51
|
Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila Petroff M, Bers DM. Chasing cardiac physiology and pathology down the CaMKII cascade. Am J Physiol Heart Circ Physiol 2015; 308:H1177-91. [PMID: 25747749 DOI: 10.1152/ajpheart.00007.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022]
Abstract
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such as Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation but also in cell death, transcriptional activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina;
| | - Rosana A Bassani
- Centro de Engenharia Biomédica, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ariel L Escobar
- Biological Engineering and Small Scale Technologies, School of Engineering, University of California, Merced, California; and
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Martín Vila Petroff
- Centro de Investigaciones Cardiovasculares, The National Scientific and Technical Research Council-La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
52
|
Louch WE, Koivumäki JT, Tavi P. Calcium signalling in developing cardiomyocytes: implications for model systems and disease. J Physiol 2015; 593:1047-63. [PMID: 25641733 PMCID: PMC4358669 DOI: 10.1113/jphysiol.2014.274712] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/28/2014] [Indexed: 12/15/2022] Open
Abstract
Adult cardiomyocytes exhibit complex Ca(2+) homeostasis, enabling tight control of contraction and relaxation. This intricate regulatory system develops gradually, with progressive maturation of specialized structures and increasing capacity of Ca(2+) sources and sinks. In this review, we outline current understanding of these developmental processes, and draw parallels to pathophysiological conditions where cardiomyocytes exhibit a striking regression to an immature state of Ca(2+) homeostasis. We further highlight the importance of understanding developmental physiology when employing immature cardiomyocyte models such as cultured neonatal cells and stem cells.
Collapse
Affiliation(s)
- William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo0424, Oslo, Norway
- K. G. Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo0316, Oslo, Norway
| | - Jussi T Koivumäki
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical ComputingOslo, Norway
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern FinlandKuopio, Finland
| |
Collapse
|
53
|
Negroni JA, Morotti S, Lascano EC, Gomes AV, Grandi E, Puglisi JL, Bers DM. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. J Mol Cell Cardiol 2015; 81:162-75. [PMID: 25724724 DOI: 10.1016/j.yjmcc.2015.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/10/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy have greater impact on isometric and isotonic contraction, respectively.
Collapse
Affiliation(s)
- Jorge A Negroni
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina.
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, CA, USA
| | - Elena C Lascano
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, CA, USA
| | - José L Puglisi
- Department of Pharmacology, University of California Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, CA, USA.
| |
Collapse
|
54
|
Hund TJ, Mohler PJ. Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 2014; 25:392-7. [PMID: 25577293 DOI: 10.1016/j.tcm.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a central mechanism in vertebrates for the regulation of signaling. With regard to the cardiovascular system, phosphorylation of myocyte targets is critical for the regulation of excitation contraction coupling, metabolism, intracellular calcium regulation, mitochondrial activity, transcriptional regulation, and cytoskeletal dynamics. In fact, pathways that tune protein kinase signaling have been a mainstay for cardiovascular therapies for the past 60 years. The calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase with numerous roles in human physiology. Dysfunction in CaMKII-based signaling has been linked with a host of cardiovascular phenotypes including heart failure and arrhythmia, and CaMKII levels are elevated in human and animal disease models of heart disease. While nearly a decade has been invested in targeting CaMKII for the treatment of heart failure and arrhythmia phenotypes, to date, approaches to target the molecule for antiarrhythmic benefit have been unsuccessful for reasons that are still not entirely clear, although (1) lack of compound specificity and (2) the multitude of downstream targets are likely contributing factors. This review will provide an update on current pathways regulated by CaMKII with the goal of illustrating potential upstream regulatory mechanisms and downstream targets that may be modulated for the prevention of cardiac electrical defects. While the review will cover multiple aspects of CaMKII dysfunction in cardiovascular disease, we have given special attention to the potential of CaMKII-associated late Na(+) current as a novel therapeutic target for cardiac arrhythmia.
Collapse
Affiliation(s)
- Thomas J Hund
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH
| | - Peter J Mohler
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH.
| |
Collapse
|
55
|
Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J. Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. eLife 2014; 3:e03765. [PMID: 25056880 PMCID: PMC4141273 DOI: 10.7554/elife.03765] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca(2+)) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca(2+) oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 β-cells. We show that Ca(2+) oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane vs at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ambhighainath Ganesan
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, United States
| | - Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Kirill Gorshkov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, United States The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
56
|
Muscle-type specific autophosphorylation of CaMKII isoforms after paced contractions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:943806. [PMID: 25054156 PMCID: PMC4099113 DOI: 10.1155/2014/943806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023]
Abstract
We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE) coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis) and slow-type muscle (soleus) for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02). In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.
Collapse
|
57
|
Bers DM, Morotti S. Ca(2+) current facilitation is CaMKII-dependent and has arrhythmogenic consequences. Front Pharmacol 2014; 5:144. [PMID: 24987371 PMCID: PMC4060732 DOI: 10.3389/fphar.2014.00144] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
The cardiac voltage gated Ca2+ current (ICa) is critical to the electrophysiological properties, excitation-contraction coupling, mitochondrial energetics, and transcriptional regulation in heart. Thus, it is not surprising that cardiac ICa is regulated by numerous pathways. This review will focus on changes in ICa that occur during the cardiac action potential (AP), with particular attention to Ca2+-dependent inactivation (CDI), Ca2+-dependent facilitation (CDF) and how calmodulin (CaM) and Ca2+-CaM dependent protein kinase (CaMKII) participate in the regulation of Ca2+ current during the cardiac AP. CDI depends on CaM pre-bound to the C-terminal of the L-type Ca2+ channel, such that Ca2+ influx and Ca2+ released from the sarcoplasmic reticulum bind to that CaM and cause CDI. In cardiac myocytes CDI normally pre-dominates over voltage-dependent inactivation. The decrease in ICa via CDI provides direct negative feedback on the overall Ca2+ influx during a single beat, when myocyte Ca2+ loading is high. CDF builds up over several beats, depends on CaMKII-dependent Ca2+ channel phosphorylation, and results in a staircase of increasing ICa peak, with progressively slower inactivation. CDF and CDI co-exist and in combination may fine-tune the ICa waveform during the cardiac AP. CDF may partially compensate for the tendency for Ca2+ channel availability to decrease at higher heart rates because of accumulating inactivation. CDF may also allow some reactivation of ICa during long duration cardiac APs, and contribute to early afterdepolarizations, a form of triggered arrhythmias.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California Davis Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis Davis, CA, USA
| |
Collapse
|
58
|
Greenstein JL, Foteinou PT, Hashambhoy-Ramsay YL, Winslow RL. Modeling CaMKII-mediated regulation of L-type Ca(2+) channels and ryanodine receptors in the heart. Front Pharmacol 2014; 5:60. [PMID: 24772082 PMCID: PMC3982069 DOI: 10.3389/fphar.2014.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/18/2014] [Indexed: 11/13/2022] Open
Abstract
Excitation-contraction coupling (ECC) in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. Voltage- and Ca2+-dependent L-type Ca2+ channels (LCCs) allow for Ca2+ entry into the myocyte, which then binds to nearby ryanodine receptors (RyRs) and triggers Ca2+ release from the sarcoplasmic reticulum in a process known as Ca2+-induced Ca2+ release. The highly coordinated Ca2+-mediated interaction between LCCs and RyRs is further regulated by the cardiac isoform of the Ca2+/calmodulin-dependent protein kinase (CaMKII). Because CaMKII targets and modulates the function of many ECC proteins, elucidation of its role in ECC and integrative cellular function is challenging and much insight has been gained through the use of detailed computational models. Multiscale models that can both reconstruct the detailed nature of local signaling events within the cardiac dyad and predict their functional consequences at the level of the whole cell have played an important role in advancing our understanding of CaMKII function in ECC. Here, we review experimentally based models of CaMKII function with a focus on LCC and RyR regulation, and the mechanistic insights that have been gained through their application.
Collapse
Affiliation(s)
- Joseph L Greenstein
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Panagiota T Foteinou
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Yasmin L Hashambhoy-Ramsay
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University Baltimore, MD, USA
| | - Raimond L Winslow
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
59
|
Abstract
Calcium/calmodulin (Ca2+/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca2+ cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.
Collapse
|
60
|
Yaniv Y, Maltsev VA. Numerical Modeling Calcium and CaMKII Effects in the SA Node. Front Pharmacol 2014; 5:58. [PMID: 24744732 PMCID: PMC3978345 DOI: 10.3389/fphar.2014.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/16/2014] [Indexed: 11/13/2022] Open
Abstract
Sinoatrial node (SAN) is the primary heart pacemaker which initiates each heartbeat under normal conditions. Numerous experimental data have demonstrated that Ca(2+-) and CaMKII-dependent processes are crucially important for regulation of SAN cells. However, specific mechanisms of this regulation and their relative contribution to pacemaker function remain mainly unknown. Our review summarizes available data and existing numerical modeling approaches to understand Ca(2+) and CaMKII effects on the SAN. Data interpretation and future directions to address the problem are given within the coupled-clock theory, i.e., a modern view on the cardiac pacemaker cell function generated by a system of sarcolemmal and intracellular proteins.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging - National Institutes of Health Baltimore, MD, USA ; Department of Biomedical Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging - National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
61
|
Hohendanner F, McCulloch AD, Blatter LA, Michailova AP. Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol 2014; 5:35. [PMID: 24639654 PMCID: PMC3944219 DOI: 10.3389/fphar.2014.00035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/18/2014] [Indexed: 11/22/2022] Open
Abstract
Calcium plays a crucial role in excitation-contraction coupling (ECC), but it is also a pivotal second messenger activating Ca2+-dependent transcription factors in a process termed excitation-transcription coupling (ETC). Evidence accumulated over the past decade indicates a pivotal role of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release in the regulation of cytosolic and nuclear Ca2+ signals. IP3 is generated by stimulation of plasma membrane receptors that couple to phospholipase C (PLC), liberating IP3 from phosphatidylinositol 4,5-bisphosphate (PIP2). An intriguing aspect of IP3 signaling is the presence of the entire PIP2-PLC-IP3 signaling cascade as well as the presence of IP3Rs at the inner and outer membranes of the nuclear envelope (NE) which functions as a Ca2+ store. The observation that the nucleus is surrounded by its own putative Ca2+ store raises the possibility that nuclear IP3-dependent Ca2+ release plays a critical role in ETC. This provides a potential mechanism of regulation that acts locally and autonomously from the global cytosolic Ca2+ signal underlying ECC. Moreover, there is evidence that: (i) the sarcoplasmic reticulum (SR) and NE are a single contiguous Ca2+ store; (ii) the nuclear pore complex is the major gateway for Ca2+ and macromolecules to pass between the cytosol and the nucleoplasm; (iii) the inner membrane of the NE hosts key Ca2+ handling proteins including the Na+/Ca2+ exchanger (NCX)/GM1 complex, ryanodine receptors (RyRs), nicotinic acid adenine dinucleotide phosphate receptors (NAADPRs), Na+/K+ ATPase, and Na+/H+ exchanger. Thus, it appears that the nucleus represents a Ca2+ signaling domain equipped with its own ion channels and transporters that allow for complex local Ca2+ signals. Many experimental and modeling approaches have been used for the study of intracellular Ca2+ signaling but the key to the understanding of the dual role of Ca2+ mediating ECC and ECT lays in quantitative differences of local [Ca2+] in the nuclear and cytosolic compartment. In this review, we discuss the state of knowledge regarding the origin and the physiological implications of nuclear Ca2+ transients in different cardiac cell types (adult atrial and ventricular myocytes) as well as experimental and mathematical approaches to study Ca2+ and IP3 signaling in the cytosol and nucleus. In particular, we focus on the concept that highly localized Ca2+ signals are required to translocate and activate Ca2+-dependent transcription factors (e.g., nuclear factor of activated T-cells, NFAT; histone deacetylase, HDAC) through phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego La Jolla, CA, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Anushka P Michailova
- Department of Bioengineering, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
62
|
Stoehr A, Neuber C, Baldauf C, Vollert I, Friedrich FW, Flenner F, Carrier L, Eder A, Schaaf S, Hirt MN, Aksehirlioglu B, Tong CW, Moretti A, Eschenhagen T, Hansen A. Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. Am J Physiol Heart Circ Physiol 2014; 306:H1353-63. [PMID: 24585781 DOI: 10.1152/ajpheart.00705.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca(2+) concentration. The analysis of contractile function and Ca(2+) transients is therefore important to discriminate between myofilament responsiveness and changes in Ca(2+) homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca(2+) transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca(2+) and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca(2+) concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca(2+) (EC50: 0.15, 0.39, and 1.05 mM Ca(2+) in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca(2+) sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca(2+) concentration is due to changes in Ca(2+) handling proteins. Finally, this study confirms that fura-2 has Ca(2+) buffering effects and is thereby changing the force response to extracellular Ca(2+).
Collapse
Affiliation(s)
- Andrea Stoehr
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
64
|
Morotti S, Edwards AG, McCulloch AD, Bers DM, Grandi E. A novel computational model of mouse myocyte electrophysiology to assess the synergy between Na+ loading and CaMKII. J Physiol 2014; 592:1181-97. [PMID: 24421356 DOI: 10.1113/jphysiol.2013.266676] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) hyperactivity in heart failure causes intracellular Na(+) ([Na(+)]i) loading (at least in part by enhancing the late Na(+) current). This [Na(+)]i gain promotes intracellular Ca(2+) ([Ca(2+)]i) overload by altering the equilibrium of the Na(+)-Ca(2+) exchanger to impair forward-mode (Ca(2+) extrusion), and favour reverse-mode (Ca(2+) influx) exchange. In turn, this Ca(2+) overload would be expected to further activate CaMKII and thereby form a pathological positive feedback loop of ever-increasing CaMKII activity, [Na(+)]i, and [Ca(2+)]i. We developed an ionic model of the mouse ventricular myocyte to interrogate this potentially arrhythmogenic positive feedback in both control conditions and when CaMKIIδC is overexpressed as in genetically engineered mice. In control conditions, simulation of increased [Na(+)]i causes the expected increases in [Ca(2+)]i, CaMKII activity, and target phosphorylation, which degenerate into unstable Ca(2+) handling and electrophysiology at high [Na(+)]i gain. Notably, clamping CaMKII activity to basal levels ameliorates but does not completely offset this outcome, suggesting that the increase in [Ca(2+)]i per se plays an important role. The effect of this CaMKII-Na(+)-Ca(2+)-CaMKII feedback is more striking in CaMKIIδC overexpression, where high [Na(+)]i causes delayed afterdepolarizations, which can be prevented by imposing low [Na(+)]i, or clamping CaMKII phosphorylation of L-type Ca(2+) channels, ryanodine receptors and phospholamban to basal levels. In this setting, Na(+) loading fuels a vicious loop whereby increased CaMKII activation perturbs Ca(2+) and membrane potential homeostasis. High [Na(+)]i is also required to produce instability when CaMKII is further activated by increased Ca(2+) loading due to β-adrenergic activation. Our results support recent experimental findings of a synergistic interaction between perturbed Na(+) fluxes and CaMKII, and suggest that pharmacological inhibition of intracellular Na(+) loading can contribute to normalizing Ca(2+) and membrane potential dynamics in heart failure.
Collapse
Affiliation(s)
- S Morotti
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, GBSF rm 3502, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
65
|
Qu Z. Network Dynamics in Cardiac Electrophysiology. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
66
|
Drum BML, Dixon RE, Yuan C, Cheng EP, Santana LF. Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8). J Mol Cell Cardiol 2013; 66:63-71. [PMID: 24215710 DOI: 10.1016/j.yjmcc.2013.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/17/2022]
Abstract
Ca(2+) flux through l-type CaV1.2 channels shapes the waveform of the ventricular action potential (AP) and is essential for excitation-contraction (EC) coupling. Timothy syndrome (TS) is a disease caused by a gain-of-function mutation in the CaV1.2 channel (CaV1.2-TS) that decreases inactivation of the channel, which increases Ca(2+) influx, prolongs APs, and causes lethal arrhythmias. Although many details of the CaV1.2-TS channels are known, the cellular mechanisms by which they induce arrhythmogenic changes in intracellular Ca(2+) remain unclear. We found that expression of CaV1.2-TS channels increased sarcolemmal Ca(2+) "leak" in resting TS ventricular myocytes. This resulted in higher diastolic [Ca(2+)]i in TS ventricular myocytes compared to WT. Accordingly, TS myocytes had higher sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) spark activity, larger amplitude [Ca(2+)]i transients, and augmented frequency of Ca(2+) waves. The large SR Ca(2+) release in TS myocytes had a profound effect on the kinetics of CaV1.2 current in these cells, increasing the rate of inactivation to a high, persistent level. This limited the amount of influx during EC coupling in TS myocytes. The relationship between the level of expression of CaV1.2-TS channels and the probability of Ca(2+) wave occurrence was non-linear, suggesting that even low levels of these channels were sufficient to induce maximal changes in [Ca(2+)]i. Depolarization of WT cardiomyocytes with a TS AP waveform increased, but did not equalize [Ca(2+)]i, compared to depolarization of TS myocytes with the same waveform. We propose that CaV1.2-TS channels increase [Ca(2+)] in the cytosol and the SR, creating a Ca(2+)overloaded state that increases the probability of arrhythmogenic spontaneous SR Ca(2+) release.
Collapse
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Rose E Dixon
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Can Yuan
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Edward P Cheng
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luis F Santana
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
67
|
Dries E, Bito V, Lenaerts I, Antoons G, Sipido KR, Macquaide N. Selective modulation of coupled ryanodine receptors during microdomain activation of calcium/calmodulin-dependent kinase II in the dyadic cleft. Circ Res 2013; 113:1242-52. [PMID: 24081880 DOI: 10.1161/circresaha.113.301896] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE In ventricular myocytes of large mammals with low T-tubule density, a significant number of ryanodine receptors (RyRs) are not coupled to the sarcolemma; cardiac remodeling increases noncoupled RyRs. OBJECTIVE Our aim was to test the hypothesis that coupled and noncoupled RyRs have distinct microdomain-dependent modulation. METHODS AND RESULTS We studied single myocytes from pig left ventricle. The T-tubule network was analyzed in 3-dimension (3D) to measure distance to membrane of release sites. The rising phase of the Ca(2+) transient was correlated with proximity to the membrane (confocal imaging, whole-cell voltage-clamp, K5fluo-4 as Ca(2+) indicator). Ca(2+) sparks after stimulation were thus identified as resulting from coupled or noncoupled RyRs. We used high-frequency stimulation as a known activator of Ca(2+)/calmodulin-dependent kinase II. Spark frequency increased significantly more in coupled than in noncoupled RyRs. This specific modulation of coupled RyRs was abolished by the Ca(2+)/calmodulin-dependent kinase II blockers autocamtide-2-related inhibitory peptide and KN-93, but not by KN-92. Colocalization of Ca(2+)/calmodulin-dependent kinase II and RyR was not detectably different for coupled and noncoupled sites, but the F-actin disruptor cytochalasin D prevented the specific modulation of coupled RyRs. NADPH oxidase 2 inhibition by diphenyleneiodonium or apocynin, or global reactive oxygen species scavenging, also prevented coupled RyR modulation. During stimulated Ca(2+) transients, frequency-dependent increase of the rate of Ca(2+) rise was seen in coupled RyR regions only and abolished by autocamtide-2-related inhibitory peptide. After myocardial infarction, selective modulation of coupled RyR was lost. CONCLUSIONS Coupled RyRs have a distinct modulation by Ca(2+)/calmodulin-dependent kinase II and reactive oxygen species, dependent on an intact cytoskeleton and consistent with a local Ca(2+)/reactive oxygen species microdomain, and subject to modification with disease.
Collapse
Affiliation(s)
- Eef Dries
- From the Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium (E.D., V.B., I.L., G.A., K.R.S., N.M.); Biomedical Research Institute, University of Hasselt, Belgium (V.B.); Division of Cardiology, Medical University of Graz, Austria (G.A.); and Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (N.M.)
| | | | | | | | | | | |
Collapse
|
68
|
Krishna A, Valderrábano M, Palade PT, Clark JW. Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: a coupled electromechanical modeling study. Theor Biol Med Model 2013; 10:54. [PMID: 24020888 PMCID: PMC3848742 DOI: 10.1186/1742-4682-10-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/03/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR). METHODS Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa,L); and the enhancement in SERCA pump activity via phosphorylation of PLB. RESULTS Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated β-adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa,L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR. CONCLUSIONS Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa,L as the key mechanisms underlying the aforementioned positive FFR.
Collapse
Affiliation(s)
- Abhilash Krishna
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
| | - Miguel Valderrábano
- Methodist Hospital Research Institute, Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - John W Clark
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
69
|
Wang Y, Tandan S, Hill JA. Calcineurin-dependent ion channel regulation in heart. Trends Cardiovasc Med 2013; 24:14-22. [PMID: 23809405 DOI: 10.1016/j.tcm.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
Abstract
Calcineurin, a serine-threonine-specific, Ca(2+)-calmodulin-activated protein phosphatase, conserved from yeast to humans, plays a key role in regulating cardiac development, hypertrophy, and pathological remodeling. Recent studies demonstrate that calcineurin regulates cardiomyocyte ion channels and receptors in a manner which often entails direct interaction with these target proteins. Here, we review the current state of knowledge of calcineurin-mediated regulation of ion channels in the myocardium with emphasis on the transient outward potassium current (Ito) and L-type calcium current (ICa,L). We go on to discuss unanswered questions that surround these observations and provide perspective on future directions in this exciting field.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
70
|
Westenbrink BD, Edwards AG, McCulloch AD, Brown JH. The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets 2013; 17:889-903. [PMID: 23789646 DOI: 10.1517/14728222.2013.809064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Calcium-calmodulin-dependent protein kinase II (CaMKII) has emerged as a central mediator of cardiac stress responses which may serve several critical roles in the regulation of cardiac rhythm, cardiac contractility and growth. Sustained and excessive activation of CaMKII during cardiac disease has, however, been linked to arrhythmias, and maladaptive cardiac remodeling, eventually leading to heart failure (HF) and sudden cardiac death. AREAS COVERED In the current review, the authors describe the unique structural and biochemical properties of CaMKII and focus on its physiological effects in cardiomyocytes. Furthermore, they provide evidence for a role of CaMKII in cardiac pathologies, including arrhythmogenesis, myocardial ischemia and HF development. The authors conclude by discussing the potential for CaMKII as a target for inhibition in heart disease. EXPERT OPINION CaMKII provides a promising nodal point for intervention that may allow simultaneous prevention of HF progression and development of arrhythmias. For future studies and drug development there is a strong rationale for the development of more specific CaMKII inhibitors. In addition, an improved understanding of the differential roles of CaMKII subtypes is required.
Collapse
Affiliation(s)
- B Daan Westenbrink
- University of California, Department of Pharmacology, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
71
|
Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. J Mol Med (Berl) 2013; 91:907-16. [PMID: 23775230 DOI: 10.1007/s00109-013-1060-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Calcium (Ca(2+)) has long been recognized as a crucial intracellular messenger attaining stimuli-specific cellular outcomes via localized signaling. Ca(2+)-binding proteins, such as calmodulin (CaM), and its target proteins are key to the segregation and refinement of these Ca(2+)-dependent signaling events. This review not only summarizes the recent technological advances enabling the study of subcellular Ca(2+)-CaM and Ca(2+)-CaM-dependent protein kinase (CaMKII) signaling events but also highlights the outstanding challenges in the field.
Collapse
|
72
|
Slavov N, Carey J, Linse S. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. ACS Chem Neurosci 2013; 4:601-12. [PMID: 23384199 DOI: 10.1021/cn300218d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.
Collapse
Affiliation(s)
| | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
73
|
Multidirectional effects of calmodulin kinase II on transmitter release in mature and newly formed mouse motor synapses. Bull Exp Biol Med 2013; 154:316-9. [PMID: 23484190 DOI: 10.1007/s10517-013-1940-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calmodulin inhibitor W-7 did not cause changes in the quantal content of postsynaptic end-plate potentials (EPP) in newly formed synapses, but prevented facilitation of acetylcholine secretion induced by L-type Ca(2+)channels blocker nitrendipine. CaMKII inhibitor KN-62 produced similar effect and suppressed the increase in EPP quantal content caused by blockade of L-type Ca(2+)channels. Phosphatase PP2A inhibitor okadaic acid significantly facilitated secretion in newly formed synapses; the effect was completely blocked by KN-62. In mature synapses, okadaic acid had no effect on transmitter secretion. KN-62 increased EPP quantal content. We hypothesize that CaMKII produced different effects on acetylcholine secretion in mature and immature synapses depending on specificity of calcium signaling and PP2A phosphatase activity.
Collapse
|
74
|
Localized calcineurin confers Ca2+-dependent inactivation on neuronal L-type Ca2+ channels. J Neurosci 2013; 32:15328-37. [PMID: 23115171 DOI: 10.1523/jneurosci.2302-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitation-driven entry of Ca(2+) through L-type voltage-gated Ca(2+) channels controls gene expression in neurons and a variety of fundamental activities in other kinds of excitable cells. The probability of opening of Ca(V)1.2 L-type channels is subject to pronounced enhancement by cAMP-dependent protein kinase (PKA), which is scaffolded to Ca(V)1.2 channels by A-kinase anchoring proteins (AKAPs). Ca(V)1.2 channels also undergo negative autoregulation via Ca(2+)-dependent inactivation (CDI), which strongly limits Ca(2+) entry. An abundance of evidence indicates that CDI relies upon binding of Ca(2+)/calmodulin (CaM) to an isoleucine-glutamine motif in the carboxy tail of Ca(V)1.2 L-type channels, a molecular mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. But our work reveals, in cultured hippocampal neurons and a heterologous expression system, that the Ca(2+)/CaM-activated phosphatase calcineurin (CaN) is scaffolded to Ca(V)1.2 channels by the neuronal anchoring protein AKAP79/150, and that overexpression of an AKAP79/150 mutant incapable of binding CaN (ΔPIX; CaN-binding PXIXIT motif deleted) impedes CDI. Interventions that suppress CaN activity-mutation in its catalytic site, antagonism with cyclosporine A or FK506, or intracellular perfusion with a peptide mimicking the sequence of the phosphatase's autoinhibitory domain-interfere with normal CDI. In cultured hippocampal neurons from a ΔPIX knock-in mouse, CDI is absent. Results of experiments with the adenylyl cyclase stimulator forskolin and with the PKA inhibitor PKI suggest that Ca(2+)/CaM-activated CaN promotes CDI by reversing channel enhancement effectuated by kinases such as PKA. Hence, our investigation of AKAP79/150-anchored CaN reconciles the CaM-based model of CDI with an earlier, seemingly contradictory model based on dephosphorylation signaling.
Collapse
|
75
|
Chen QQ, Zhang W, Chen XF, Bao YJ, Wang J, Zhu WZ. Electrical field stimulation induces cardiac fibroblast proliferation through the calcineurin-NFAT pathway. Can J Physiol Pharmacol 2012; 90:1611-22. [PMID: 23210440 DOI: 10.1139/y2012-133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most cardiac diseases are associated with fibrosis. Calcineurin (CaN) is regulated by Ca(2+)/calmodulin (CaM). The CaN-NFAT (nuclear factor of activated T cell) pathway is involved in the process of cardiac diseases, such as cardiac hypertrophy, but its effect on myocardial fibrosis remains unclear. The present study investigates whether the CaN-NFAT pathway is involved in cardiac fibroblast (CF) proliferation induced by electrical field stimulation (EFS), which recently became a popular treatment for heart failure and cardiac tissue engineering. CF proliferation was evaluated by a cell survival assay (MTT) and cell counts. Myocardial fibrosis was assessed by collagen I and collagen III protein expression. Green fluorescent protein (GFP)-tagged NFAT was used to detect NFAT nuclear translocation. CF proliferation, myocardial fibrosis, CaN activity, and NFAT nuclear translocation were enhanced by EFS. More importantly, these effects were abolished by CaN inhibitors, dominant negative CaN (DN-CaN), and CaN gene silenced with siRNA. Furthermore, buffering intracellular Ca(2+) with BAPTA-AM and blocking Ca(2+) influx with nifedipine suppressed EFS-induced increase in intracellular Ca(2+) and CF proliferation. These results suggested that the CaN-NFAT pathway mediates CF proliferation, and that the CaN-NFAT pathway might be a possible therapeutic target for EFS-induced myocardial fibrosis and cardiac tissue engineering.
Collapse
Affiliation(s)
- Qing-Qing Chen
- Department of Pharmacology, Nantong University Medical College, Nantong, P.R. China
| | | | | | | | | | | |
Collapse
|
76
|
Krishna A, Valderrábano M, Palade PT, W J. Multiphysics model of a rat ventricular myocyte: a voltage-clamp study. Theor Biol Med Model 2012; 9:48. [PMID: 23171697 PMCID: PMC3585474 DOI: 10.1186/1742-4682-9-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of this study is to develop a comprehensive model of the electromechanical behavior of the rat ventricular myocyte to investigate the various factors influencing its contractile response. METHODS Here, we couple a model of Ca2 + dynamics described in our previous work, with a well-known model of contractile mechanics developed by Rice, Wang, Bers and de Tombe to develop a composite multiphysics model of excitation-contraction coupling. This comprehensive cell model is studied under voltage clamp (VC) conditions, since it allows to focus our study on the elaborate Ca2 + signaling system that controls the contractile mechanism. RESULTS We examine the role of various factors influencing cellular contractile response. In particular, direct factors such as the amount of activator Ca2 + available to trigger contraction and the type of mechanical load applied (resulting in isosarcometric, isometric or unloaded contraction) are investigated. We also study the impact of temperature (22 to 38°C) on myofilament contractile response. The critical role of myofilament Ca2 + sensitivity in modulating developed force is likewise studied, as is the indirect coupling of intracellular contractile mechanism with the plasma membrane via the Na + /Ca2 + exchanger (NCX). Finally, we demonstrate a key linear relationship between the rate of contraction and relaxation, which is shown here to be intrinsically coupled over the full range of physiological perturbations. CONCLUSIONS Extensive testing of the composite model elucidates the importance of various direct and indirect modulatory influences on cellular twitch response with wide agreement with measured data on all accounts. Thus, the model provides mechanistic insights into whole-cell responses to a wide variety of testing approaches used in studies of cardiac myofilament contractility that have appeared in the literature over the past several decades.
Collapse
Affiliation(s)
- Abhilash Krishna
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, 77005, USA
| | - Miguel Valderrábano
- Methodist Hospital Research Institute, Methodist DeBakey Heart & Vascular Center, 6565 Fannin Street, Houston, 77030, USA
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, 72205, USA
| | - John W
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, 77005, USA
| |
Collapse
|
77
|
Schmitz JPJ, Groenendaal W, Wessels B, Wiseman RW, Hilbers PAJ, Nicolay K, Prompers JJ, Jeneson JAL, van Riel NAW. Combined in vivo and in silico investigations of activation of glycolysis in contracting skeletal muscle. Am J Physiol Cell Physiol 2012; 304:C180-93. [PMID: 23114964 DOI: 10.1152/ajpcell.00101.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hypothesis was tested that the variation of in vivo glycolytic flux with contraction frequency in skeletal muscle can be qualitatively and quantitatively explained by calcium-calmodulin activation of phosphofructokinase (PFK-1). Ischemic rat tibialis anterior muscle was electrically stimulated at frequencies between 0 and 80 Hz to covary the ATP turnover rate and calcium concentration in the tissue. Estimates of in vivo glycolytic rates and cellular free energetic states were derived from dynamic changes in intramuscular pH and phosphocreatine content, respectively, determined by phosphorus magnetic resonance spectroscopy ((31)P-MRS). Computational modeling was applied to relate these empirical observations to understanding of the biochemistry of muscle glycolysis. Hereto, the kinetic model of PFK activity in a previously reported mathematical model of the glycolytic pathway (Vinnakota KC, Rusk J, Palmer L, Shankland E, Kushmerick MJ. J Physiol 588: 1961-1983, 2010) was adapted to contain a calcium-calmodulin binding sensitivity. The two main results were introduction of regulation of PFK-1 activity by binding of a calcium-calmodulin complex in combination with activation by increased concentrations of AMP and ADP was essential to qualitatively and quantitatively explain the experimental observations. Secondly, the model predicted that shutdown of glycolytic ATP production flux in muscle postexercise may lag behind deactivation of PFK-1 (timescales: 5-10 s vs. 100-200 ms, respectively) as a result of accumulation of glycolytic intermediates downstream of PFK during contractions.
Collapse
Affiliation(s)
- J P J Schmitz
- Computational Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lee YS, Liu OZ, Sobie EA. Decoding myocardial Ca²⁺ signals across multiple spatial scales: a role for sensitivity analysis. J Mol Cell Cardiol 2012; 58:92-9. [PMID: 23026728 DOI: 10.1016/j.yjmcc.2012.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/20/2012] [Indexed: 11/28/2022]
Abstract
Numerous studies have employed mathematical modeling to quantitatively understand release of Ca(2+) from the sarcoplasmic reticulum (SR) in the heart. Models have been used to investigate physiologically important phenomena such as triggering of SR Ca(2+) release by Ca(2+) entry across the cell membrane and spontaneous leak of Ca(2+) from the SR in quiescent heart cells. In this review we summarize studies that have modeled myocardial Ca(2+) at different spatial scales: the sub-cellular level, the cellular level, and the multicellular level. We discuss each category of models from the standpoint of parameter sensitivity analysis, a common simulation procedure that can generate quantitative, comprehensive predictions about how changes in conditions influence model output. We propose that this is a useful perspective for conceptualizing models, in part because a sensitivity analysis requires the investigator to define the relevant parameters and model outputs. This procedure therefore helps to illustrate the capabilities and limitations of each model. We further suggest that in future studies, sensitivity analyses will aid in simplifying complex models and in suggesting experiments to differentiate between competing models built with different assumptions. We conclude with a discussion of unresolved questions that are likely to be addressed over the next several years.
Collapse
Affiliation(s)
- Young-Seon Lee
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
79
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
80
|
Christensen GL, Aplin M, Hansen JL. Therapeutic potential of functional selectivity in the treatment of heart failure. Trends Cardiovasc Med 2012; 20:221-7. [PMID: 22293022 DOI: 10.1016/j.tcm.2011.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adrenergic and angiotensin receptors are prominent targets in pharmacological alleviation of cardiac remodeling and heart failure, but their use is associated with cardiodepressant side effects. Recent advances in our understanding of seven transmembrane receptor signaling show that it is possible to design ligands with "functional selectivity," acting as agonists on certain signaling pathways while antagonizing others. This represents a major pharmaceutical opportunity to separate desired from adverse effects governed by the same receptor. Accordingly, functionally selective ligands are currently pursued as next-generation drugs for superior treatment of heart failure.
Collapse
Affiliation(s)
- Gitte Lund Christensen
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, DK-2600 Glostrup, Denmark
| | | | | |
Collapse
|
81
|
Noble D, Garny A, Noble PJ. How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project. J Physiol 2012; 590:2613-28. [PMID: 22473779 DOI: 10.1113/jphysiol.2011.224238] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early modelling of cardiac cells (1960-1980) was based on extensions of the Hodgkin-Huxley nerve axon equations with additional channels incorporated, but after 1980 it became clear that processes other than ion channel gating were also critical in generating electrical activity. This article reviews the development of models representing almost all cell types in the heart, many different species, and the software tools that have been created to facilitate the cardiac Physiome Project.
Collapse
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | | | | |
Collapse
|
82
|
Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y. Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 2011; 18:3707-13. [PMID: 21774758 DOI: 10.2174/092986711796642409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.
Collapse
Affiliation(s)
- T Bányász
- Department of Physiology, University of Debrecen, Nagyerdei krt. 98. H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
83
|
Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD. Decreased cardiac L-type Ca²⁺ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 2011; 122:280-90. [PMID: 22133878 DOI: 10.1172/jci58227] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023] Open
Abstract
Antagonists of L-type Ca²⁺ channels (LTCCs) have been used to treat human cardiovascular diseases for decades. However, these inhibitors can have untoward effects in patients with heart failure, and their overall therapeutic profile remains nebulous given differential effects in the vasculature when compared with those in cardiomyocytes. To investigate this issue, we examined mice heterozygous for the gene encoding the pore-forming subunit of LTCC (calcium channel, voltage-dependent, L type, α1C subunit [Cacna1c mice; referred to herein as α1C⁻/⁺ mice]) and mice in which this gene was loxP targeted to achieve graded heart-specific gene deletion (termed herein α1C-loxP mice). Adult cardiomyocytes from the hearts of α1C⁻/⁺ mice at 10 weeks of age showed a decrease in LTCC current and a modest decrease in cardiac function, which we initially hypothesized would be cardioprotective. However, α1C⁻/⁺ mice subjected to pressure overload stimulation, isoproterenol infusion, and swimming showed greater cardiac hypertrophy, greater reductions in ventricular performance, and greater ventricular dilation than α1C⁺/⁺ controls. The same detrimental effects were observed in α1C-loxP animals with a cardiomyocyte-specific deletion of one allele. More severe reductions in α1C protein levels with combinatorial deleted alleles produced spontaneous cardiac hypertrophy before 3 months of age, with early adulthood lethality. Mechanistically, our data suggest that a reduction in LTCC current leads to neuroendocrine stress, with sensitized and leaky sarcoplasmic reticulum Ca²⁺ release as a compensatory mechanism to preserve contractility. This state results in calcineurin/nuclear factor of activated T cells signaling that promotes hypertrophy and disease.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Guo T, Fruen BR, Nitu FR, Nguyen TD, Yang Y, Cornea RL, Bers DM. FRET detection of calmodulin binding to the cardiac RyR2 calcium release channel. Biophys J 2011; 101:2170-7. [PMID: 22067155 DOI: 10.1016/j.bpj.2011.09.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/07/2011] [Accepted: 09/22/2011] [Indexed: 12/13/2022] Open
Abstract
Calmodulin (CaM) binding to the type 2 ryanodine receptor (RyR2) regulates Ca release from the cardiac sarcoplasmic reticulum (SR). However, the structural basis of CaM regulation of the RyR2 is poorly defined, and the presence of other potential CaM binding partners in cardiac myocytes complicates resolution of CaM's regulatory interactions with RyR2. Here, we show that a fluorescence-resonance-energy-transfer (FRET)-based approach can effectively resolve RyR2 CaM binding, both in isolated SR membrane vesicles and in permeabilized ventricular myocytes. A small FRET donor was targeted to the RyR2 cytoplasmic assembly via fluorescent labeling of the FKBP12.6 subunit. Acceptor fluorophore was attached at discrete positions within either the N- or the C-lobe of CaM. FRET between FKBP12.6 and CaM bound to SR vesicles indicated CaM binding at a single high-affinity site within 60 Å of FKBP12.6. Micromolar Ca increased the apparent affinity of CaM binding and slowed CaM dissociation, but did not significantly affect maximal FRET efficiency at saturating CaM. FRET was strongest when the acceptor was attached at either of two positions within CaM's N-lobe versus sites in CaM's C-lobe, providing CaM orientation information. In permeabilized ventricular myocytes, FKBP12.6 and CaM colocalized to Z-lines, and the efficiency of energy transfer to both the N- and C-lobes of CaM was comparable to that observed in SR vesicle experiments. Results also indicate that both the location and orientation of CaM binding on the RyR2 are very similar to the skeletal muscle RyR1 isoform. Specific binding of CaM to functional RyR2 channels in the cardiac myocyte environment can be monitored using FKBP biosensors and FRET.
Collapse
Affiliation(s)
- Tao Guo
- Department of Pharmacology, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Tavi P, Westerblad H. The role of in vivo Ca²⁺ signals acting on Ca²⁺-calmodulin-dependent proteins for skeletal muscle plasticity. J Physiol 2011; 589:5021-31. [PMID: 21911615 PMCID: PMC3225663 DOI: 10.1113/jphysiol.2011.212860] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/12/2011] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle fibres are highly heterogeneous regarding size, metabolism and contractile function. They also show a large capacity for adaptations in response to alterations in the activation pattern. A major part of this activity-dependent plasticity relies on transcriptional alterations controlled by intracellular Ca(2+) signals. In this review we discuss how intracellular Ca(2+) fluctuations induced by activation patterns likely to occur in vivo control muscle properties via effects on Ca(2+)-calmodulin-dependent proteins. We focus on two such Ca(2+) decoders: calcineurin and Ca(2+)-calmodulin-dependent protein kinase II. Inherent Ca(2+) transients during contractions differ rather little between slow- and fast-twitch muscle fibres and this difference is unlikely to have any significant impact on the activity of Ca(2+) decoders. The major exception to this is fatigue-induced changes in Ca(2+) transients that occur in fast-twitch fibres exposed to high-intensity activation typical of slow-twitch motor units. In conclusion, the cascade from neural stimulation pattern to Ca(2+)-dependent transcription is likely to be central in maintaining the fibre phenotypes in both fast- and slow-twitch fibres. Moreover, changes in Ca(2+) signalling (e.g. induced by endurance training) can result in altered muscle properties (e.g. increased mitochondrial biogenesis) and this plasticity involves other signalling pathways.
Collapse
Affiliation(s)
- Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
86
|
Song YH, Choi E, Park SH, Lee SH, Cho H, Ho WK, Ryu SY. Sustained CaMKII activity mediates transient oxidative stress-induced long-term facilitation of L-type Ca(2+) current in cardiomyocytes. Free Radic Biol Med 2011; 51:1708-16. [PMID: 21854842 DOI: 10.1016/j.freeradbiomed.2011.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
Oxidative stress remodels Ca(2+) signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca(2+) signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca(2+) current (I(Ca,L)) in rat cardiomyocytes. A 5-min exposure of 1mM H(2)O(2) induced an increase in I(Ca,L), and this increase was sustained for ~1h. The CaMKII inhibitor KN-93 fully reversed H(2)O(2)-induced LTF of I(Ca,L), indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca(2+) release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H(2)O(2) via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.
Collapse
Affiliation(s)
- Young-Hwan Song
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 139-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
87
|
Biesmans L, Macquaide N, Heinzel FR, Bito V, Smith GL, Sipido KR. Subcellular heterogeneity of ryanodine receptor properties in ventricular myocytes with low T-tubule density. PLoS One 2011; 6:e25100. [PMID: 22022376 PMCID: PMC3192718 DOI: 10.1371/journal.pone.0025100] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
RATIONALE In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). OBJECTIVE To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. METHODS Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca(2+) transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca(2+) release, F>F(50) within 20 ms) or their absence (delayed areas). Spontaneous Ca(2+) release events during diastole, Ca(2+) sparks, reflecting RyR activity and properties, were subsequently assigned to either category. RESULTS In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na(+)/Ca(2+) exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca(2+) influx via Ca(2+) channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca(2+) content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca(2+) removal by NCX at the membrane was significantly lower in MI. CONCLUSION TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca(2+) loss and raise SR Ca(2+) content, but may promote Ca(2+) waves.
Collapse
Affiliation(s)
- Liesbeth Biesmans
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
| | - Niall Macquaide
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Frank R. Heinzel
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Virginie Bito
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
| | - Godfrey L. Smith
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Karin R. Sipido
- Laboratory of Experimental Cardiology, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
88
|
Erickson JR, Patel R, Ferguson A, Bossuyt J, Bers DM. Fluorescence resonance energy transfer-based sensor Camui provides new insight into mechanisms of calcium/calmodulin-dependent protein kinase II activation in intact cardiomyocytes. Circ Res 2011; 109:729-38. [PMID: 21835909 DOI: 10.1161/circresaha.111.247148] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key mediator of intracellular signaling in the heart. However, the tools currently available for assessing dynamic changes in CaMKII localization and activation in living myocytes are limited. OBJECTIVE We use Camui, a novel FRET-based biosensor in which full-length CaMKII is flanked by CFP and YFP, to measure CaMKII activation state in living rabbit myocytes. METHODS AND RESULTS We show that Camui and mutant variants that lack the sites of CaMKII autophosphorylation (T286A) and oxidative regulation (CM280/1VV) serve as useful biosensors for CaMKIIδ activation state. Camui (wild-type or mutant) was expressed in isolated adult cardiac myocytes, and localization and CaMKII activation state were determined using confocal microscopy. Camui, like CaMKIIδ, is concentrated at the z-lines, with low baseline activation state. Camui activation increased directly with pacing frequency, but the maximal effect was blunted with the T286A, consistent with frequency-dependent phosphorylation of CaMKII at T286 mainly at high-frequency and high-amplitude Ca transients. Camui was also activated by 4 neurohormonal agonists. Angiotensin II and endothelin-1 activated Camui, largely through an oxidation-dependent mechanism, whereas isoproterenol- and phenylephrine-mediated mechanisms had a significant autophosphorylation-dependent component. CONCLUSIONS Camui is a novel, nondestructive tool that allows spatiotemporally resolved measurement of CaMKII activation state in physiologically functioning myocytes. This represents a first step in using Camui to elucidate key mechanistic details of CaMKII signaling in live hearts and myocytes.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Pharmacology, University of California, Davis, CA 95616-8636, USA
| | | | | | | | | |
Collapse
|
89
|
Two candidates at the heart of dysfunction: The ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention—An in vivo perspective. Pharmacol Ther 2011; 131:204-20. [DOI: 10.1016/j.pharmthera.2011.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
90
|
Winslow RL, Greenstein JL. Cardiac myocytes and local signaling in nano-domains. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:48-59. [PMID: 21718716 DOI: 10.1016/j.pbiomolbio.2011.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
It is well known that calcium-induced calcium-release in cardiac myocytes takes place in spatially restricted regions known as dyads, where discrete patches of junctional sarcoplasmic reticulum tightly associate with the t-tubule membrane. The dimensions of a dyad are so small that it contains only a few Ca²⁺ ions at any given time. Ca²⁺ signaling in the dyad is therefore noisy, and dominated by the Brownian motion of Ca²⁺ ions in a potential field. Remarkably, from this complexity emerges the integrated behavior of the myocyte in which, under normal conditions, precise control of Ca²⁺ release and muscle contraction is maintained over the life of the cell. This is but one example of how signal processing within the cardiac myocyte and other cells often occurs in small "nano-domains" where proteins and protein complexes interact at spatial dimensions on the order of ∼1-10 nm and at time-scales on the order of nanoseconds to perform the functions of the cell. In this article, we will review several examples of local signaling in nano-domains, how it contributes to the integrative behavior of the cardiac myocyte, and present computational methods for modeling signal processing within these domains across differing spatio-temporal scales.
Collapse
Affiliation(s)
- Raimond L Winslow
- The Institute for Computational Medicine & Department of Biomedical Engineering, The Johns Hopkins University, School of Medicine & Whiting School of Engineering, Baltimore, MD 21218, USA.
| | | |
Collapse
|
91
|
Saucerman JJ, Bers DM. Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes. J Mol Cell Cardiol 2011; 52:312-6. [PMID: 21708171 DOI: 10.1016/j.yjmcc.2011.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/24/2011] [Accepted: 06/02/2011] [Indexed: 11/25/2022]
Abstract
Calmodulin (CaM) acts as a common Ca(2+) sensor for many signaling pathways, transducing local Ca(2+) signals into specific cellular outcomes. Many of CaM's signaling functions can be explained by its unique biochemical properties, including high and low affinity Ca(2+)-binding sites with slow and fast kinetics, respectively. CaM is expected to have a limited spatial range of action, emphasizing its role in local Ca(2+) signaling. Interactions with target proteins further fine-tune CaM signal transduction. Here, we focus on only three specific cellular targets for CaM signaling in cardiac myocytes: the L-type Ca(2+) channel, the ryanodine receptor, and the IP(3) receptor. We elaborate a working hypothesis that each channel is regulated by two distinct functional populations of CaM: dedicated CaM and promiscuous CaM. Dedicated CaM is typically tethered to each channel and directly regulates channel activity. In addition, a local pool of promiscuous CaM appears poised to sense local Ca(2+) signals and trigger downstream pathways such as Ca(2+)/CaM dependent-protein kinase II and calcineurin. Understanding how promiscuous CaM coordinates multiple distinct signaling pathways remains a challenge, but is aided by the use of mathematical modeling and a new generation of fluorescent biosensors. This article is part of a special issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
92
|
Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte. J Mol Cell Cardiol 2011; 52:317-22. [PMID: 21600216 DOI: 10.1016/j.yjmcc.2011.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/27/2011] [Accepted: 05/03/2011] [Indexed: 11/21/2022]
Abstract
No other inorganic molecule known in biology is considered as versatile as Ca(2+). In a vast majority of cell types, Ca(2+) acts as a universal second messenger underlying critical cellular processes varying from gene transcription to cell death. Although the role of Ca(2+) in myocyte contraction has been known for over a century, it was only more recently that this divalent cation has been implicated in mediating reactive signal transduction to promote cardiac hypertrophy. However, it remains unclear how Ca(2+)-dependent signaling pathways are regulated/activated in a cardiac myocyte given the prevailing conditions throughout the cytosol where Ca(2+) concentration oscillates between 100 nM and upwards of 1-2 μM during each contractile cycle. In this review we will examine three hypotheses put forward to explain how Ca(2+) might still function as a hypertrophic signaling molecule in cardiac myocytes and discuss the current literature that supports each of these views. This article is part of a special issue entitled "Local Signaling in Myocytes."
Collapse
|
93
|
Yang JH, Saucerman JJ. Computational models reduce complexity and accelerate insight into cardiac signaling networks. Circ Res 2011; 108:85-97. [PMID: 21212391 DOI: 10.1161/circresaha.110.223602] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac signaling networks exhibit considerable complexity in size and connectivity. The intrinsic complexity of these networks complicates the interpretation of experimental findings. This motivates new methods for investigating the mechanisms regulating cardiac signaling networks and the consequences these networks have on cardiac physiology and disease. Next-generation experimental techniques are also generating a wealth of genomic and proteomic data that can be difficult to analyze or interpret. Computational models are poised to play a key role in addressing these challenges. Computational models have a long history in contributing to the understanding of cardiac physiology and are useful for identifying biological mechanisms, inferring multiscale consequences to cell signaling activities and reducing the complexity of large data sets. Models also integrate well with experimental studies to explain experimental observations and generate new hypotheses. Here, we review the contributions computational modeling approaches have made to the analysis of cardiac signaling networks and forecast opportunities for computational models to accelerate cardiac signaling research.
Collapse
Affiliation(s)
- Jason H Yang
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
94
|
Abstract
Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.
Collapse
Affiliation(s)
- Joseph L Greenstein
- Center for Cardiovascular Bioinformatics and Modeling, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
95
|
Soltis AR, Saucerman JJ. Synergy between CaMKII substrates and β-adrenergic signaling in regulation of cardiac myocyte Ca(2+) handling. Biophys J 2011; 99:2038-47. [PMID: 20923637 DOI: 10.1016/j.bpj.2010.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 07/23/2010] [Accepted: 08/04/2010] [Indexed: 01/10/2023] Open
Abstract
Cardiac excitation-contraction coupling is a highly coordinated process that is controlled by protein kinase signaling pathways, including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA). Increased CaMKII expression and activity (as occurs during heart failure) destabilizes EC coupling and may lead to sudden cardiac death. To better understand mechanisms of cardiac CaMKII function, we integrated dynamic CaMKII-dependent regulation of key Ca(2+) handling targets with previously validated models of cardiac EC coupling, Ca(2+)/calmodulin-dependent activation of CaMKII, and β-adrenergic activation of PKA. Model predictions are validated against CaMKII-overexpression data from rabbit ventricular myocytes. The model demonstrates how overall changes to Ca(2+) handling during CaMKII overexpression are explained by interactions between individual CaMKII substrates. CaMKII and PKA activities during β-adrenergic stimulation may synergistically facilitate inotropic responses and contribute to a CaMKII-Ca(2+)-CaMKII feedback loop. CaMKII regulated early frequency-dependent acceleration of relaxation and EC coupling gain (which was highly sarcoplasmic reticulum Ca(2+) load-dependent). Additionally, the model identifies CaMKII-dependent ryanodine receptor hyperphosphorylation as a proarrhythmogenic trigger. In summary, we developed a detailed computational model of CaMKII and PKA signaling in cardiac myocytes that provides unique insights into their regulation of normal and pathological Ca(2+) handling.
Collapse
Affiliation(s)
- Anthony R Soltis
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
96
|
Bers DM. Ca²⁺-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm 2011; 8:1101-4. [PMID: 21255680 DOI: 10.1016/j.hrthm.2011.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California, Davis, California, USA.
| |
Collapse
|
97
|
Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, Stull JT. Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 2010; 285:40819-29. [PMID: 20943660 PMCID: PMC3003383 DOI: 10.1074/jbc.m110.160499] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/11/2010] [Indexed: 12/22/2022] Open
Abstract
In contrast to studies on skeletal and smooth muscles, the identity of kinases in the heart that are important physiologically for direct phosphorylation of myosin regulatory light chain (RLC) is not known. A Ca(2+)/calmodulin-activated myosin light chain kinase is expressed only in cardiac muscle (cMLCK), similar to the tissue-specific expression of skeletal muscle MLCK and in contrast to the ubiquitous expression of smooth muscle MLCK. We have ablated cMLCK expression in male mice to provide insights into its role in RLC phosphorylation in normally contracting myocardium. The extent of RLC phosphorylation was dependent on the extent of cMLCK expression in both ventricular and atrial muscles. Attenuation of RLC phosphorylation led to ventricular myocyte hypertrophy with histological evidence of necrosis and fibrosis. Echocardiography showed increases in left ventricular mass as well as end-diastolic and end-systolic dimensions. Cardiac performance measured as fractional shortening decreased proportionally with decreased cMLCK expression culminating in heart failure in the setting of no RLC phosphorylation. Hearts from female mice showed similar responses with loss of cMLCK associated with diminished RLC phosphorylation and cardiac hypertrophy. Isoproterenol infusion elicited hypertrophic cardiac responses in wild type mice. In mice lacking cMLCK, the hypertrophic hearts showed no additional increases in size with the isoproterenol treatment, suggesting a lack of RLC phosphorylation blunted the stress response. Thus, cMLCK appears to be the predominant protein kinase that maintains basal RLC phosphorylation that is required for normal physiological cardiac performance in vivo.
Collapse
Affiliation(s)
| | | | | | - Joseph A. Hill
- Internal Medicine (Cardiology), and
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | |
Collapse
|
98
|
O'Donnell SE, Yu L, Fowler CA, Shea MA. Recognition of β-calcineurin by the domains of calmodulin: thermodynamic and structural evidence for distinct roles. Proteins 2010; 79:765-86. [PMID: 21287611 DOI: 10.1002/prot.22917] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/04/2010] [Accepted: 10/07/2010] [Indexed: 11/08/2022]
Abstract
Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca(2+)-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaN(B) (the regulatory subunit) triggers conformational change in CaN(A) (the catalytic subunit). Two isoforms of CaN(A) (α, β) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca(2+))₄-CaM(1-148) bound to βCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from βCaNp were ∼1 μM. A limiting K(d) ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to ¹⁵N-(Ca(2+))₄-CaM(1-148) monitored by ¹⁵N/¹HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the ¹³C-edited and ¹²C-¹⁴N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the βCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN.
Collapse
Affiliation(s)
- Susan E O'Donnell
- Department of Biochemistry, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
99
|
Krishna A, Sun L, Valderrábano M, Palade PT, Clark JW. Modeling CICR in rat ventricular myocytes: voltage clamp studies. Theor Biol Med Model 2010; 7:43. [PMID: 21062495 PMCID: PMC3245510 DOI: 10.1186/1742-4682-7-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/10/2010] [Indexed: 01/08/2023] Open
Abstract
Background The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca2+ loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca2+ release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca2+ concentration ([Ca2+]myo). Methods The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca2+ channels (trigger-channel and release-channel). It releases Ca2+ flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca2+]myo. Results Our model reproduces measured VC data published by several laboratories, and generates graded Ca2+ release at high Ca2+ gain in a homeostatically-controlled environment where [Ca2+]myo is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca2+ release, its activation by trigger Ca2+, and its refractory characteristics mediated by the luminal SR Ca2+ sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence Ca2+ homeostasis. Conclusions We examine the role of the above Ca2+ regulating mechanisms in handling various types of induced disturbances in Ca2+ levels by quantifying cellular Ca2+ balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.
Collapse
Affiliation(s)
- Abhilash Krishna
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
100
|
Winslow RL, Cortassa S, O'Rourke B, Hashambhoy YL, Rice JJ, Greenstein JL. Integrative modeling of the cardiac ventricular myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:392-413. [PMID: 20865780 DOI: 10.1002/wsbm.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac electrophysiology is a discipline with a rich 50-year history of experimental research coupled with integrative modeling which has enabled us to achieve a quantitative understanding of the relationships between molecular function and the integrated behavior of the cardiac myocyte in health and disease. In this paper, we review the development of integrative computational models of the cardiac myocyte. We begin with a historical overview of key cardiac cell models that helped shape the field. We then narrow our focus to models of the cardiac ventricular myocyte and describe these models in the context of their subcellular functional systems including dynamic models of voltage-gated ion channels, mitochondrial energy production, ATP-dependent and electrogenic membrane transporters, intracellular Ca dynamics, mechanical contraction, and regulatory signal transduction pathways. We describe key advances and limitations of the models as well as point to new directions for future modeling research. WIREs Syst Biol Med 2011 3 392-413 DOI: 10.1002/wsbm.122
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute of Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|