51
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
52
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
53
|
Deletion of Cd151 reduces mammary tumorigenesis in the MMTV/PyMT mouse model. BMC Cancer 2014; 14:509. [PMID: 25012362 PMCID: PMC4226978 DOI: 10.1186/1471-2407-14-509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with β1 and β4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer. In addition, CD151 has been implicated as a promoter of tumor angiogenesis and metastasis in various model systems. Methods Here we investigated the effect of Cd151 deletion on mammary tumorigenesis by crossing Cd151-deficient mice with a spontaneously metastasising transgenic model of breast cancer induced by the polyoma middle T antigen (PyMT) driven by the murine mammary tumor virus promoter (MMTV). Results Cd151 deletion did not affect the normal development and differentiation of the mammary gland. While there was a trend towards delayed tumor onset in Cd151−/− PyMT mice compared to Cd151+/+ PyMT littermate controls, this result was only approaching significance (Log-rank test P-value =0.0536). Interestingly, Cd151 deletion resulted in significantly reduced numbers and size of primary tumors but did not appear to affect the number or size of metastases in the MMTV/PyMT mice. Intriguingly, no differences in the expression of markers of cell proliferation, apoptosis and blood vessel density was observed in the primary tumors. Conclusion The findings from this study provide additional evidence that CD151 acts to enhance tumor formation initiated by a range of oncogenes and strongly support its relevance as a potential therapeutic target to delay breast cancer progression.
Collapse
|
54
|
Knoblich K, Wang HX, Sharma C, Fletcher AL, Turley SJ, Hemler ME. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits β-catenin degradation. Cell Mol Life Sci 2014; 71:1305-14. [PMID: 23955570 PMCID: PMC11113286 DOI: 10.1007/s00018-013-1444-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
Ablation of tetraspanin protein TSPAN12 from human MDA-MB-231 cells significantly decreased primary tumor xenograft growth, while increasing tumor apoptosis. Furthermore, TSPAN12 removal markedly enhanced tumor-endothelial interactions and increased metastasis to mouse lungs. TSPAN12 removal from human MDA-MB-231 cells also caused diminished association between FZD4 (a key canonical Wnt pathway receptor) and its co-receptor LRP5. The result likely explains substantially enhanced proteosomal degradation of β-catenin, a key effecter of canonical Wnt signaling. Consistent with disrupted canonical Wnt signaling, TSPAN12 ablation altered expression of LRP5, Naked 1 and 2, DVL2, DVL3, Axin 1, and GSKβ3 proteins. TSPAN12 ablation also altered expression of several genes regulated by β-catenin (e.g. CCNA1, CCNE2, WISP1, ID4, SFN, ME1) that may help to explain altered tumor growth and metastasis. In conclusion, these results provide the first evidence for TSPAN12 playing a role in supporting primary tumor growth and suppressing metastasis. TSPAN12 appears to function by stabilizing FZD4-LRP5 association, in support of canonical Wnt-pathway signaling, leading to enhanced β-catenin expression and function.
Collapse
Affiliation(s)
- Konstantin Knoblich
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Hong-Xing Wang
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Chandan Sharma
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Anne L. Fletcher
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
- Monash University, Immunology and Stem Cell Laboratories, Clayton, Australia
| | - Shannon J. Turley
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Martin E. Hemler
- Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| |
Collapse
|
55
|
Bond D, Brzozowski J, Skelding K, Roselli S, Weidenhofer J. Use of tetraspanins CD151 and CD9 as biomarkers for breast cancer. BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.14.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Danielle Bond
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2508, Australia
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Joshua Brzozowski
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2508, Australia
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kathryn Skelding
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2508, Australia
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Severine Roselli
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2508, Australia
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Judith Weidenhofer
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2508, Australia
| |
Collapse
|
56
|
Palmer TD, Martínez CH, Vasquez C, Hebron KE, Jones-Paris C, Arnold SA, Chan SM, Chalasani V, Gomez-Lemus JA, Williams AK, Chin JL, Giannico GA, Ketova T, Lewis JD, Zijlstra A. Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res 2014; 74:173-87. [PMID: 24220242 PMCID: PMC3947299 DOI: 10.1158/0008-5472.can-13-0275] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal physiology relies on the organization of transmembrane proteins by molecular scaffolds, such as tetraspanins. Oncogenesis frequently involves changes in their organization or expression. The tetraspanin CD151 is thought to contribute to cancer progression through direct interaction with the laminin-binding integrins α3β1 and α6β1. However, this interaction cannot explain the ability of CD151 to control migration in the absence of these integrins or on non-laminin substrates. We demonstrate that CD151 can regulate tumor cell migration without direct integrin binding and that integrin-free CD151 (CD151(free)) correlates clinically with tumor progression and metastasis. Clustering CD151(free) through its integrin-binding domain promotes accumulation in areas of cell-cell contact, leading to enhanced adhesion and inhibition of tumor cell motility in vitro and in vivo. CD151(free) clustering is a strong regulator of motility even in the absence of α3 expression but requires PKCα, suggesting that CD151 can control migration independent of its integrin associations. The histologic detection of CD151(free) in prostate cancer correlates with poor patient outcome. When CD151(free) is present, patients are more likely to recur after radical prostatectomy and progression to metastatic disease is accelerated. Multivariable analysis identifies CD151(free) as an independent predictor of survival. Moreover, the detection of CD151(free) can stratify survival among patients with elevated prostate-specific antigen levels. Cumulatively, these studies demonstrate that a subpopulation of CD151 exists on the surface of tumor cells that can regulate migration independent of its integrin partner. The clinical correlation of CD151(free) with prostate cancer progression suggests that it may contribute to the disease and predict cancer progression.
Collapse
Affiliation(s)
- Trenis D Palmer
- Authors' Affiliations:Departments of Pathology, Microbiology and Immunology and Cancer Biology, Vanderbilt University, Nashville, Tennessee; Department of Oncology, University of Alberta, Edmonton, Alberta; Translational Prostate Cancer Research Group, London Regional Cancer Program; and Department of Pathology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
An abundance of evidence shows supporting roles for tetraspanin proteins in human cancer. Many studies show that the expression of tetraspanins correlates with tumour stage, tumour type and patient outcome. In addition, perturbations of tetraspanins in tumour cell lines can considerably affect cell growth, morphology, invasion, tumour engraftment and metastasis. This Review emphasizes new studies that have used de novo mouse cancer models to show that select tetraspanin proteins have key roles in tumour initiation, promotion and metastasis. This Review also emphasizes how tetraspanin proteins can sometimes participate in tumour angiogenesis. These recent data build an increasingly strong case for tetraspanins as therapeutic targets.
Collapse
|
58
|
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. J Transl Med 2014; 94:41-51. [PMID: 24247563 DOI: 10.1038/labinvest.2013.136] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
Originally identified as a molecular organizer of interacting proteins into tetraspanin-enriched microdomains, the tetraspanin CD151 has now been shown to be involved in tumour progression. Increasing evidence emerging from in vitro, in vivo and clinical analyses implicates this tetraspanin in supporting growth of various types of tumours at different levels. It affects both cell autonomous behavior and communication with neighboring cells and the microenvironment. CD151 regulates post-adhesion events, that is, cell spreading, migration and invasion including subsequent intravasation and formation of metastasis. Present on both neoplastic and endothelial cells, CD151 is engaged in promotion of tumour neovascularization. The molecular mechanism of CD151 in cancer is based on its ability to organize distribution and function of interacting proteins, ie, laminin-binding integrins (α3β1, α6β1 and α6β4), receptors for growth factors (HGFR, EGFR and TGF-β1R) and matrix metalloproteinases (MMP-7, MMP-2 and MMP-9), which indicates its importance in disease development. Results of clinical analyses of CD151 expression in different types of cancer and a large number of in vivo models demonstrate its impact on tumour growth and invasion and implicate CD151 as a valuable diagnostic and prognostic marker as well as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Grudowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
59
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Tetraspanins CD9 and CD151, epidermal growth factor receptor and cyclooxygenase-2 expression predict malignant progression in oral epithelial dysplasia. Br J Cancer 2013; 109:2864-74. [PMID: 24201754 PMCID: PMC3844903 DOI: 10.1038/bjc.2013.600] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/31/2022] Open
Abstract
Background: Prognostic biomarkers aim to improve on the current inadequate method of histological assessment to identify patients with oral epithelial dysplasia at greatest risk of malignant transformation. We aimed to assess the prognostic ability of six protein biomarkers linked to the epidermal growth factor receptor (EGFR) pathway, including three tetraspanins, in a large multicentre oral dysplasia cohort. Methods: One hundred and forty-eight cases with varying degrees of epithelial dysplasia underwent immunohistochemical assessment for CD9, CD151, CD82, EGFR, Her-2, and COX-2. Scoring was performed independently by two observers. Univariate analyses using both logistic and Cox regression models and a multivariate regression were performed. Results: Malignant progression was significantly greater in those cases with decreased expression of CD9 (P=0.02), and increased expression of CD151 (P=0.02), EGFR (P=0.04), and COX-2 (P=0.003). Histological grade (P=0.0002) and morphology (P=0.03) were also prognostic, whereas smoking and alcohol were not. The optimal combination by backward-variable selection was of histological grade (hazard ratio (HR) 1.64; 95% CI 1.12, 2.40), COX-2 overexpression (HR 1.12; 1.02, 1.24) and CD9 underexpression (HR 0.88; 0.80, 0.97). CD82 and Her-2 demonstrated no prognostic ability. Conclusion: This is the first study of the expression and prognostic potential of the tetraspanins in oral dysplasia. A combination of certain biomarkers with clinical factors appeared to improve the accuracy of determining the risk of malignancy in individuals with oral dysplasia. These findings may also offer potential new therapeutic approaches for this condition.
Collapse
|
61
|
Abstract
The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
Collapse
|
62
|
Kang BW, Lee D, Chung HY, Han JH, Kim YB. Tetraspanin CD151 expression associated with prognosis for patients with advanced gastric cancer. J Cancer Res Clin Oncol 2013; 139:1835-43. [PMID: 24005419 DOI: 10.1007/s00432-013-1503-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/26/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Tetraspanin CD151 is known to be involved in cancer invasion and metastasis, and its overexpression appears to be associated with a poor prognosis for various types of cancer. However, the expression status of CD151 and its prognostic impact in advanced gastric cancer (AGC) has not yet been clarified. METHODS Immunohistochemistry was used to investigate the expression of CD151, c-erbB2, and c-Met in 159 cases of AGC. The clinicopathological and prognostic significance of these biomarkers were then evaluated. RESULTS The overexpression of CD151 was observed in a subset of advanced gastric adenocarcinomas (25.8 %), and c-erbB2 and c-Met were overexpressed in 15.1 and 35.2 % of the cohort, respectively. CD151 overexpression was more frequently observed in tumors from younger patients (P = 0.028). There were close associations between CD151 and c-erbB2 overexpression (P = 0.033) and between c-erbB2 and c-Met overexpression (P = 0.001). CD151 overexpression was closely correlated with patient' overall survival (OS; P < 0.001) and disease-free survival (DFS; P < 0.001). Furthermore, the expression rate of CD151 seemed to increase gradually according to the depth of invasion (T stage) (χ(2) test for trend; P = 0.101), N stage (P = 0.238), and pathologic stage (P = 0.153), although trends were not statistically significant. In a multivariate analysis, CD151 overexpression was an independent prognostic factor predicting worse OS (P = 0.002) and DFS (P = 0.005), along with the T and N stage. CONCLUSIONS CD151 was found to be an independent prognostic marker for patients with AGC.
Collapse
Affiliation(s)
- Byung Woog Kang
- Department of Hematology/Oncology, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
63
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
64
|
Novitskaya V, Romanska H, Kordek R, Potemski P, Kusińska R, Parsons M, Odintsova E, Berditchevski F. Integrin α3β1-CD151 complex regulates dimerization of ErbB2 via RhoA. Oncogene 2013; 33:2779-89. [PMID: 23792450 DOI: 10.1038/onc.2013.231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 04/09/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022]
Abstract
Integrin α3β1 regulates adhesive interactions of cells with laminins and have a critical role in adhesion-dependent cellular responses. Here, we examined the role of α3β1-integrin in ErbB2-dependent proliferation of breast cancer cells in three-dimensional laminin-rich extracellular matrix (3D lr-ECM). Depletion of α3β1 in ErbB2-overexpressing breast cancer cells suppressed growth and restore cell polarity in 3D lr-ECM. The phenotype of α3β1-depleted cells was reproduced upon depletion of tetraspanin CD151 and mirrored that of the cells treated with Herceptin, an established ErbB2 antagonist. Breast cancer cells expressing the α3β1-CD151 complex have higher steady-state phosphorylation of ErbB2 and show enhanced dimerization of the protein when compared with α3β1-/CD151-depleted cells. Furthermore, Herceptin-dependent dephosphorylation of ErbB2 was only observed in α3β1-CD151-expressing cells. Importantly, the inhibitory activity of Herceptin was more pronounced when cells expressed both α3β1 and CD151. We also found that the level of active RhoA was increased in α3β1- and CD151-depleted cells and that Rho controls dimerization of ErbB2. Expression of α3β1 alone did not have significant prognostic value in patients with invasive ductal carcinoma of the breast. However, expression of α3β1 in combination with CD151 represented a more stringent indicator of poor survival than CD151 alone. Taken together, these results demonstrate that the α3β1-CD151 complex has a critical regulatory role in ErbB2-dependent signalling and thereby may be involved in breast cancer progression.
Collapse
Affiliation(s)
- V Novitskaya
- School of Cancer Sciences, The University of Birmingham, Edgbaston, Birmingham, UK
| | - H Romanska
- Department of Pathology and Chemotherapy, Medical University of Łódź, Łódź, Poland
| | - R Kordek
- Department of Pathology and Chemotherapy, Medical University of Łódź, Łódź, Poland
| | - P Potemski
- Department of Pathology and Chemotherapy, Medical University of Łódź, Łódź, Poland
| | - R Kusińska
- Department of Pathology and Chemotherapy, Medical University of Łódź, Łódź, Poland
| | - M Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, UK
| | - E Odintsova
- School of Cancer Sciences, The University of Birmingham, Edgbaston, Birmingham, UK
| | - F Berditchevski
- School of Cancer Sciences, The University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
65
|
Reduced susceptibility to two-stage skin carcinogenesis in mice with epidermis-specific deletion of CD151. J Invest Dermatol 2013; 134:221-228. [PMID: 23792458 PMCID: PMC4570276 DOI: 10.1038/jid.2013.280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/01/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022]
Abstract
Altered expression of the tetraspanin CD151 is associated with skin tumorigenesis; however, whether CD151 is causally involved in the tumorigenic process is not known. To evaluate its role in tumor formation, we subjected epidermis-specific Cd151 knockout mice to chemical skin carcinogenesis. Mice lacking epidermal Cd151 developed fewer and smaller tumors than wild-type mice following DMBA/TPA treatment. Furthermore, Cd151-null epidermis showed a reduced hyperproliferative response to short-term treatment with TPA compared to that of wild-type skin, while epidermal turnover was increased. Tumors were formed in equal numbers following DMBA only treatment. We suggest that DMBA-initiated keratinocytes lacking Cd151 leave their niches in the epidermis and hair follicles in response to TPA treatment and subsequently are lost by differentiation. Because genetic ablation of Itga3 also reduced skin tumor formation, we tested whether reduced expression of α3 could further suppress tumor formation in epidermis-specific Cd151 knockout mice. Although the response to DMBA/TPA-induced formation of skin tumors was similar in compound heterozygotes for Cd151 and Itga3 to that in wild-type mice, heterozygosity for Itga3 on a Cd151-null background diminished tumorigenesis suggesting genetic interaction between the two genes. We thus identify CD151 as a critical factor in TPA-dependent skin carcinogenesis.
Collapse
|
66
|
Gustafson-Wagner E, Stipp CS. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS One 2013; 8:e61834. [PMID: 23613949 PMCID: PMC3629153 DOI: 10.1371/journal.pone.0061834] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/15/2013] [Indexed: 01/16/2023] Open
Abstract
Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81. Loss of CD151 disrupts α3β1 association with other tetraspanins and impairs α3β1-dependent motility. However, the extent to which tetraspanins other than CD151 are required for specific α3β1 functions is unclear. To begin to clarify which aspects of α3β1 function require which tetraspanins, we created breast carcinoma cells depleted of both CD9 and CD81 by RNA interference. Silencing both of these closely related tetraspanins was required to uncover their contributions to α3β1 function. We then directly compared our CD9/CD81-silenced cells to CD151-silenced cells. Both CD9/CD81-silenced cells and CD151-silenced cells showed delayed α3β1-dependent cell spreading on laminin-332. Surprisingly, however, once fully spread, CD9/CD81-silenced cells, but not CD151-silenced cells, displayed impaired α3β1-dependent directed motility and altered front-rear cell morphology. Also unexpectedly, the CD9/CD81 complex, but not CD151, was required to promote α3β1 association with PKCα in breast carcinoma cells, and a PKC inhibitor mimicked aspects of the CD9/CD81-silenced cell motility defect. Our data reveal overlapping, but surprisingly distinct contributions of specific tetraspanins to α3β1 integrin function. Importantly, some of CD9/CD81's α3β1 regulatory functions may not require CD9/CD81 to be physically linked to α3β1 by CD151.
Collapse
Affiliation(s)
| | - Christopher S. Stipp
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
67
|
|