51
|
Xu D, Xu L, Zhou F, Wang B, Wang S, Lu M, Sun J. Gut Bacterial Communities of Dendroctonus valens and Monoterpenes and Carbohydrates of Pinus tabuliformis at Different Attack Densities to Host Pines. Front Microbiol 2018; 9:1251. [PMID: 29963021 PMCID: PMC6011813 DOI: 10.3389/fmicb.2018.01251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023] Open
Abstract
Insects harbor a community of gut bacteria, ranging from pathogenic to obligate mutualistic organisms. Both biotic and abiotic factors can influence species composition and structure of the insect gut bacterial communities. Dendroctonus valens is a destructive forest pest in China. To overcome host pine defenses, beetles mass-attack the pine to a threshold density that can exhaust pine defenses. The intensity of pine chemical defenses and carbohydrate concentrations of pines can be influenced by beetle attack, both of which are known factors that modify beetle's gut microbiota. However, little is known to what extent variation exists in the beetle's gut communities, and host monoterpenes and carbohydrates at different attack densities. In this study, the gut bacterial microbiota of D. valens at low and high attack densities were analyzed, and monoterpenes and carbohydrates in host pine phloem were assayed in parallel. The results showed that no significant changes of gut bacterial communities of the beetles and concentrations of D-glucose, D-pinitol, and D-fructose in pine phloem were found between low and high attack densities. The concentrations of α-pinene, β-pinene, limonene at high attack densities were significantly higher than those at low attack densities. Our results suggested that different attack densities of D. valens influence monoterpenes concentration of host pines' phloem but have no significant impact on gut bacterial community structures of D. valens and carbohydrate concentration of host trees' phloem in early attack phase. Similar gut bacterial community structures of D. valens between low and high attack densities might be due to the quick adaptation of gut microbiota to high monoterpenes concentrations.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bo Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shanshan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018; 6:e4629. [PMID: 29761037 PMCID: PMC5947162 DOI: 10.7717/peerj.4629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.
Collapse
Affiliation(s)
- Anne Duplouy
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily A Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
53
|
Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Front Microbiol 2018; 9:556. [PMID: 29636736 PMCID: PMC5881003 DOI: 10.3389/fmicb.2018.00556] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 01/05/2023] Open
Abstract
The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera) has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i) review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii) elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii) routes of transfer and (iv) the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma) have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads for the control of lepidopteran pest species.
Collapse
Affiliation(s)
| | - Enric Frago
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, La Réunion
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika Hilker
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
54
|
Cao Q, Wickham JD, Chen L, Ahmad F, Lu M, Sun J. Effect of Oxygen on Verbenone Conversion From cis-Verbenol by Gut Facultative Anaerobes of Dendroctonus valens. Front Microbiol 2018; 9:464. [PMID: 29615996 PMCID: PMC5864928 DOI: 10.3389/fmicb.2018.00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Since its introduction from North America, Dendroctonus valens LeConte has become a destructive forest pest in China. Although gut aerobic bacteria have been investigated and some are implicated in beetle pheromone production, little is known about the abundance and significance of facultative anaerobic bacteria in beetle gut, especially with regards to effects of oxygen on their role in pheromone production. In this study, we isolated and identified gut bacteria of D. valens adults in an anaerobic environment, and further compared their ability to convert cis-verbenol into verbenone (a multi-functional pheromone of D. valens) under different O2 concentrations. Pantoea conspicua, Enterobacter xiangfangensis, Staphylococcus warneri were the most frequently isolated species among the total of 10 species identified from beetle gut in anaerobic conditions. Among all isolated species, nine were capable of cis-verbenol to verbenone conversion, and the conversion efficiency increased with increased oxygen concentration. This O2-mediated conversion of cis-verbenol to verbenone suggests that gut facultative anaerobes of D. valens might play an important role in the frass, where there is higher exposure to oxygen, hence the higher verbenone production. This claim is further supported by distinctly differential oxygen concentrations between gut and frass of D. valens females.
Collapse
Affiliation(s)
- Qingjie Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
56
|
Mason CJ, Long DC, McCarthy EM, Nagachar N, Rosa C, Scully ED, Tien M, Hoover K. Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis. JOURNAL OF INSECT PHYSIOLOGY 2017; 102:27-35. [PMID: 28823530 DOI: 10.1016/j.jinsphys.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Insect guts harbor diverse microbial assemblages that can be influenced by multiple factors, including gut physiology and interactions by the host with its environment. The Asian longhorned beetle (A. glabripennis; Cerambycidae: Lamiinae) is an invasive tree-killing insect that harbors a diverse consortium of fungal and bacterial gut associates that provision nutrients and facilitate lignocellulose digestion. The physicochemical conditions of the A. glabripennis gut and how these conditions may influence the microbial composition across gut regions are unknown. In this study, we used microsensors to measure in situ oxygen concentrations, pH, and redox potential along the length of the A. glabripennis larval gut from two North American populations. We then analyzed and compared bacterial and fungal gut communities of A. glabripennis within individual hosts along the length of the gut using 16S and ITS1 amplicon sequencing. The A. glabripennis midgut lumen was relatively anoxic (<0.01kPa) with a pH gradient from 5.5 to 9, moving anterior to posterior. Redox potential was higher in the anterior midgut relative to posterior regions. No differences in physicochemistry were measured between the two populations of the beetle, but the two populations harbored different communities of bacteria and fungi. However, microbial composition of the A. glabripennis gut microbiota did not differ among gut regions despite physicochemical differences. Unlike other insect systems that have distinct gut compartmentalization and corresponding microbial assemblages, the A. glabripennis gut lacks dramatic morphological modifications, which may explain why discrete microbial community structures were not found along the digestive system.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - David C Long
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth M McCarthy
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nivedita Nagachar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cristina Rosa
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
57
|
Krams IA, Kecko S, Jõers P, Trakimas G, Elferts D, Krams R, Luoto S, Rantala MJ, Inashkina I, Gudrā D, Fridmanis D, Contreras-Garduño J, Grantiņa-Ieviņa L, Krama T. Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae. ACTA ACUST UNITED AC 2017; 220:4204-4212. [PMID: 28939559 DOI: 10.1242/jeb.169227] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022]
Abstract
Communities of symbiotic microorganisms that colonize the gastrointestinal tract play an important role in food digestion and protection against opportunistic microbes. Diet diversity increases the number of symbionts in the intestines, a benefit that is considered to impose no cost for the host organism. However, less is known about the possible immunological investments that hosts have to make in order to control the infections caused by symbiont populations that increase because of diet diversity. Using taxonomical composition analysis of the 16S rRNA V3 region, we show that enterococci are the dominating group of bacteria in the midgut of the larvae of the greater wax moth (Galleria mellonella). We found that the number of colony-forming units of enterococci and expressions of certain immunity-related antimicrobial peptide (AMP) genes such as Gallerimycin, Gloverin, 6-tox, Cecropin-D and Galiomicin increased in response to a more diverse diet, which in turn decreased the encapsulation response of the larvae. Treatment with antibiotics significantly lowered the expression of all AMP genes. Diet and antibiotic treatment interaction did not affect the expression of Gloverin and Galiomicin AMP genes, but significantly influenced the expression of Gallerimycin, 6-tox and Cecropin-D Taken together, our results suggest that diet diversity influences microbiome diversity and AMP gene expression, ultimately affecting an organism's capacity to mount an immune response. Elevated basal levels of immunity-related genes (Gloverin and Galiomicin) might act as a prophylactic against opportunistic infections and as a mechanism that controls the gut symbionts. This would indicate that a diverse diet imposes higher immunity costs on organisms.
Collapse
Affiliation(s)
- Indrikis A Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia .,Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, 1004 Rīga, Latvia.,University of Tennessee, Department of Psychology, Knoxville, TN 37996, USA
| | - Sanita Kecko
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia
| | - Priit Jõers
- Institute of Molecular and Cell Biology, University of Tartu, 51014 Tartu, Estonia
| | - Giedrius Trakimas
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia.,Institute of Biosciences, Vilnius University, 10257 Vilnius, Lithuania
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, 1004 Rīga, Latvia
| | - Ronalds Krams
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland 1010, New Zealand.,School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Centre, University of Turku, Turku 20014, Finland
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, 1067 Riga, Latvia
| | - Dita Gudrā
- Latvian Biomedical Research and Study Centre, 1067 Riga, Latvia
| | | | - Jorge Contreras-Garduño
- Ecuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Mexico
| | | | - Tatjana Krama
- Department of Biotechnology, Institute of Life Sciences and Technology, Daugavpils University, 5401 Daugavpils, Latvia.,Department of Plant Protection, Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, 51014 Tartu, Estonia
| |
Collapse
|
58
|
Tiede J, Scherber C, Mutschler J, McMahon KD, Gratton C. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol Evol 2017; 7:8545-8557. [PMID: 29075470 PMCID: PMC5648672 DOI: 10.1002/ece3.3390] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Landscape context affects predator–prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.
Collapse
Affiliation(s)
- Julia Tiede
- Institute of Landscape Ecology University of Muenster Muenster Germany.,Department of Crop Sciences University of Goettingen Goettingen Germany.,Department of Entomology University of Wisconsin-Madison Madison WI USA
| | - Christoph Scherber
- Institute of Landscape Ecology University of Muenster Muenster Germany.,Department of Crop Sciences University of Goettingen Goettingen Germany
| | - James Mutschler
- Departments of Civil and Environmental Engineering and Bacteriology University of Wisconsin-Madison Madison WI USA
| | - Katherine D McMahon
- Departments of Civil and Environmental Engineering and Bacteriology University of Wisconsin-Madison Madison WI USA
| | - Claudio Gratton
- Department of Entomology University of Wisconsin-Madison Madison WI USA
| |
Collapse
|
59
|
Hammer TJ, Janzen DH, Hallwachs W, Jaffe SP, Fierer N. Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci U S A 2017; 114:9641-9646. [PMID: 28830993 PMCID: PMC5594680 DOI: 10.1073/pnas.1707186114] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many animals are inhabited by microbial symbionts that influence their hosts' development, physiology, ecological interactions, and evolutionary diversification. However, firm evidence for the existence and functional importance of resident microbiomes in larval Lepidoptera (caterpillars) is lacking, despite the fact that these insects are enormously diverse, major agricultural pests, and dominant herbivores in many ecosystems. Using 16S rRNA gene sequencing and quantitative PCR, we characterized the gut microbiomes of wild leaf-feeding caterpillars in the United States and Costa Rica, representing 124 species from 15 families. Compared with other insects and vertebrates assayed using the same methods, the microbes that we detected in caterpillar guts were unusually low-density and variable among individuals. Furthermore, the abundance and composition of leaf-associated microbes were reflected in the feces of caterpillars consuming the same plants. Thus, microbes ingested with food are present (although possibly dead or dormant) in the caterpillar gut, but host-specific, resident symbionts are largely absent. To test whether transient microbes might still contribute to feeding and development, we conducted an experiment on field-collected caterpillars of the model species Manduca sexta Antibiotic suppression of gut bacterial activity did not significantly affect caterpillar weight gain, development, or survival. The high pH, simple gut structure, and fast transit times that typify caterpillar digestive physiology may prevent microbial colonization. Moreover, host-encoded digestive and detoxification mechanisms likely render microbes unnecessary for caterpillar herbivory. Caterpillars illustrate the potential ecological and evolutionary benefits of independence from symbionts, a lifestyle that may be widespread among animals.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309;
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
60
|
Shikano I. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens. J Chem Ecol 2017; 43:586-598. [DOI: 10.1007/s10886-017-0850-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
61
|
Acevedo FE, Peiffer M, Tan CW, Stanley BA, Stanley A, Wang J, Jones AG, Hoover K, Rosa C, Luthe D, Felton G. Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:127-137. [PMID: 28027025 DOI: 10.1094/mpmi-11-16-0240-r] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mechanical damage caused by insect feeding along with components present in insect saliva and oral secretions are known to induce jasmonic acid-mediated defense responses in plants. This study investigated the effects of bacteria from oral secretions of the fall armyworm Spodoptera frugiperda on herbivore-induced defenses in tomato and maize plants. Using culture-dependent methods, we identified seven different bacterial isolates belonging to the family Enterobacteriacea from the oral secretions of field-collected caterpillars. Two isolates, Pantoea ananatis and Enterobacteriaceae-1, downregulated the activity of the plant defensive proteins polyphenol oxidase and trypsin proteinase inhibitors (trypsin PI) but upregulated peroxidase (POX) activity in tomato. A Raoultella sp. and a Klebsiella sp. downregulated POX but upregulated trypsin PI in this plant species. Conversely, all of these bacterial isolates upregulated the expression of the herbivore-induced maize proteinase inhibitor (mpi) gene in maize. Plant treatment with P. ananatis and Enterobacteriaceae-1 enhanced caterpillar growth on tomato but diminished their growth on maize plants. Our results highlight the importance of herbivore-associated microbes and their ability to mediate insect plant interactions differently in host plants fed on by the same herbivore.
Collapse
Affiliation(s)
- Flor E Acevedo
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| | - Michelle Peiffer
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| | - Ching-Wen Tan
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| | - Bruce A Stanley
- 2 Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, 17033, U.S.A
| | - Anne Stanley
- 2 Section of Research Resources, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, 17033, U.S.A
| | - Jie Wang
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
- 3 Department of Ecology, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Asher G Jones
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| | - Kelli Hoover
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| | - Cristina Rosa
- 4 Department of Plant Pathology, The Pennsylvania State University, 321 Buckhout Lab; and
| | - Dawn Luthe
- 5 Department of Plant Science, The Pennsylvania State University, 216 Agricultural Sciences and Industries Building
| | - Gary Felton
- 1 Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, 16802, U.S.A
| |
Collapse
|
62
|
Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 2017; 7:39690. [PMID: 28045052 PMCID: PMC5206732 DOI: 10.1038/srep39690] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.
Collapse
|
63
|
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E. Gut immunity in Lepidopteran insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:65-74. [PMID: 26872544 DOI: 10.1016/j.dci.2016.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future.
Collapse
Affiliation(s)
- Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wuren Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Leonard Dobens
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
64
|
Martemyanov VV, Belousova IA, Pavlushin SV, Dubovskiy IM, Ershov NI, Alikina TY, Kabilov MR, Glupov VV. Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to Bacillus thuringiensis. Ecol Evol 2016; 6:7298-7310. [PMID: 28725398 PMCID: PMC5513265 DOI: 10.1002/ece3.2460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/26/2016] [Accepted: 08/12/2016] [Indexed: 01/15/2023] Open
Abstract
The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to investigate how the asynchrony between silver birch Betula pendula and gypsy moth Lymantria dispar affects the immunity of the insect to bacteria, its susceptibility to the entomopathogenic bacteria Bacillus thuringiensis, and the diversity in its midgut microbiota. The lysozyme-like activity in both the midgut and hemolymph plasma and the nonspecific esterase activity and antimicrobial peptide gene expression in the midgut were studied in both noninfected and B. thuringiensis-infected larvae. Our results provide the first evidence that phenologically asynchronous larvae are less susceptible to B. thuringiensis infection than phenologically synchronous larvae, and our results show that these effects are related to the high basic levels and B. thuringiensis-induced levels of lysozyme-like activities. Moreover, a 16S rRNA analysis revealed that dramatic decreases in the diversity of the larval gut bacterial consortia occurred under the effect of asynchrony. Larvae infected with B. thuringiensis presented decreased microbiota diversity if the larvae were reared synchronously with the host plant but not if they were reared asynchronously. Our study demonstrates the significant effect of phenological asynchrony on innate immunity-mediated interactions between herbivores and entomopathogenic bacteria and highlights the role of nonpathogenic gut bacteria in these interactions.
Collapse
Affiliation(s)
- Vyacheslav V. Martemyanov
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
- Biological InstituteNational Research Tomsk State UniversityTomskRussia
| | - Irina A. Belousova
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
- Institute of BiologyIrkutsk State UniversityIrkutskRussia
| | - Sergey V. Pavlushin
- Laboratory of Ecological ParasitologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Ivan M. Dubovskiy
- Laboratory of Insect PathologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Nikita I. Ershov
- Institute of Cytology and GeneticsSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Tatyana Y. Alikina
- Genomics Core FacilityInstitute of Chemical Biology and Fundamental MedicineSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Marsel R. Kabilov
- Genomics Core FacilityInstitute of Chemical Biology and Fundamental MedicineSiberian BranchRussian Academy of SciencesNovosibirskRussia
| | - Victor V. Glupov
- Laboratory of Insect PathologyInstitute of Systematics and Ecology of Animals Siberian BranchRussian Academy of SciencesNovosibirskRussia
| |
Collapse
|
65
|
Montagna M, Mereghetti V, Gargari G, Guglielmetti S, Faoro F, Lozzia G, Locatelli D, Limonta L. Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets. Environ Microbiol 2016; 18:4961-4973. [PMID: 27398939 DOI: 10.1111/1462-2920.13450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
The potential influence of insects' feeding behaviour on their associated bacterial communities is currently a matter of debate. Using the major pest of commodities, Plodia interpunctella, as a model and adopting a culture-independent approach, the impact of different diets on the host-associated microbiota was evaluated. An analysis of similarity showed differences among the microbiotas of moths fed with five substrates and provided evidence that diet represents the only tested factor that explains this dissimilarity. Bacteria shared between food and insects provide evidence for a limited conveyance to the host of the bacteria derived from the diet; more likely, the content of carbohydrates and proteins in the diets promotes changes in the insect's microbiota. Moth microbiotas were characterized by two robust entomotypes, respectively, associated with a carbohydrate-rich diet and a protein-rich diet. These results were also confirmed by the predicted metagenome functional potential. A core microbiota, composed of six taxa, was shared between eggs and adults, regardless of the origin of the population. Finally, the identification of possible human and animal pathogens on chili and associated with the moths that feed on it highlights the possibility that these bacteria may be conveyed by moth frass.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Lozzia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Daria Locatelli
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Lidia Limonta
- Dipartimento di Scienze per gli Alimenti la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
66
|
Wielkopolan B, Obrępalska-Stęplowska A. Three-way interaction among plants, bacteria, and coleopteran insects. PLANTA 2016; 244:313-32. [PMID: 27170360 PMCID: PMC4938854 DOI: 10.1007/s00425-016-2543-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/30/2016] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Coleoptera, the largest and the most diverse Insecta order, is characterized by multiple adaptations to plant feeding. Insect-associated microorganisms can be important mediators and modulators of interactions between insects and plants. Interactions between plants and insects are highly complex and involve multiple factors. There are various defense mechanisms initiated by plants upon attack by herbivorous insects, including the development of morphological structures and the synthesis of toxic secondary metabolites and volatiles. In turn, herbivores have adapted to feeding on plants and further sophisticated adaptations to overcome plant responses may continue to evolve. Herbivorous insects may detoxify toxic phytocompounds, sequester poisonous plant factors, and alter their own overall gene expression pattern. Moreover, insects are associated with microbes, which not only considerably affect insects, but can also modify plant defense responses to the benefit of their host. Plants are also frequently associated with endophytes, which may act as bioinsecticides. Therefore, it is very important to consider the factors influencing the interaction between plants and insects. Herbivorous insects cause considerable damage to global crop production. Coleoptera is the largest and the most diverse order in the class Insecta. In this review, various aspects of the interactions among insects, microbes, and plants are described with a focus on coleopteran species, their bacterial symbionts, and their plant hosts to demonstrate that many factors contribute to the success of coleopteran herbivory.
Collapse
Affiliation(s)
- Beata Wielkopolan
- Department of Agrophages' Forecasting Methods and Agricultural Economic, Institute of Plant Protection, National Research Institute, Poznan, Poland
| | | |
Collapse
|
67
|
Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep 2016; 6:29505. [PMID: 27389097 PMCID: PMC4937375 DOI: 10.1038/srep29505] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023] Open
Abstract
Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural “metamorphosis” in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.
Collapse
|
68
|
Vilanova C, Baixeras J, Latorre A, Porcar M. The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp. Front Microbiol 2016; 7:1005. [PMID: 27446044 PMCID: PMC4923067 DOI: 10.3389/fmicb.2016.01005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we show the bacterial communities of the gut of two specialized Lepidoptera, Hyles euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota of both insects is dominated by the phylum Firmicutes, and especially by the common gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae though to a lesser extent. By scanning electron microscopy, we found a dense ring-shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular techniques. Interestingly, this species has previously been reported to contribute to the immobilization of latex-like molecules in the larvae of Spodoptera litura, a highly polyphagous lepidopteran. The E. casseliflavus strain was isolated from the gut and its ability to tolerate natural latex was tested under laboratory conditions. This fact, along with the identification of less frequent bacterial species able to degrade alkaloids and/or latex, suggest a putative role of bacterial communities in the tolerance of specialized insects to their toxic diet.
Collapse
Affiliation(s)
- Cristina Vilanova
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València Valencia, Spain
| | - Amparo Latorre
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain; Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud PúblicaValencia, Spain
| | - Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de ValènciaValencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSICValencia, Spain
| |
Collapse
|
69
|
Mason CJ, Hanshew AS, Raffa KF. Contributions by Host Trees and Insect Activity to Bacterial Communities in Dendroctonus valens (Coleoptera: Curculionidae) Galleries, and Their High Overlap With Other Microbial Assemblages of Bark Beetles. ENVIRONMENTAL ENTOMOLOGY 2016; 45:348-356. [PMID: 26721298 DOI: 10.1093/ee/nvv184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Bark beetles are associated with a diversity of symbiotic microbiota that can mediate interactions with their host plants. Dendroctonus valens LeConte is a widely distributed bark beetle in North and Central America, and initiates solitary attacks on several species of Pinus in the Great Lakes region. In this study, we aimed to further characterize the bacterial community associated with D. valens feeding galleries using next-generation sequencing, and the possible contributions of both tree-resident and insect-associated bacteria to these consortia. We found that D. valens galleries harbor a diversity of microbial associates. Many of these associates were classified into a few taxonomic groups, of which Gammaproteobacteria were the most abundant class. Of the Gammaproteobacteria detected, many formed clades with 16S-rRNA sequences of bacteria previously associated with D. valens Many of the bacteria sequences detected in the galleries were similar to bacteria that function in detoxification, kairomone metabolism, and nitrogen fixation and cycling. The abundance of bacteria in galleries were 7× and 44× higher than in the surrounding uninfested tissues, and that were not attacked by D. valens, respectively. This suggests that the bacteria present in beetle galleries are largely introduced by D. valens and proliferate in this environment.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, 345 Russell Labs 1630 Linden Dr., University of Wisconsin-Madison, Madison, WI 53706 (; ), Current Address: Department of Entomology, 501 Agricultural Sciences and Industries Building, The Pennsylvania State University, University Park, PA 16802,
| | - Alissa S Hanshew
- Department of Surgery, 1111 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 , and Current Address: Environmental Health and Safety, 6 Eisenhower Parking Deck, The Pennsylvania State University, University Park, PA 16802
| | - Kenneth F Raffa
- Department of Entomology, 345 Russell Labs 1630 Linden Dr., University of Wisconsin-Madison, Madison, WI 53706 (; )
| |
Collapse
|
70
|
Larval growth rate is associated with the composition of the gut microbiota in the Glanville fritillary butterfly. Oecologia 2016; 181:895-903. [DOI: 10.1007/s00442-016-3603-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/20/2023]
|
71
|
Mason CJ, Lowe-Power TM, Rubert-Nason KF, Lindroth RL, Raffa KF. Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere – Herbivore Interface. J Chem Ecol 2016; 42:193-201. [DOI: 10.1007/s10886-016-0677-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/17/2016] [Accepted: 02/20/2016] [Indexed: 12/26/2022]
|
72
|
Welte CU, de Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM, Jetten MSM. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 2015; 18:1379-90. [DOI: 10.1111/1462-2920.12997] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Cornelia U. Welte
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Rob M. de Graaf
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tijs J. M. van den Bosch
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Nicole M. van Dam
- Molecular Interaction Ecology; IWWR; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Molecular Interaction Ecology; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Ecology; Friedrich Schiller University Jena; Dornburger-Str. 159 07743 Jena Germany
| | - Mike S. M. Jetten
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
73
|
Crava CM, Jakubowska AK, Escriche B, Herrero S, Bel Y. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. PLoS One 2015; 10:e0125991. [PMID: 25993013 PMCID: PMC4436361 DOI: 10.1371/journal.pone.0125991] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity.
Collapse
Affiliation(s)
- Cristina M. Crava
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Agata K. Jakubowska
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Baltasar Escriche
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Salvador Herrero
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - Yolanda Bel
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
74
|
Hammer TJ, Bowers MD. Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 2015; 179:1-14. [DOI: 10.1007/s00442-015-3327-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/16/2015] [Indexed: 12/17/2022]
|
75
|
Pérez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latorre A. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol Ecol 2015; 91:fiv022. [PMID: 25764470 DOI: 10.1093/femsec/fiv022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
The gut microbiota of insects contributes positively to the physiology of its host mainly by participating in food digestion, protecting against pathogens, or provisioning vitamins or amino acids, but the dynamics of this complex ecosystem is not well understood so far. In this study, we have characterized the gut microbiota of the omnivorous cockroach Blattella germanica by pyrosequencing the hypervariable regions V1-V3 of the 16S rRNA gene of the whole bacterial community. Three diets differing in the protein content (0, 24 and 50%) were tested at two time points in lab-reared individuals. In addition, the gut microbiota of wild adult cockroaches was also analyzed. In contrast to the high microbial richness described on the studied samples, only few species are shared by wild and lab-reared cockroaches, constituting the bacterial core in the gut of B. germanica. Overall, we found that the gut microbiota of B. germanica is highly dynamic as the bacterial composition was reassembled in a diet-specific manner over a short time span, with no-protein diet promoting high diversity, although the highest diversity was found in the wild cockroaches analyzed. We discuss how the flexibility of the gut microbiota is probably due to its omnivorous life style and varied diets.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| | - Elisa Maiques
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Alexandra Angelova
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Purificación Carrasco
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| | - Amparo Latorre
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, 46071 Valencia, Spain Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46020 Valencia, Spain CIBER en Epidemiología y Salud Pública (CIBEResp), 28029 Madrid, Spain
| |
Collapse
|
76
|
Aspen Defense Chemicals Influence Midgut Bacterial Community Composition of Gypsy Moth. J Chem Ecol 2014; 41:75-84. [DOI: 10.1007/s10886-014-0530-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
77
|
Abstract
UNLABELLED The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. IMPORTANCE The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the same dominant members. Furthermore, by demonstrating that many of these bacteria have high whole-genome similarity across distantly related insect hosts that reside thousands of miles apart, we show that these bacteria are an important and underappreciated feature of diverse fungus-growing insects. Because of the similarities in the agricultural lifestyles of these insects, this is an example of convergence between both the life histories of the host insects and their symbiotic microbiota.
Collapse
|
78
|
Mason CJ, Pfammatter JA, Holeski LM, Raffa KF. Foliar bacterial communities of trembling aspen in a common garden. Can J Microbiol 2014; 61:143-9. [PMID: 25602743 DOI: 10.1139/cjm-2014-0362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microbial associations with plants are widely distributed and are structured by a number of biotic and physical factors. Among biotic factors, the host plant genotype may be integral to these plant-microbe interactions. Trees in the genus Populus have become models for studies in scaling effects of host plant genetics and in plant-microbe interactions. Using 454 pyrosequencing of the 16S rRNA gene, we assessed the foliar bacterial community of 7 genotypes of mature trembling aspen trees (Populus tremuloides Michx.) grown in a common garden. Trees were selected based on prior analyses showing clonal variation in their concentration of chemicals conferring resistance against insect herbivores. At broad taxonomic designations, the bacterial community of trembling aspen was similar across all plant genotypes. At a finer taxonomic scale, the foliage of these trees varied in their community composition, but there was no distinct pattern to colonization or abundance related to plant genotype. The most abundant operational taxonomic units (OTUs) were classified as Ralstonia, Bradyrhizobium, Pseudomonas, and Brucella. These OTUs varied across the common garden, but there was no significant effect of host plant genotype or spatial position on the abundance of these members. Our results suggest that aspen genotype is less important in the structuring of its foliar bacterial communities than are other, poorly understood processes.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, University of Wisconsin-Madison, 345 Russell Laboratories, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
79
|
Mason CJ, Couture JJ, Raffa KF. Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 2014; 175:901-10. [PMID: 24798201 DOI: 10.1007/s00442-014-2950-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/16/2014] [Indexed: 12/31/2022]
Abstract
Phytophagous insects must contend with numerous secondary defense compounds that can adversely affect their growth and development. The gypsy moth (Lymantria dispar) is a polyphagous herbivore that encounters an extensive range of hosts and chemicals. We used this folivore and a primary component of aspen chemical defenses, namely, phenolic glycosides, to investigate if bacteria detoxify phytochemicals and benefit larvae. We conducted insect bioassays using bacteria enriched from environmental samples, analyses of the microbial community in the midguts of bioassay larvae, and in vitro phenolic glycoside metabolism assays. Inoculation with bacteria enhanced larval growth in the presence, but not absence, of phenolic glycosides in the artificial diet. This effect of bacteria on growth was observed only in larvae administered bacteria from aspen foliage. The resulting midgut community composition varied among the bacterial treatments. When phenolic glycosides were included in diet, the composition of midguts in larvae fed aspen bacteria was significantly altered. Phenolic glycosides increased population responses by bacteria that we found able to metabolize these compounds in liquid growth cultures. Several aspects of these results suggest that vectoring or pairwise symbiosis models are inadequate for understanding microbial mediation of plant-herbivore interactions in some systems. First, bacteria that most benefitted larvae were initially foliar residents, suggesting that toxin-degrading abilities of phyllosphere inhabitants indirectly benefit herbivores upon ingestion. Second, assays with single bacteria did not confer the benefits to larvae obtained with consortia, suggesting multi- and inter-microbial interactions are also involved. Our results show that bacteria mediate insect interactions with plant defenses but that these interactions are community specific and highly complex.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, University of Wisconsin, 345 Russell Laboratories, 1630 Linden Dr, Madison, WI, 53706, USA,
| | | | | |
Collapse
|