51
|
Bize P, Lowe I, Lehto Hürlimann M, Heckel G. Effects of the Mitochondrial and Nuclear Genomes on Nonshivering Thermogenesis in a Wild Derived Rodent. Integr Comp Biol 2018; 58:532-543. [DOI: 10.1093/icb/icy072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Pierre Bize
- School of Biological Sciences, University of Aberdeen, Zoology Building, AB24 2TZ Aberdeen, UK
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Imogen Lowe
- School of Biological Sciences, University of Aberdeen, Zoology Building, AB24 2TZ Aberdeen, UK
| | - Mikko Lehto Hürlimann
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Gerald Heckel
- Computational and Molecular Population Genetics, Institute of Ecology and Evolution, University of Bern, Hochschulstrasse 6, CH-3012 Bern, Switzerland
| |
Collapse
|
52
|
Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2018; 2:1258-1267. [DOI: 10.1038/s41559-018-0606-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
53
|
Hoekstra LA, Julick CR, Mika KM, Montooth KL. Energy demand and the context-dependent effects of genetic interactions underlying metabolism. Evol Lett 2018; 2:102-113. [PMID: 30283668 PMCID: PMC6121862 DOI: 10.1002/evl3.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
Genetic effects are often context dependent, with the same genotype differentially affecting phenotypes across environments, life stages, and sexes. We used an environmental manipulation designed to increase energy demand during development to investigate energy demand as a general physiological explanation for context-dependent effects of mutations, particularly for those mutations that affect metabolism. We found that increasing the photoperiod during which Drosophila larvae are active during development phenocopies a temperature-dependent developmental delay in a mitochondrial-nuclear genotype with disrupted metabolism. This result indicates that the context-dependent fitness effects of this genotype are not specific to the effects of temperature and may generally result from variation in energy demand. The effects of this genotype also differ across life stages and between the sexes. The mitochondrial-nuclear genetic interaction disrupts metabolic rate in growing larvae, but not in adults, and compromises female, but not male, reproductive fitness. These patterns are consistent with a model where context-dependent genotype-phenotype relationships may generally arise from differences in energy demand experienced by individuals across environments, life stages, and sexes.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Evolution, Ecology and Organismal Biology Iowa State University Ames Iowa 50011
| | - Cole R Julick
- School of Biological Sciences University of Nebraska-Lincoln Lincoln Nebraska 68588
| | - Katelyn M Mika
- Department of Human Genetics University of Chicago Chicago Illinois 60637
| | - Kristi L Montooth
- School of Biological Sciences University of Nebraska-Lincoln Lincoln Nebraska 68588
| |
Collapse
|
54
|
Plytycz B, Bigaj J, Osikowski A, Hofman S, Falniowski A, Panz T, Grzmil P, Vandenbulcke F. The existence of fertile hybrids of closely related model earthworm species, Eisenia andrei and E. fetida. PLoS One 2018; 13:e0191711. [PMID: 29370238 PMCID: PMC5784991 DOI: 10.1371/journal.pone.0191711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Lumbricid earthworms Eisenia andrei (Ea) and E. fetida (Ef) are simultaneous hermaphrodites with reciprocal insemination capable of self-fertilization while the existence of hybridization of these two species was still debatable. During the present investigation fertile hybrids of Ea and Ef were detected. Virgin specimens of Ea and Ef were laboratory crossed (Ea+Ef) and their progeny was doubly identified. 1 -identified by species-specific maternally derived haploid mitochondrial DNA sequences of the COI gene being either 'a' for worms hatched from Ea ova or 'f' for worms hatched from Ef ova. 2 -identified by the diploid maternal/paternal nuclear DNA sequences of 28s rRNA gene being either 'AA' for Ea, 'FF' for Ef, or AF/FA for their hybrids derived either from the 'aA' or 'fF' ova, respectively. Among offspring of Ea+Ef pairs in F1 generation there were mainly aAA and fFF earthworms resulted from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids from fF ova. In F2 generation resulting from aAF hybrids mated with aAA a new generations of aAA and aAF hybrids were noticed, while aAF hybrids mated with fFF gave fFF and both aAF and fFA hybrids. Hybrids intercrossed together produced plenty of cocoons but no hatchlings independently whether aAF+aAF or aAF+fFA were mated. These results indicated that Ea and Ef species, easy to maintain in laboratory and commonly used as convenient models in biomedicine and ecotoxicology, may also serve in studies on molecular basis of interspecific barriers and mechanisms of introgression and speciation. Hypothetically, their asymmetrical hybridization can be modified by some external factors.
Collapse
Affiliation(s)
- Barbara Plytycz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
- * E-mail:
| | - Janusz Bigaj
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Artur Osikowski
- Department of Animal Anatomy, University of Agriculture in Krakow, Krakow, Poland
| | - Sebastian Hofman
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Falniowski
- Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Tomasz Panz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Franck Vandenbulcke
- Ecologie Numerique et Ecotoxicologie, University Lille Nord de France, Lille, France
| |
Collapse
|
55
|
Hua X. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen's hypothesis. Proc Biol Sci 2017; 283:rspb.2016.0349. [PMID: 27466445 DOI: 10.1098/rspb.2016.0349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022] Open
Abstract
Being invoked as one of the candidate mechanisms for the latitudinal patterns in biodiversity, Janzen's hypothesis states that the limited seasonal temperature variation in the tropics generates greater temperature stratification across elevations, which makes tropical species adapted to narrower ranges of temperatures and have lower effective dispersal across elevations than species in temperate regions. Numerous empirical studies have documented latitudinal patterns in species elevational ranges and thermal niche breadths that are consistent with the hypothesis, but the theoretical underpinnings remain unclear. This study presents the first mathematical model to examine the evolutionary processes that could back up Janzen's hypothesis and assess the effectiveness of limited seasonal temperature variation to promote speciation along elevation in the tropics. Results suggest that trade-offs in thermal tolerances provide a mechanism for Janzen's hypothesis. Limited seasonal temperature variation promotes gradient speciation not due to the reduction in gene flow that is associated with narrow thermal niche, but due to the pleiotropic effects of more stable divergent selection of thermal tolerance on the evolution of reproductive incompatibility. The proposed modelling approach also provides a potential way to test a speciation model against genetic data.
Collapse
Affiliation(s)
- Xia Hua
- Division of Evolution, Ecology, and Genetics, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, 0200, Australia
| |
Collapse
|
56
|
Lockwood BL, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol 2017; 220:4492-4501. [PMID: 29097593 PMCID: PMC5769566 DOI: 10.1242/jeb.164848] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Abstract
Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of Drosophila melanogaster We drove in vivo overexpression of a small heat shock protein gene (Hsp23) in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development. We report that overexpression of the Hsp23 gene in female ovaries produced offspring embryos with increased thermal tolerance. We also found that brief heat stress in the early embryonic stage (0-1 h old) caused decreased larval performance later in life (5-10 days old), as indexed by pupation height. Maternal overexpression of Hsp23 protected embryos against this heat-induced defect in larval performance. Our data demonstrate that transient products of single genes have large and lasting effects on whole-organism environmental tolerance. Further, our results suggest that maternal effects have a profound impact on offspring survival in the context of thermal variability.
Collapse
Affiliation(s)
- Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Cole R Julick
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
57
|
Ecological significance of mitochondrial toxicants. Toxicology 2017; 391:64-74. [DOI: 10.1016/j.tox.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/15/2022]
|
58
|
Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster. Mol Biol Evol 2017. [DOI: 10.1093/molbev/msx184] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
59
|
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila. Mol Biol Evol 2017; 34:447-466. [PMID: 28110272 PMCID: PMC6095086 DOI: 10.1093/molbev/msw246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Jennifer G Tross
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nick A Jourjine
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Nan Li
- Department of Biostatistics, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
60
|
Zhang C, Montooth KL, Calvi BR. Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development 2017; 144:2490-2503. [PMID: 28576772 DOI: 10.1242/dev.151951] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/27/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction can cause female infertility. An important unresolved issue is the extent to which incompatibility between mitochondrial and nuclear genomes contributes to female infertility. It has previously been shown that a mitochondrial haplotype from D. simulans (simw501 ) is incompatible with a nuclear genome from the D. melanogaster strain Oregon-R (OreR), resulting in impaired development, which was enhanced at higher temperature. This mito-nuclear incompatibility is between alleles of the nuclear-encoded mitochondrial tyrosyl-tRNA synthetase (Aatm) and the mitochondrial-encoded tyrosyl-tRNA that it aminoacylates. Here, we show that this mito-nuclear incompatibility causes a severe temperature-sensitive female infertility. The OreR nuclear genome contributed to death of ovarian germline stem cells and reduced egg production, which was further enhanced by the incompatibility with simw501 mitochondria. Mito-nuclear incompatibility also resulted in aberrant egg morphology and a maternal-effect on embryonic chromosome segregation and survival, which was completely dependent on the temperature and mito-nuclear genotype of the mother. Our findings show that maternal mito-nuclear incompatibility during Drosophila oogenesis has severe consequences for egg production and embryonic survival, with important broader relevance to human female infertility and mitochondrial replacement therapy.
Collapse
Affiliation(s)
- Chunyang Zhang
- Department of Biology, Indiana University Bloomington, IN 47401, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Brian R Calvi
- Department of Biology, Indiana University Bloomington, IN 47401, USA
| |
Collapse
|
61
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
62
|
Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, Oleksiak MF, Crawford DL. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genet 2017; 13:e1006517. [PMID: 28362806 PMCID: PMC5375140 DOI: 10.1371/journal.pgen.1006517] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only pathway with both nuclear and mitochondrial encoded proteins. The importance of the interactions between these two genomes has recently received more attention because of their potential evolutionary effects and how they may affect human health and disease. In many different organisms, healthy nuclear and mitochondrial genome hybrids between species or among distant populations within a species affect fitness and OxPhos functions. However, what is less understood is whether these interactions impact individuals within a single natural population. The significance of this impact depends on the strength of selection for mito-nuclear interactions. We examined whether mito-nuclear interactions alter allele frequencies for ~11,000 nuclear SNPs within a single, natural Fundulus heteroclitus population containing two divergent mitochondrial haplotypes (mt-haplotypes). Between the two mt-haplotypes, there are significant nuclear allele frequency differences for 349 SNPs with a p-value of 1% (236 with 10% FDR). Unlike the rest of the genome, these 349 outlier SNPs form two groups associated with each mt-haplotype, with a minority of individuals having mixed ancestry. We use this mixed ancestry in combination with mt-haplotype as a polygenic factor to explain a significant fraction of the individual OxPhos variation. These data suggest that mito-nuclear interactions affect cardiac OxPhos function. The 349 outlier SNPs occur in genes involved in regulating metabolic processes but are not directly associated with the 79 nuclear OxPhos proteins. Therefore, we postulate that the evolution of mito-nuclear interactions affects OxPhos function by acting upstream of OxPhos.
Collapse
Affiliation(s)
- Tara Z. Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
- * E-mail:
| | - Dominique N. Wagner
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - David I. Dayan
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Xiao Du
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Pierre U. Blier
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Nicolas Pichaud
- Dept de Biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec, Canada
| | - Marjorie F. Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| | - Douglas L. Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, FL, United States of America
| |
Collapse
|
63
|
Sunnucks P, Morales HE, Lamb AM, Pavlova A, Greening C. Integrative Approaches for Studying Mitochondrial and Nuclear Genome Co-evolution in Oxidative Phosphorylation. Front Genet 2017; 8:25. [PMID: 28316610 PMCID: PMC5334354 DOI: 10.3389/fgene.2017.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/17/2017] [Indexed: 01/24/2023] Open
Abstract
In animals, interactions among gene products of mitochondrial and nuclear genomes (mitonuclear interactions) are of profound fitness, evolutionary, and ecological significance. Most fundamentally, the oxidative phosphorylation (OXPHOS) complexes responsible for cellular bioenergetics are formed by the direct interactions of 13 mitochondrial-encoded and ∼80 nuclear-encoded protein subunits in most animals. It is expected that organisms will develop genomic architecture that facilitates co-adaptation of these mitonuclear interactions and enhances biochemical efficiency of OXPHOS complexes. In this perspective, we present principles and approaches to understanding the co-evolution of these interactions, with a novel focus on how genomic architecture might facilitate it. We advocate that recent interdisciplinary advances assist in the consolidation of links between genotype and phenotype. For example, advances in genomics allow us to unravel signatures of selection in mitochondrial and nuclear OXPHOS genes at population-relevant scales, while newly published complete atomic-resolution structures of the OXPHOS machinery enable more robust predictions of how these genes interact epistatically and co-evolutionarily. We use three case studies to show how integrative approaches have improved the understanding of mitonuclear interactions in OXPHOS, namely those driving high-altitude adaptation in bar-headed geese, allopatric population divergence in Tigriopus californicus copepods, and the genome architecture of nuclear genes coding for mitochondrial functions in the eastern yellow robin.
Collapse
Affiliation(s)
- Paul Sunnucks
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Hernán E. Morales
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
- Department of Marine Sciences, University of GothenburgGothenburg, Sweden
| | - Annika M. Lamb
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| | - Chris Greening
- School of Biological Sciences, Monash University, ClaytonVIC, Australia
| |
Collapse
|
64
|
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol 2017; 26:814-830. [DOI: 10.1111/mec.13945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy M. Healy
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
65
|
Chung DJ, Bryant HJ, Schulte PM. Thermal acclimation and subspecies-specific effects on heart and brain mitochondrial performance in a eurythermal teleost (Fundulus heteroclitus). J Exp Biol 2017; 220:1459-1471. [DOI: 10.1242/jeb.151217] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Mitochondrial performance may play a role in setting whole-animal thermal tolerance limits and their plasticity, but the relative roles of adjustments in mitochondrial performance across different highly aerobic tissues remain poorly understood. We compared heart and brain mitochondrial responses to acute thermal challenges and to thermal acclimation using high-resolution respirometry in two locally adapted subspecies of Atlantic killifish (Fundulus heteroclitus). We predicted that 5°C acclimation to would result in compensatory increases in mitochondrial performance, while 33°C acclimation would cause suppression of mitochondrial function to minimize the effects of high temperature on mitochondrial metabolism. In contrast, acclimation to both 33 and 5°C decreased mitochondrial performance compared to fish acclimated to 15°C. These adjustments could represent an energetic cost saving mechanism at temperature extremes. Acclimation responses were similar in both heart and brain; however, this effect was smaller in the heart which might indicate its importance in maintaining whole-animal thermal performance. Alternatively, larger acclimation effects in the brain might indicate greater thermal sensitivity compared to the heart. We detected only modest differences between subspecies that were dependent on the tissue assayed. These data demonstrate extensive plasticity in mitochondrial performance following thermal acclimation in killifish, and indicate that the extent of these responses differs between tissues, highlighting the importance and complexity of mitochondrial regulation in thermal acclimation in eurytherms.
Collapse
Affiliation(s)
- Dillon James Chung
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
66
|
Haenel GJ. Introgression of mtDNA inUrosauruslizards: historical and ecological processes. Mol Ecol 2016; 26:606-623. [DOI: 10.1111/mec.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
|
67
|
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med 2016; 100:238-256. [PMID: 27036362 DOI: 10.1016/j.freeradbiomed.2016.03.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/03/2023]
Abstract
Eukaryotic cells require orchestrated communication between nuclear and organellar genomes, perturbations in which are linked to stress response and disease in both animals and plants. In addition to mitochondria, which are found across eukaryotes, plant cells contain a second organelle, the plastid. Signaling both among the organelles (cytoplasmic) and between the cytoplasm and the nucleus (i.e. nuclear-cytoplasmic interactions (NCI)) is essential for proper cellular function. A deeper understanding of NCI and its impact on development, stress response, and long-term health is needed in both animal and plant systems. Here we focus on the role of plant mitochondria in development and stress response. We compare and contrast features of plant and animal mitochondrial genomes (mtDNA), particularly highlighting the large and highly dynamic nature of plant mtDNA. Plant-based tools are powerful, yet underutilized, resources for enhancing our fundamental understanding of NCI. These tools also have great potential for improving crop production. Across taxa, mitochondria are most abundant in cells that have high energy or nutrient demands as well as at key developmental time points. Although plant mitochondria act as integrators of signals involved in both development and stress response pathways, little is known about plant mtDNA diversity and its impact on these processes. In humans, there are strong correlations between particular mitotypes (and mtDNA mutations) and developmental differences (or disease). We propose that future work in plants should focus on defining mitotypes more carefully and investigating their functional implications as well as improving techniques to facilitate this research.
Collapse
Affiliation(s)
- Katie L Liberatore
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States.
| | | | - Marisa E Miller
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, United States
| | - Shahryar F Kianian
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, United States; Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
68
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field.
Collapse
Affiliation(s)
- Jiongming Lu
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Steven J Marygold
- b FlyBase; Department of Genetics; University of Cambridge ; Cambridge , UK
| | - Walid H Gharib
- c Interfaculty Bioinformatics Unit; University of Bern ; Bern , Switzerland
| | - Beat Suter
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| |
Collapse
|
69
|
McFarlane SE, Sirkiä PM, Ålund M, Qvarnström A. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers. PLoS One 2016; 11:e0161547. [PMID: 27583553 PMCID: PMC5008804 DOI: 10.1371/journal.pone.0161547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions.
Collapse
Affiliation(s)
- S. Eryn McFarlane
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Päivi M. Sirkiä
- Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Helsinki, Finland
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Murielle Ålund
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Anna Qvarnström
- Animal Ecology/ Department of Ecology and Genetics, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
70
|
Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila. Genetics 2016; 204:613-630. [PMID: 27558138 PMCID: PMC5068850 DOI: 10.1534/genetics.116.192328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.
Collapse
|
71
|
Patel MR, Miriyala GK, Littleton AJ, Yang H, Trinh K, Young JM, Kennedy SR, Yamashita YM, Pallanck LJ, Malik HS. A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. eLife 2016; 5:e16923. [PMID: 27481326 PMCID: PMC4970871 DOI: 10.7554/elife.16923] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this 'Mother's Curse', their effect on females has been largely unexplored. Here, we identify COII(G177S), a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COII(G177S) represents one of the clearest examples of a 'male-harming' mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COII(G177S) might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COII(G177S) -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations.
Collapse
Affiliation(s)
- Maulik R Patel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ganesh K Miriyala
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Aimee J Littleton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Heiko Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Kien Trinh
- Genome Sciences, University of Washington, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Scott R Kennedy
- Pathology, University of Washington Medical Center, Seattle, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Leo J Pallanck
- Genome Sciences, University of Washington, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
| |
Collapse
|
72
|
Baris TZ, Blier PU, Pichaud N, Crawford DL, Oleksiak MF. Gene by environmental interactions affecting oxidative phosphorylation and thermal sensitivity. Am J Physiol Regul Integr Comp Physiol 2016; 311:R157-65. [PMID: 27225945 DOI: 10.1152/ajpregu.00008.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
The oxidative phosphorylation (OxPhos) pathway is responsible for most aerobic ATP production and is the only metabolic pathway with proteins encoded by both nuclear and mitochondrial genomes. In studies examining mitonuclear interactions among distant populations within a species or across species, the interactions between these two genomes can affect metabolism, growth, and fitness, depending on the environment. However, there is little data on whether these interactions impact natural populations within a single species. In an admixed Fundulus heteroclitus population with northern and southern mitochondrial haplotypes, there are significant differences in allele frequencies associated with mitochondrial haplotype. In this study, we investigate how mitochondrial haplotype and any associated nuclear differences affect six OxPhos parameters within a population. The data demonstrate significant OxPhos functional differences between the two mitochondrial genotypes. These differences are most apparent when individuals are acclimated to high temperatures with the southern mitochondrial genotype having a large acute response and the northern mitochondrial genotype having little, if any acute response. Furthermore, acute temperature effects and the relative contribution of Complex I and II depend on acclimation temperature: when individuals are acclimated to 12°C, the relative contribution of Complex I increases with higher acute temperatures, whereas at 28°C acclimation, the relative contribution of Complex I is unaffected by acute temperature change. These data demonstrate a complex gene by environmental interaction affecting the OxPhos pathway.
Collapse
Affiliation(s)
- Tara Z Baris
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| | - Pierre U Blier
- Department de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada; and
| | - Nicolas Pichaud
- Department de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada; and Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Douglas L Crawford
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida;
| | - Marjorie F Oleksiak
- Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida
| |
Collapse
|
73
|
Mossman JA, Biancani LM, Zhu CT, Rand DM. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila. Genetics 2016; 203:463-84. [PMID: 26966258 PMCID: PMC4858792 DOI: 10.1534/genetics.116.187286] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial (mtDNA) and nuclear genes have to operate in a coordinated manner to maintain organismal function, and the regulation of this homeostasis presents a substantial source of potential epistatic (G × G) interactions. How these interactions shape the fitness landscape is poorly understood. Here we developed a novel mitonuclear epistasis model, using selected strains of the Drosophila Genetic Reference Panel (DGRP) and mitochondrial genomes from within Drosophila melanogaster and D. simulans to test the hypothesis that mtDNA × nDNA interactions influence fitness. In total we built 72 genotypes (12 nuclear backgrounds × 6 mtDNA haplotypes, with 3 from each species) to dissect the relationship between genotype and phenotype. Each genotype was assayed on four food environments. We found considerable variation in several phenotypes, including development time and egg-to-adult viability, and this variation was partitioned into genetic (G), environmental (E), and higher-order (G × G, G × E, and G × G × E) components. Food type had a significant impact on development time and also modified mitonuclear epistases, evidencing a broad spectrum of G × G × E across these genotypes. Nuclear background effects were substantial, followed by mtDNA effects and their G × G interaction. The species of mtDNA haplotype had negligible effects on phenotypic variation and there was no evidence that mtDNA variation has different effects on male and female fitness traits. Our results demonstrate that mitonuclear epistases are context dependent, suggesting the selective pressure acting on mitonuclear genotypes may vary with food environment in a genotype-specific manner.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Leann M Biancani
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Chen-Tseh Zhu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
74
|
Immonen E, Rönn J, Watson C, Berger D, Arnqvist G. Complex mitonuclear interactions and metabolic costs of mating in male seed beetles. J Evol Biol 2015; 29:360-70. [PMID: 26548644 DOI: 10.1111/jeb.12789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023]
Abstract
The lack of evolutionary response to selection on mitochondrial genes through males predicts the evolution of nuclear genetic influence on male-specific mitochondrial function, for example by gene duplication and evolution of sex-specific expression of paralogs involved in metabolic pathways. Intergenomic epistasis may therefore be a prevalent feature of the genetic architecture of male-specific organismal function. Here, we assess the role of mitonuclear genetic variation for male metabolic phenotypes [metabolic rate and respiratory quotient (RQ)] associated with ejaculate renewal, in the seed beetle Callosobruchus maculatus, by assaying lines with crossed combinations of distinct mitochondrial haplotypes and nuclear lineages. We found a significant increase in metabolic rate following mating relative to virgin males. Moreover, processes associated with ejaculate renewal showed variation in metabolic rate that was affected by mitonuclear interactions. Mitochondrial haplotype influenced mating-related changes in RQ, but this pattern varied over time. Mitonuclear genotype and the energy spent during ejaculate production affected the weight of the ejaculate, but the strength of this effect varied across mitochondrial haplotypes showing that the genetic architecture of male-specific reproductive function is complex. Our findings unveil hitherto underappreciated metabolic costs of mating and ejaculate renewal, and provide the first empirical demonstration of mitonuclear epistasis on male reproductive metabolic processes.
Collapse
Affiliation(s)
- E Immonen
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Rönn
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - C Watson
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - D Berger
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - G Arnqvist
- Evolutionary Biology Centre, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
75
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
76
|
Chang CC, Rodriguez J, Ross J. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 (BETHESDA, MD.) 2015; 6:209-19. [PMID: 26585825 PMCID: PMC4704720 DOI: 10.1534/g3.115.022970] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial-nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic-nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic-nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
Collapse
Affiliation(s)
- Chih-Chiun Chang
- Department of Biology, California State University, Fresno, California, 93740
| | - Joel Rodriguez
- Department of Biology, California State University, Fresno, California, 93740
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California, 93740
| |
Collapse
|
77
|
Beck EA, Thompson AC, Sharbrough J, Brud E, Llopart A. Gene flow between Drosophila yakuba and Drosophila santomea in subunit V of cytochrome c oxidase: A potential case of cytonuclear cointrogression. Evolution 2015; 69:1973-86. [PMID: 26155926 PMCID: PMC5042076 DOI: 10.1111/evo.12718] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022]
Abstract
Introgression is the effective exchange of genetic information between species through natural hybridization. Previous genetic analyses of the Drosophila yakuba—D. santomea hybrid zone showed that the mitochondrial genome of D. yakuba had introgressed into D. santomea and completely replaced its native form. Since mitochondrial proteins work intimately with nuclear‐encoded proteins in the oxidative phosphorylation (OXPHOS) pathway, we hypothesized that some nuclear genes in OXPHOS cointrogressed along with the mitochondrial genome. We analyzed nucleotide variation in the 12 nuclear genes that form cytochrome c oxidase (COX) in 33 Drosophila lines. COX is an OXPHOS enzyme composed of both nuclear‐ and mitochondrial‐encoded proteins and shows evidence of cytonuclear coadaptation in some species. Using maximum‐likelihood methods, we detected significant gene flow from D. yakuba to D. santomea for the entire COX complex. Interestingly, the signal of introgression is concentrated in the three nuclear genes composing subunit V, which shows population migration rates significantly greater than the background level of introgression in these species. The detection of introgression in three proteins that work together, interact directly with the mitochondrial‐encoded core, and are critical for early COX assembly suggests this could be a case of cytonuclear cointrogression.
Collapse
Affiliation(s)
- Emily A Beck
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, 52242
| | - Aaron C Thompson
- The Department of Biology, The University of Iowa, Iowa City, IA, 52242
| | - Joel Sharbrough
- The Department of Biology, The University of Iowa, Iowa City, IA, 52242
| | - Evgeny Brud
- The Department of Biology, The University of Iowa, Iowa City, IA, 52242
| | - Ana Llopart
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, 52242. .,The Department of Biology, The University of Iowa, Iowa City, IA, 52242.
| |
Collapse
|
78
|
Dixon GB, Davies SW, Aglyamova GA, Meyer E, Bay LK, Matz MV. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes. Science 2015; 348:1460-2. [PMID: 26113720 DOI: 10.1126/science.1261224] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.
Collapse
Affiliation(s)
- Groves B Dixon
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Sarah W Davies
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Galina A Aglyamova
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Line K Bay
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia.
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA.
| |
Collapse
|
79
|
Bundus JD, Alaei R, Cutter AD. Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule. Evolution 2015; 69:2005-17. [PMID: 26102479 DOI: 10.1111/evo.12708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
Abstract
Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.
Collapse
Affiliation(s)
- Joanna D Bundus
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Ravin Alaei
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2.
| |
Collapse
|
80
|
Morales HE, Pavlova A, Joseph L, Sunnucks P. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 2015; 24:2820-37. [DOI: 10.1111/mec.13203] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Hernán E. Morales
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Alexandra Pavlova
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Leo Joseph
- Australian National Wildlife Collection; CSIRO National Facilities and Collections; GPO Box 1700 Canberra ACT 2601 Australia
| | - Paul Sunnucks
- School of Biological Sciences Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
81
|
Beukeboom LW, Koevoets T, Morales HE, Ferber S, van de Zande L. Hybrid incompatibilities are affected by dominance and dosage in the haplodiploid wasp Nasonia. Front Genet 2015; 6:140. [PMID: 25926847 PMCID: PMC4397956 DOI: 10.3389/fgene.2015.00140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/23/2015] [Indexed: 02/01/2023] Open
Abstract
Study of genome incompatibilities in species hybrids is important for understanding the genetic basis of reproductive isolation and speciation. According to Haldane's rule hybridization affects the heterogametic sex more than the homogametic sex. Several theories have been proposed that attribute asymmetry in hybridization effects to either phenotype (sex) or genotype (heterogamety). Here we investigate the genetic basis of hybrid genome incompatibility in the haplodiploid wasp Nasonia using the powerful features of haploid males and sex reversal. We separately investigate the effects of heterozygosity (ploidy level) and sex by generating sex reversed diploid hybrid males and comparing them to genotypically similar haploid hybrid males and diploid hybrid females. Hybrid effects of sterility were more pronounced than of inviability, and were particularly strong in haploid males, but weak to absent in diploid males and females, indicating a strong ploidy level but no sex specific effect. Molecular markers identified a number of genomic regions associated with hybrid inviability in haploid males that disappeared under diploidy in both hybrid males and females. Hybrid inviability was rescued by dominance effects at some genomic regions, but aggravated or alleviated by dosage effects at other regions, consistent with cytonuclear incompatibilities. Dosage effects underlying Bateson–Dobzhansky–Muller (BDM) incompatibilities need more consideration in explaining Haldane's rule in diploid systems.
Collapse
Affiliation(s)
- Leo W Beukeboom
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Tosca Koevoets
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Hernán E Morales
- School of Biological Sciences, Monash University Melbourne, VIC, Australia
| | - Steven Ferber
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen, Netherlands
| |
Collapse
|
82
|
Levin L, Blumberg A, Barshad G, Mishmar D. Mito-nuclear co-evolution: the positive and negative sides of functional ancient mutations. Front Genet 2014; 5:448. [PMID: 25566330 PMCID: PMC4274989 DOI: 10.3389/fgene.2014.00448] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Most cell functions are carried out by interacting factors, thus underlying the functional importance of genetic interactions between genes, termed epistasis. Epistasis could be under strong selective pressures especially in conditions where the mutation rate of one of the interacting partners notably differs from the other. Accordingly, the order of magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear (mito-nuclear) interactions. Such is the case of the energy producing oxidative phosphorylation (OXPHOS) and mitochondrial translational machineries which are comprised of factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA transcription and mtDNA replication systems are operated by nDNA-encoded proteins that bind mtDNA regulatory elements. As these systems are central to cell life there is strong selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands as species' complexity increases. As the first step to answer these questions we discuss evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-encoded genes and the effect of both types of selection on mito-nuclear interacting factors. Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective events. We apply this point-of-view to the three available types of mito-nuclear co-evolution: protein-protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).
Collapse
Affiliation(s)
- Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Gilad Barshad
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev Beersheba, Israel
| |
Collapse
|
83
|
Gershoni M, Levin L, Ovadia O, Toiw Y, Shani N, Dadon S, Barzilai N, Bergman A, Atzmon G, Wainstein J, Tsur A, Nijtmans L, Glaser B, Mishmar D. Disrupting mitochondrial-nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol Evol 2014; 6:2665-80. [PMID: 25245408 PMCID: PMC4224335 DOI: 10.1093/gbe/evu208] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mutation rate of the mitochondrial DNA (mtDNA), which is higher by an order of magnitude as compared with the nuclear genome, enforces tight mitonuclear coevolution to maintain mitochondrial activities. Interruption of such coevolution plays a role in interpopulation hybrid breakdown, speciation events, and disease susceptibility. Previously, we found an elevated amino acid replacement rate and positive selection in the nuclear DNA-encoded oxidative phosphorylation (OXPHOS) complex I subunit NDUFC2, a phenomenon important for the direct interaction of NDUFC2 with the mtDNA-encoded complex I subunit ND4. This finding underlines the importance of mitonuclear coevolution to physical interactions between mtDNA and nuclear DNA-encoded factors. Nevertheless, it remains unclear whether this interaction is important for the stability and activity of complex I. Here, we show that siRNA silencing of NDUFC2 reduced growth of human D-407 retinal pigment epithelial cells, significantly diminished mitochondrial membrane potential, and interfered with complex I integrity. Moreover, site-directed mutagenesis of a positively selected amino acid in NDUFC2 significantly interfered with the interaction of NDUFC2 with its mtDNA-encoded partner ND4. Finally, we show that a genotype combination involving this amino acid (NDUFC2 residue 46) and the mtDNA haplogroup HV likely altered susceptibility to type 2 diabetes mellitus in Ashkenazi Jews. Therefore, mitonuclear coevolution is important for maintaining mitonuclear factor interactions, OXPHOS, and for human health.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Liron Levin
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Ovadia
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yasmin Toiw
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Naama Shani
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sara Dadon
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nir Barzilai
- Institute of Aging, Division of Endocrinology, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gil Atzmon
- Institute of Aging, Division of Endocrinology, Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Anat Tsur
- Endocrine Clinic, Clalit Health Services, Jerusalem, Israel
| | - Leo Nijtmans
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
84
|
Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics 2014; 198:1251-65. [PMID: 25164882 DOI: 10.1534/genetics.114.168575] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are essential multifunctional organelles whose metabolic functions, biogenesis, and maintenance are controlled through genetic interactions between mitochondrial and nuclear genomes. In natural populations, mitochondrial efficiencies may be impacted by epistatic interactions between naturally segregating genome variants. The extent that mitochondrial-nuclear epistasis contributes to the phenotypic variation present in nature is unknown. We have systematically replaced mitochondrial DNAs in a collection of divergent Saccharomyces cerevisiae yeast isolates and quantified the effects on growth rates in a variety of environments. We found that mitochondrial-nuclear interactions significantly affected growth rates and explained a substantial proportion of the phenotypic variances under some environmental conditions. Naturally occurring mitochondrial-nuclear genome combinations were more likely to provide growth advantages, but genetic distance could not predict the effects of epistasis. Interruption of naturally occurring mitochondrial-nuclear genome combinations increased endogenous reactive oxygen species in several strains to levels that were not always proportional to growth rate differences. Our results demonstrate that interactions between mitochondrial and nuclear genomes generate phenotypic diversity in natural populations of yeasts and that coadaptation of intergenomic interactions likely occurs quickly within the specific niches that yeast occupy. This study reveals the importance of considering allelic interactions between mitochondrial and nuclear genomes when investigating evolutionary relationships and mapping the genetic basis underlying complex traits.
Collapse
|
85
|
Greenlee KJ, Montooth KL, Helm BR. Predicting performance and plasticity in the development of respiratory structures and metabolic systems. Integr Comp Biol 2014; 54:307-22. [PMID: 24812329 PMCID: PMC4097113 DOI: 10.1093/icb/icu018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change.
Collapse
Affiliation(s)
- Kendra J Greenlee
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Bryan R Helm
- *Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|