradients of cellular effectors at any desired position in culture that can be reoriented rapidly to evaluate dynamic responses. In this approach, micrometre pores are ablated in a membrane that supports cell adherence, allowing dosing reagent from an underlying reservoir to enter the cell-culture flow chamber as sharp streams that are directed at subcellular targets by using a system of paired sources and drains to specify flow direction. This tool substantially extends capabilities for chemical interaction with cultured cells, enabling investigations of chemotaxis via precise placement and reorientation of peptide gradients formed at the boundaries of dosing streams. These studies demonstrate that neutrophil precursor cells can repolarize and redirect their migration paths using morphological responses that depend on the subcellular localization of chemoattractant gradients.
Collapse
Affiliation(s)
- Samira Moorjani
- Department of Biomedical Engineering, University of Texas, 1 University Station C0800, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
53
|
Raz N, Li JK, Fiddes LK, Tumarkin E, Walker GC, Kumacheva E. Microgels with an Interpenetrating Network Structure as a Model System for Cell Studies. Macromolecules 2010. [DOI: 10.1021/ma101231z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neta Raz
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - James K. Li
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Lindsey K. Fiddes
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ethan Tumarkin
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gilbert C. Walker
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
54
|
Zhou EH, Quek ST, Lim CT. Power-law rheology analysis of cells undergoing micropipette aspiration. Biomech Model Mechanobiol 2010; 9:563-72. [PMID: 20179987 DOI: 10.1007/s10237-010-0197-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
Accurate quantification of the mechanical properties of living cells requires the combined use of experimental techniques and theoretical models. In this paper, we investigate the viscoelastic response of suspended NIH 3T3 fibroblasts undergoing micropipette aspiration using power-law rheology model. As an important first step, we examine the pipette size effect on cell deformation and find that pipettes larger than ~7 μm are more suitable for bulk rheological measurements than smaller ones and the cell can be treated as effectively continuum. When the large pipettes are used to apply a constant pressure to a cell, the creep deformation is better fitted with the power-law rheology model than with the liquid drop or spring-dashpot models; magnetic twisting cytometry measurement on the rounded cell confirms the power-law behavior. This finding is further extended to suspended cells treated with drugs targeting their cytoskeleton. As such, our results suggest that the application of relatively large pipettes can provide more effective assessment of the bulk material properties as well as support application of power-law rheology to cells in suspension.
Collapse
Affiliation(s)
- E H Zhou
- Department of Mechanical Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
55
|
Ziebarth NM, Rico F, Moy VT. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-03535-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
56
|
Sunyer R, Trepat X, Fredberg JJ, Farré R, Navajas D. The temperature dependence of cell mechanics measured by atomic force microscopy. Phys Biol 2009; 6:025009. [PMID: 19571363 PMCID: PMC3932184 DOI: 10.1088/1478-3975/6/2/025009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cytoskeleton is a complex polymer network that regulates the structural stability of living cells. Although the cytoskeleton plays a key role in many important cell functions, the mechanisms that regulate its mechanical behaviour are poorly understood. Potential mechanisms include the entropic elasticity of cytoskeletal filaments, glassy-like inelastic rearrangements of cross-linking proteins and the activity of contractile molecular motors that sets the tensional stress (prestress) borne by the cytoskeleton filaments. The contribution of these mechanisms can be assessed by studying how cell mechanics depends on temperature. The aim of this work was to elucidate the effect of temperature on cell mechanics using atomic force microscopy. We measured the complex shear modulus (G*) of human alveolar epithelial cells over a wide frequency range (0.1-25.6 Hz) at different temperatures (13-37 degrees C). In addition, we probed cell prestress by mapping the contractile forces that cells exert on the substrate by means of traction microscopy. To assess the role of actomyosin contraction in the temperature-induced changes in G* and cell prestress, we inhibited the Rho kinase pathway of the myosin light chain phosphorylation with Y-27632. Our results show that with increasing temperature, cells become stiffer and more solid-like. Cell prestress also increases with temperature. Inhibiting actomyosin contraction attenuated the temperature dependence of G* and prestress. We conclude that the dependence of cell mechanics with temperature is dominated by the contractile activity of molecular motors.
Collapse
Affiliation(s)
- R Sunyer
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
| | - X Trepat
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - J J Fredberg
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
| | - R Farré
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - D Navajas
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Bioenginyeria de Catalunya, 08028 Barcelona, Spain
- CIBER Enfermedades Respiratorias, 07110 Bunyola, Spain
| |
Collapse
|
57
|
Wang K, Solis-Wever X, Aguas C, Liu Y, Li P, Pappas D. Differential Mobility Cytometry. Anal Chem 2009; 81:3334-43. [DOI: 10.1021/ac900277y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kelong Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Ximena Solis-Wever
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Charmaine Aguas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Yan Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Peng Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| |
Collapse
|
58
|
Hiratsuka S, Mizutani Y, Tsuchiya M, Kawahara K, Tokumoto H, Okajima T. The number distribution of complex shear modulus of single cells measured by atomic force microscopy. Ultramicroscopy 2009; 109:937-41. [PMID: 19345501 DOI: 10.1016/j.ultramic.2009.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The viscoelastic properties of a large number of mouse fibroblast NIH3T3 cells (n approximately 130) were investigated by combining atomic force microscopy (AFM) with a microarray technique. In the experiments, the cells were arranged and cultured in the wells of a microarray substrate, and a force modulation mode experiment was used to measure the complex shear modulus, G*, of individual cells in a frequency range 0.5-200Hz. The frequency dependence of G* of the cells exhibited a power-law behavior and similar frequency dependencies have been observed in several cell types cultured on flat substrates. This indicated that the NIH3T3 cells cultured in the wells of a microarray have analogous structural organization to those cells cultured on flat substrates. The number distribution of both the storage and loss moduli of G* fitted well to a log-normal distribution function, whereas the power-law exponent estimated by a power-law structural damping model showed a normal distribution function. These results showed that combining AFM with a microarray technique was a suitable approach for investigating the statistics of rheological properties of living cells without the requirement of cell surface modification.
Collapse
Affiliation(s)
- Shinichiro Hiratsuka
- Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Khismatullin DB. Chapter 3 The Cytoskeleton and Deformability of White Blood Cells. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
60
|
Li Q, Lee G, Ong C, Lim C. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 2008; 374:609-13. [DOI: 10.1016/j.bbrc.2008.07.078] [Citation(s) in RCA: 663] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/28/2022]
|
61
|
Abstract
The mechanisms regulating neutrophil transmigration of vascular endothelium are not fully elucidated, but involve neutrophil firm attachment and passage through endothelial cell-cell junctions. The goal of this study was to characterize the tangential forces exerted by neutrophils during transendothelial migration at cell-cell junctions using an in vitro laminar shear flow model in which confluent activated endothelium is grown on a microfabricated pillar substrate. The tangential forces are deduced from the measurement of pillar deflection beneath the endothelial cell-cell junction as neutrophils transmigrate. The force diagram displays an initial force increase, which coincides with neutrophil penetration into the intercellular space and formation of a gap in VE-cadherin staining. This is followed by a rapid and large increase of traction forces exerted by endothelial cells on the substrate in response to the transmigration process and the disruption of cell-cell contacts. The average maximum force exerted by an actively transmigrating neutrophil is three times higher than the force generated by an adherent neutrophil that does not transmigrate. Furthermore, we show that substrate rigidity can modify the mechanical forces induced by the transmigration of a neutrophil through the endothelium. Our data suggest that the force induced by neutrophil transmigration plays a key role in the disruption of endothelial adherens junctions.
Collapse
|
62
|
Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 2008; 94:4984-95. [PMID: 18326659 DOI: 10.1529/biophysj.107.116863] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shape-dependent local differentials in cell proliferation are considered to be a major driving mechanism of structuring processes in vivo, such as embryogenesis, wound healing, and angiogenesis. However, the specific biophysical signaling by which changes in cell shape contribute to cell cycle regulation remains poorly understood. Here, we describe our study of the roles of nuclear volume and cytoskeletal mechanics in mediating shape control of proliferation in single endothelial cells. Micropatterned adhesive islands were used to independently control cell spreading and elongation. We show that, irrespective of elongation, nuclear volume and apparent chromatin decondensation of cells in G1 systematically increased with cell spreading and highly correlated with DNA synthesis (percent of cells in the S phase). In contrast, cell elongation dramatically affected the organization of the actin cytoskeleton, markedly reduced both cytoskeletal stiffness (measured dorsally with atomic force microscopy) and contractility (measured ventrally with traction microscopy), and increased mechanical anisotropy, without affecting either DNA synthesis or nuclear volume. Our results reveal that the nuclear volume in G1 is predictive of the proliferative status of single endothelial cells within a population, whereas cell stiffness and contractility are not. These findings show that the effects of cell mechanics in shape control of proliferation are far more complex than a linear or straightforward relationship. Our data are consistent with a mechanism by which spreading of cells in G1 partially enhances proliferation by inducing nuclear swelling and decreasing chromatin condensation, thereby rendering DNA more accessible to the replication machinery.
Collapse
|
63
|
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
64
|
Rico F, Roca-Cusachs P, Sunyer R, Farré R, Navajas D. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J Mol Recognit 2007; 20:459-66. [PMID: 17891755 DOI: 10.1002/jmr.829] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell adhesion is required for essential biological functions such as migration, tissue formation and wound healing, and it is mediated by individual molecules that bind specifically to ligands on other cells or on the extracellular matrix. Atomic force microscopy (AFM) has been successfully used to measure cell adhesion at both single molecule and whole cell levels. However, the measurement of inherent cell adhesion properties requires a constant cell-probe contact area during indentation, a requirement which is not fulfilled in common pyramidal or spherical AFM tips. We developed a procedure using focused ion beam (FIB) technology by which we modified silicon pyramidal AFM cantilever tips to obtain flat-ended cylindrical tips with a constant and known area of contact. The tips were validated on elastic gels and living cells. Cylindrical tips showed a fairly linear force-indentation behaviour on both gels and cells for indentations >200 nm. Cylindrical tips coated with ligands were used to quantify inherent dynamic cell adhesion and elastic properties. Force, work of adhesion and elasticity showed a marked dynamic response. In contrast, the deformation applied to the cells before rupture was fairly constant within the probed dynamic range. Taken together, these results suggest that the dynamic adhesion strength is counterbalanced by the dynamic elastic response to keep a constant cell deformation regardless of the applied pulling rate.
Collapse
Affiliation(s)
- Félix Rico
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain
| | | | | | | | | |
Collapse
|