51
|
Role of Forkhead Box Class O proteins in cancer progression and metastasis. Semin Cancer Biol 2017; 50:142-151. [PMID: 28774834 DOI: 10.1016/j.semcancer.2017.07.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 01/10/2023]
Abstract
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Collapse
|
52
|
Sharma A, Mendonca J, Ying J, Kim H, Verdone JE, Zarif JC, Carducci M, Hammers H, Pienta KJ, Kachhap S. The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion. Mol Oncol 2017; 11:655-669. [PMID: 28371345 PMCID: PMC5467496 DOI: 10.1002/1878-0261.12059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
Experimental and clinical evidence suggests that N-myc downregulated gene 1 (NDRG1) functions as a suppressor of prostate cancer metastasis. Elucidating pathways that drive survival and invasiveness of NDRG1-deficient prostate cancer cells can help in designing therapeutics to target metastatic prostate cancer cells. However, the molecular mechanisms that lead NDRG1-deficient prostate cancer cells to increased invasiveness remain largely unknown. In this study, we demonstrate that NDRG1-deficient prostate tumors have decreased integrin expression and reduced cell adhesion and motility. Our data indicate that loss of NDRG1 differentially affects Rho GTPases. Specifically, there is a downregulation of active RhoA and Rac1 GTPases with a concomitant upregulation of active Cdc42 in NDRG1-deficient cells. Live cell imaging using a fluorescent sensor that binds to polymerized actin revealed that NDRG1-deficient cells have restricted actin dynamics, thereby affecting cell migration. These cellular and molecular characteristics are in sharp contrast to what is expected after loss of a metastasis suppressor. We further demonstrate that NDRG1-deficient cells have increased resistance to anoikis and increased invasiveness which is independent of its elevated Cdc42 activity. Furthermore, NDRG1 regulates expression and glycosylation of EMMPRIN, a master regulator of matrix metalloproteases. NDRG1 deficiency leads to an increase in EMMPRIN expression with a concomitant increase in matrix metalloproteases and thus invadopodial activity. Using a three-dimensional invasion assay and an in vivo metastasis assay for human prostate xenografts, we demonstrate that NDRG1-deficient prostate cancer cells exhibit a collective invasion phenotype and are highly invasive. Thus, our findings provide novel insights suggesting that loss of NDRG1 leads to a decrease in actin-mediated cellular motility but an increase in cellular invasion, resulting in increased tumor dissemination which positively impacts metastatic outcome.
Collapse
Affiliation(s)
- Anup Sharma
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Janet Mendonca
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James Ying
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hea‐Soo Kim
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - James E. Verdone
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Jelani C. Zarif
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Michael Carducci
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Hans Hammers
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| | - Kenneth J. Pienta
- Department of UrologyThe James Buchanan Brady Urological InstituteThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Sushant Kachhap
- Prostate Cancer ProgramDepartment of OncologyThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreMDUSA
| |
Collapse
|
53
|
Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU, Fatatis A. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene 2017; 36:2846-2856. [PMID: 27991924 PMCID: PMC5436952 DOI: 10.1038/onc.2016.436] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The growth of disseminated tumor cells into metastatic lesions depends on the establishment of a favorable microenvironment in the stroma of the target organs. Here we show that mice treated with anakinra, an antagonist of the interleukin (IL)-1β receptor (IL-1R), or harboring a targeted deletion of IL-1R are significantly less prone to develop bone tumors when inoculated in the arterial circulation with human prostate cancer (PCa) cells expressing IL-1β. Interestingly, human mesenchymal stem cells exposed in vitro to medium conditioned by IL-1β-expressing cancer cells responded by upregulating S100A4, a marker of cancer-associated fibroblasts (CAFs), and this effect was blocked by anakinra. Analogously, the stroma adjacent to skeletal metastases generated in mice by IL-1β-expressing cancer cells showed a dramatic increase in S100A4, COX-2 and the alteration of 30 tumor-related genes as measured by Nanostring analysis. These effects were not observed in the stroma associated with the rare and much smaller metastases generated by the same cells in IL-1R knockout animals, confirming that tumor-secreted IL-1β generates skeletal CAFs and conditions the surrounding bone microenvironment. In skeletal lesions from patients with metastatic PCa, histological and molecular analyses revealed that IL-1β is highly expressed in cancer cells in which the androgen receptor (AR) is not detected (AR-), whereas this cytokine is uniformly absent in the AR-positive (AR+) metastatic cells. The stroma conditioned by IL-1β-expressing cancer cells served as a supportive niche also for coexisting IL-1β-lacking cancer cells, which are otherwise unable to generate tumors after independently seeding the skeleton of mice. This niche is established very early following tumor seeding and hints to a role of IL-1β in promoting early colonization of PCa at the skeletal level.
Collapse
Affiliation(s)
- K Shahriari
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F Shen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - A Worrede-Mahdi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Q Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Gong
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F U Garcia
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Cancer Treatment Centers of America, Eastern Regional Medical Center, Philadelphia, PA, USA
| | - A Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
54
|
Das V, Kalyan G, Hazra S, Pal M. Understanding the role of structural integrity and differential expression of integrin profiling to identify potential therapeutic targets in breast cancer. J Cell Physiol 2017; 233:168-185. [DOI: 10.1002/jcp.25821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| | - Gazal Kalyan
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
| | - Saugata Hazra
- Department of BiotechnologyIndian Institute of Technology Roorkee (IITR)RoorkeeUttarakhandIndia
- Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeUttarakhandIndia
| | - Mintu Pal
- Biological Sciences and Technology DivisionCSIR‐North East Institute of Science and TechnologyJorhat, AssamIndia
| |
Collapse
|
55
|
CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget 2016; 7:7343-53. [PMID: 26799186 PMCID: PMC4872790 DOI: 10.18632/oncotarget.6944] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022] Open
Abstract
Cytoskeletal rearrangement is required for migration and invasion, which are the key steps of cancer metastasis. Ezrin and integrin co-ordinate these processes by regulating cellular adhesion and cytoskeletal polymerization-depolymerization. It is also well established that chemokine-chemokine receptor axis plays a crucial role in regulating cancer cell migration and invasion. In this study, we show involvement of CXC chemokine receptor 6 (CXCR6) and its only natural ligand CXCL16 in pathobiology of prostate cancer (PCa). CXCR6 is highly expressed in PCa tissues and cell lines (LNCaP and PC3), relative to normal tissue and cells. CXCR6 expression in PCa tissues correlated with higher Gleason score. Similarly, aggressive PCa cells (PC3) show high CXCR6 compared to less aggressive LNCaP. Besides, PC3 cells show higher MMPs expression compared to LNCaP cells following CXCL16 stimulation. Intriguingly, CXCR6-CXCL16 interaction in PCa cells promotes Ezrin activation, αvβ3 integrin clustering and capping at the leading edge in FAK/PI3K/PKC dependent manner, thereby modifying cellular adhesion as well as motility. Together these results demonstrate that CXCL16 stimulation changes cytoskeletal dynamics resulting in enhanced migration, invasion and adhesion to endothelial cells, ultimately enabling PCa cells to achieve their metastatic goal.
Collapse
|
56
|
Singh A, Fedele C, Lu H, Nevalainen MT, Keen JH, Languino LR. Exosome-mediated Transfer of αvβ3 Integrin from Tumorigenic to Nontumorigenic Cells Promotes a Migratory Phenotype. Mol Cancer Res 2016; 14:1136-1146. [PMID: 27439335 DOI: 10.1158/1541-7786.mcr-16-0058] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 07/03/2016] [Indexed: 12/20/2022]
Abstract
The αvβ3 integrin is known to be highly upregulated during cancer progression and promotes a migratory and metastatic phenotype in many types of tumors. We hypothesized that the αvβ3 integrin is transferred through exosomes and, upon transfer, has the ability to support functional aberrations in recipient cells. Here, for the first time, it is demonstrated that αvβ3 is present in exosomes released from metastatic PC3 and CWR22Pc prostate cancer cells. Exosomal β3 is transferred as a protein from donor to nontumorigenic and tumorigenic cells as β3 protein or mRNA levels remain unaffected upon transcription or translation inhibition in recipient cells. Furthermore, it is shown that upon exosome uptake, de novo expression of an αvβ3 increases adhesion and migration of recipient cells on an αvβ3 ligand, vitronectin. To evaluate the relevance of these findings, exosomes were purified from the blood of TRAMP mice carrying tumors where the expression of αvβ3 is found higher than in exosomes from wild-type mice. In addition, it is demonstrated that αvβ3 is coexpressed with synaptophysin, a biomarker for aggressive neuroendocrine prostate cancer. IMPLICATIONS Overall this study reveals that the αvβ3 integrin is transferred from tumorigenic to nontumorigenic cells via exosomes, and its de novo expression in recipient cells promotes cell migration on its ligand. The increased expression of αvβ3 in exosomes from mice bearing tumors points to its clinical relevance and potential use as a biomarker. Mol Cancer Res; 14(11); 1136-46. ©2016 AACR.
Collapse
Affiliation(s)
- Amrita Singh
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmine Fedele
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James H Keen
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
57
|
Myers JS, von Lersner AK, Sang QXA. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues. J Cancer 2016; 7:1452-64. [PMID: 27471561 PMCID: PMC4964129 DOI: 10.7150/jca.15860] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5 pathways were enriched in African American prostate tumors: the Small Cell Lung Cancer, Platelet-Amyloid Precursor Protein, Agrin, Neuroactive Ligand-Receptor Interaction, and Intrinsic pathways. The protein components of these pathways were either basement membrane proteins or coagulation proteins.
Collapse
Affiliation(s)
- Jennifer S Myers
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Ariana K von Lersner
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Qing-Xiang Amy Sang
- 1. Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.; 2. Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
58
|
Yuan Q, Wang Y, Zhao L, Liu R, Gao F, Gao L, Gao X. Peptide protected gold clusters: chemical synthesis and biomedical applications. NANOSCALE 2016; 8:12095-104. [PMID: 27271005 DOI: 10.1039/c6nr02750d] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.
Collapse
Affiliation(s)
- Qing Yuan
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yaling Wang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Liu
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
59
|
Lv XH, Liu BQ, Li XM, Wang XC, Li XL, Ahmed N, Zhang YF. Integrin α4 Induces Lymphangiogenesis and Metastasis via Upregulation of VEGF-C in Human Colon Cancer. Anat Rec (Hoboken) 2016; 299:741-7. [PMID: 26917449 DOI: 10.1002/ar.23338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 01/04/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor-C (VEGF-C) is a key regulator in lymphangiogenesis, and is overexpressed in various malignancies. Integrin α4β1, a new member of the VEGF-C/VEGF receptor pathway, was found to be overexpressed in melanoma tumors. However, little is known regarding the potential role of integrin α4β1 in lymphangiogenesis and other solid tumors. The aim of this study was to investigate the expression patterns of integrin α4 and VEGF-C in relation to lymphangiogenesis and clinicopathological parameters in human colon cancer. The expression of integrin α4, VEGF-C, and VEGFR-3 was assessed in 71 human colon cancer tissues and 30 paracancerous normal tissues by immunohistochemical staining. Lymphatic microvessel density (LMVD) was measured after D2-40-labeling, and the correlations among different factors were statistically analyzed. The expression of integrin α4, VEGF-C, VEGFR-3, and LMVD was higher in colon cancer tissues compared with the normal paracancerous colon tissues. There was a positive correlation between the expression of integrin α4 and VEGF-C. Integrin α4 and VEGF-C were significantly associated with the clinicopathological parameters (LMVD, Duke's stage, and lymph node metastasis). Kaplan-Meier analyses indicated that patients with high integrin α4 or VEGF-C expression had significantly shorter overall survival and tumor-free survival time. Multivariate analyses suggested that integrin α4 and VEGF-C may serve as independent prognostic factors for human colon cancer. Both integrin α4 and VEGF-C are involved in lymphangiogenesis and lymphatic metastasis. Our results demonstrated that integrin α4 is a novel prognostic indicator for human colon cancer. Anat Rec, 299:741-747, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Hong Lv
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Bao-Quan Liu
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xue-Mei Li
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiang-Chen Wang
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xin-Lei Li
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Naila Ahmed
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Ya-Fang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
60
|
Du J, Liu X, Wu Y, Zhu J, Tang Y. Essential role of STX6 in esophageal squamous cell carcinoma growth and migration. Biochem Biophys Res Commun 2016; 472:60-7. [PMID: 26906622 DOI: 10.1016/j.bbrc.2016.02.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/15/2022]
Abstract
Abnormalities in endosomes, or dysregulation in their trafficking, play an important role directly in many diseases including oncogenesis. Syntaxin-6 (STX6) is involved in diverse cellular functions in a variety of cell types and has been shown to regulate many intracellular membrane trafficking events such as endocytosis, recycling and anterograde and retrograde trafficking. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of STX6 was up-regulated in ESCC samples, its expression was significantly correlated with tumor size, histological differentiation, lymph node metastasis and depth. On one hand, STX6 silencing inhibited ESCC cells viability and proliferation in a p53-dependent manner. On the other hand, STX6 effect integrin trafficking and regulate ESCC cells migration. Taken together, our study revealed the oncogenic roles of STX6 in the progression of ESCC, and it might be a valuable target for ESCC therapy.
Collapse
Affiliation(s)
- Jin Du
- Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xiang Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yanhu Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Jinfu Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yihu Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
61
|
Zhao L, Zhai J, Zhang X, Gao X, Fang X, Li J. Computational design of peptide-Au cluster probe for sensitive detection of α(IIb)β3 integrin. NANOSCALE 2016; 8:4203-4208. [PMID: 26831577 DOI: 10.1039/c5nr09175f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have designed a novel peptide-Au cluster probe to specifically bind to αIIbβ3 integrin. As indicated by molecular dynamics (MD) simulations, the binding mode of the native ligand of αIIbβ3 integrin, γC peptide, can be realized by the designed probe. More importantly, the peptide-Au probe can provide multiple coating peptides to form additional salt bridges with protein, and the binding stability of the probe is comparable to the native ligand. The designed probe was then successfully synthesized. The specific binding in a cellular environment was validated by colocalization analysis of confocal microscopy. In addition, the binding affinity was confirmed by atomic force microscopy (AFM) based single molecule force spectroscopy. Our results suggest the combination of computational design and experimental verification can be a useful strategy for the development of nanoprobes.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiao Zhai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuejie Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. and Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xueyun Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
62
|
Hussain M, Le Moulec S, Gimmi C, Bruns R, Straub J, Miller K. Differential Effect on Bone Lesions of Targeting Integrins: Randomized Phase II Trial of Abituzumab in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2016; 22:3192-200. [PMID: 26839144 DOI: 10.1158/1078-0432.ccr-15-2512] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Integrins play a critical role in the progression of prostate cancer and its bone metastases. We investigated the use of the pan-αv integrin inhibitor abituzumab in chemotherapy-naïve patients with asymptomatic or mildly symptomatic metastatic castration-resistant prostate cancer. EXPERIMENTAL DESIGN PERSEUS (NCT01360840) was a randomized, double-blind phase II study. Men with pathologically confirmed prostate cancer and radiologic progression of bone lesions in the 28 days prior to randomization were assigned to receive abituzumab 750 mg or 1,500 mg or placebo (1:1:1) every 3 weeks in combination with luteinizing hormone-releasing hormone agonist/antagonist therapy. The primary endpoint was progression-free survival (PFS). RESULTS The intent-to-treat population comprised 180 patients, 60 in each arm. The primary endpoint of PFS was not significantly different with abituzumab-based therapy compared with placebo [abituzumab 750 mg, 3.4 months, HR = 0.89; 95% confidence interval (CI), 0.57-1.39; abituzumab 1,500 mg, 4.3 months, HR = 0.81; 95% CI, 0.52-1.26; placebo, 3.3 months], but the cumulative incidence of bone lesion progression was lower with abituzumab than with placebo for up to 24 months (cumulative incidence 23.6% vs. 41.1% at 6 months, 26.1% vs. 45.4% at 12 months). Two partial tumor responses were observed (1 abituzumab 1,500 mg and 1 placebo). Approximately 85% to 90% of patients experienced at least one treatment-emergent adverse event (TEAE) in the different arms, but the incidences of serious TEAEs and TEAEs with fatal outcome were similar in the three arms. CONCLUSIONS Although PFS was not significantly extended, abituzumab appears to have specific activity in prostate cancer-associated bone lesions that warrants further investigation. Clin Cancer Res; 22(13); 3192-200. ©2016 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Kurt Miller
- Department of Urology, Charité, Berlin, Germany
| | | |
Collapse
|
63
|
Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, Seki N. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci 2015; 107:84-94. [PMID: 26509963 PMCID: PMC4724812 DOI: 10.1111/cas.12842] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/15/2015] [Accepted: 10/24/2015] [Indexed: 12/14/2022] Open
Abstract
Analysis of microRNA (miRNA) expression signatures in prostate cancer (PCa) and castration‐resistant PCa has revealed that miRNA‐223 is significantly downregulated in cancer tissues, suggesting that miR‐223 acts as a tumor‐suppressive miRNA by targeting oncogenes. The aim of this study was to investigate the functional roles of miR‐223 and identify downstream oncogenic targets regulated by miR‐223 in PCa cells. Functional studies of miR‐223 were carried out to investigate cell proliferation, migration, and invasion using PC3 and PC3M PCa cell lines. Restoration of miR‐223 significantly inhibited cancer cell migration and invasion in PCa cells. In silico database and genome‐wide gene expression analyses revealed that ITGA3 and ITGB1 were direct targets of miR‐223 regulation. Knockdown of ITGA3 and ITGB1 significantly inhibited cancer cell migration and invasion in PCa cells by regulating downstream signaling. Moreover, overexpression of ITGA3 and ITGB1 was observed in PCa clinical specimens. Thus, our data indicated that downregulation of miR‐223 enhanced ITGA3/ITGB1 signaling and contributed to cancer cell migration and invasion in PCa cells. Elucidation of the molecular pathways modulated by tumor‐suppressive miRNAs provides insights into the mechanisms of PCa progression and metastasis.
Collapse
Affiliation(s)
- Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ichiro Fukumoto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rika Nishikawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
64
|
Lee YC, Lin SC, Yu G, Cheng CJ, Liu B, Liu HC, Hawke DH, Parikh NU, Varkaris A, Corn P, Logothetis C, Satcher RL, Yu-Lee LY, Gallick GE, Lin SH. Identification of Bone-Derived Factors Conferring De Novo Therapeutic Resistance in Metastatic Prostate Cancer. Cancer Res 2015; 75:4949-59. [PMID: 26530902 DOI: 10.1158/0008-5472.can-15-1215] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Resistance to currently available targeted therapies significantly hampers the survival of patients with prostate cancer with bone metastasis. Here we demonstrate an important resistance mechanism initiated from tumor-induced bone. Studies using an osteogenic patient-derived xenograft, MDA-PCa-118b, revealed that tumor cells resistant to cabozantinib, a Met and VEGFR-2 inhibitor, reside in a "resistance niche" adjacent to prostate cancer-induced bone. We performed secretome analysis of the conditioned medium from tumor-induced bone to identify proteins (termed "osteocrines") found within this resistance niche. In accordance with previous reports demonstrating that activation of integrin signaling pathways confers therapeutic resistance, 27 of the 90 osteocrines identified were integrin ligands. We found that following cabozantinib treatment, only tumor cells positioned adjacent to the newly formed woven bone remained viable and expressed high levels of pFAK-Y397 and pTalin-S425, mediators of integrin signaling. Accordingly, treatment of C4-2B4 cells with integrin ligands resulted in increased pFAK-Y397 expression and cell survival, whereas targeting integrins with FAK inhibitors PF-562271 or defactinib inhibited FAK phosphorylation and reduced the survival of PC3-mm2 cells. Moreover, treatment of MDA-PCa-118b tumors with PF-562271 led to decreased tumor growth, irrespective of initial tumor size. Finally, we show that upon treatment cessation, the combination of PF-562271 and cabozantinib delayed tumor recurrence in contrast to cabozantinib treatment alone. Our studies suggest that identifying paracrine de novo resistance mechanisms may significantly contribute to the generation of a broader set of potent therapeutic tools that act combinatorially to inhibit metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bin Liu
- Department of Genetics, Center for Cancer Genetics and Genomics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsuan-Chen Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andreas Varkaris
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
65
|
Yang S, Long M, Tachado SD, Seng S. Cigarette smoke modulates PC3 prostate cancer cell migration by altering adhesion molecules and the extracellular matrix. Mol Med Rep 2015; 12:6990-6. [PMID: 26351771 PMCID: PMC4626126 DOI: 10.3892/mmr.2015.4302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related mortality among American males. Studies suggest that cigarette smoking is associated with the progression of PCa; however, the molecular mechanisms underlying this process have not been extensively investigated. PCa progression is characterized by increased cell migration and alterations in extracellular matrix (ECM)- and cell adhesion molecule (CAM)-related gene expression. In the present study, the influence of cigarette smoke medium (SM) on cell migration and on the expression of ECM- and CAM-related genes in PC3 prostate adenocarcinoma cells was investigated. According to a wound-healing assay, SM treatment promoted PC3 cell migration. RNA expression levels from SM-treated and control cells were analyzed using a polymerase chain reaction (PCR) array. Of 84 genes analyzed, 27.38% (23/84) exhibited a ≥2-fold change in threshold cycle in PC3 cells following 0.5% SM treatment. Functional gene grouping analysis demonstrated that SM treatment modulated the RNA transcription of approximately 18.4% of CAMs and 33.93% of ECM-related genes. Quantitative PCR analysis showed that SM treatment led to a significant decrease in transcription levels of the following genes: Collagen 5 α-1(V), connective tissue growth factor, integrin β-2, kallmann syndrome 1, laminin α 3, matrix metallopeptidase 7 (MMP7), MMP13, secreted protein acidic cysteine-rich, thrombospondin-2 and versican; and that SM significantly increased the transcription levels of MMP2 and MMP12. Furthermore, MMP2 knockdown significantly reduced the migration of SM-treated PC3 cells. The present study provides novel insights into the association of cigarette smoking with PCa progression, via the alteration of ECM/CAM interactions.
Collapse
Affiliation(s)
- Suping Yang
- Division of Experimental Medicine, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Minica Long
- Division of Experimental Medicine, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Souvenir D Tachado
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Seyha Seng
- Division of Experimental Medicine, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
66
|
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015; 20:928-41. [PMID: 25979470 DOI: 10.1016/j.drudis.2015.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
The choroid plexus (CP) is a highly vascularized organ located in the brain ventricles and contains a single epithelial cell layer forming the blood-cerebrospinal fluid barrier (BCSFB). This barrier is crucial for immune surveillance in health and is an underestimated gate for entry of immune cells during numerous inflammatory disorders. Several of these disorders are accompanied by disturbance of the BCSFB and increased leukocyte infiltration, which affects neuroinflammation. Understanding the mechanism of immune cell entry at the CP might lead to identification of new therapeutic targets. Here, we focus on current knowledge of leukocyte infiltration at the CP in inflammatory conditions and its therapeutic implications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
67
|
Abstract
Transforming growth factor (TGF) β1 activity depends on a complex signalling cascade that controls expression of several genes. Among others, TGFβ1 regulates expression of matrix metalloproteinases (MMPs) through activation of Smads. In the present study, we demonstrate for the first time that the αvβ6 integrin interacts with TGFβ receptor II (TβRII) through the β6 cytoplasmic domain and promotes Smad3 activation in prostate cancer (PrCa) cells. Another related αv integrin, αvβ5, as well as the αvβ6/3 integrin, which contains a chimeric form of β6 with a β3 cytoplasmic domain, do not associate with TβRII and fail to show similar responses. We provide evidence that αvβ6 is required for up-regulation of MMP2 by TGFβ1 through a Smad3-mediated transcriptional programme in PrCa cells. The functional relevance of these results is underscored by the finding that αvβ6 modulates cell migration in an MMP2-dependent manner on an αvβ6-specific ligand, latency-associated peptide (LAP)-TGFβ. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, is sufficient to promote activation of Smad3, regulation of MMP2 levels and consequent catalytic activity, as well as cell migration. Our study describes a new TGFβ1-αvβ6-MMP2 signalling pathway that, given TGFβ1 pro-metastatic activity, may have profound implications for PrCa therapy.
Collapse
|
68
|
Zhou F, Huang X, Zhang Z, Chen Y, Liu X, Xing J, He X. Functional polymorphisms of ITGB1 are associated with clinical outcome of Chinese patients with resected colorectal cancer. Cancer Chemother Pharmacol 2015; 75:1207-15. [PMID: 25894721 DOI: 10.1007/s00280-015-2745-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/02/2015] [Indexed: 01/05/2023]
Abstract
PURPOSE Integrin β1 (ITGB1) has been recognized to play a major role in tumor growth, invasion and metastasis. However, effects of single-nucleotide polymorphisms (SNPs) in ITGB1 gene on the prognosis of patients with colorectal cancer (CRC) have not been reported. METHODS A total of 372 patients with resected colorectal adenocarcinoma were enrolled in our study. Three functional SNPs (rs2230395, rs1187075 and rs1187076) in ITGB1 were selected and genotyped using the Sequenom iPLEX genotyping system. RESULTS We identified two SNPs (rs2230395 and rs1187075) in ITGB1 gene to be significantly associated with CRC overall survival (OS). Compared with the homozygous wild-type (AA) and heterozygous variant (AC), rs2230395 homozygous variant (CC) conferred a 1.55-fold (95 % CI 1.00-2.41, P = 0.049) increased risk of death. Similar result was obtained for homozygous variant (AA) in rs1187075 with a 1.62-fold (95 % CI 1.08-2.42, P = 0.020). In stratified analysis, this association in rs2230395 remained to be significant in patients receiving chemotherapy, but not in those without chemotherapy. We further evaluated the effects of chemotherapy on CRC survival in subgroups stratified by rs2230395 and rs1187075 genotypes. We found that chemotherapy resulted in a significantly better OS in patients with the homozygous wild-type (WW) or heterozygous variant (WV) genotype in both rs2230395 and rs1187075 when compared with patients with homozygous variant (VV) genotype. CONCLUSIONS Our data suggest that ITGB1 SNPs might be a prognostic biomarker for CRC patients, especially in those receiving chemotherapy. Our findings warrant validation in larger independent populations.
Collapse
Affiliation(s)
- Feng Zhou
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, 169 West Changle Street, Xi'an, 710032, China
| | | | | | | | | | | | | |
Collapse
|
69
|
Artym VV, Swatkoski S, Matsumoto K, Campbell CB, Petrie RJ, Dimitriadis EK, Li X, Mueller SC, Bugge TH, Gucek M, Yamada KM. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. ACTA ACUST UNITED AC 2015; 208:331-50. [PMID: 25646088 PMCID: PMC4315243 DOI: 10.1083/jcb.201405099] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-density fibrillar collagen matrix induces invadopodia formation in both fibroblasts and carcinoma cell lines through a kindlin2-dependent mechanism that drives local ECM remodeling. Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM.
Collapse
Affiliation(s)
- Vira V Artym
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892 Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School; and Department of Biostatistics, Bioinformatics, and Biomathematics; Georgetown University, Washington, DC 20057
| | - Stephen Swatkoski
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Kazue Matsumoto
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Catherine B Campbell
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Ryan J Petrie
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Emilios K Dimitriadis
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Xin Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School; and Department of Biostatistics, Bioinformatics, and Biomathematics; Georgetown University, Washington, DC 20057
| | - Susette C Mueller
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School; and Department of Biostatistics, Bioinformatics, and Biomathematics; Georgetown University, Washington, DC 20057
| | - Thomas H Bugge
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Marjan Gucek
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research; Proteomics Core Facility, National Heart, Lung, and Blood Institute; Biomolecular Engineering and Physical Sciences Shared Resource Program, National Institute of Biomolecular Imaging and Bioengineering; Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research; National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
70
|
Methylation of Integrin α4 and E-Cadherin Genes in Human Prostate Cancer. Pathol Oncol Res 2015; 21:921-7. [DOI: 10.1007/s12253-015-9917-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 02/18/2015] [Indexed: 12/13/2022]
|
71
|
Zhai J, Wang Y, Xu C, Zheng L, Wang M, Feng W, Gao L, Zhao L, Liu R, Gao F, Zhao Y, Chai Z, Gao X. Facile Approach To Observe and Quantify the αIIbβ3 Integrin on a Single-Cell. Anal Chem 2015; 87:2546-9. [DOI: 10.1021/ac504639u] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiao Zhai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaling Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Xu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College
of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Lingna Zheng
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Wang
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyue Feng
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ru Liu
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuping Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifang Chai
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School
of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xueyun Gao
- Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
72
|
Fedele C, Singh A, Zerlanko BJ, Iozzo RV, Languino LR. The αvβ6 integrin is transferred intercellularly via exosomes. J Biol Chem 2015; 290:4545-4551. [PMID: 25568317 DOI: 10.1074/jbc.c114.617662] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exosomes, cell-derived vesicles of endosomal origin, are continuously released in the extracellular environment and play a key role in intercellular crosstalk. In this study, we have investigated whether transfer of integrins through exosomes between prostate cancer (PrCa) cells occurs and whether transferred integrins promote cell adhesion and migration. Among others, we have focused on the αvβ6 integrin, which is not detectable in normal human prostate but is highly expressed in human primary PrCa as well as murine PrCa in Pten(pc-/-) mice. After confirming the fidelity of the exosome preparations by electron microscopy, density gradient, and immunoblotting, we determined that the αvβ6 integrin is actively packaged into exosomes isolated from PC3 and RWPE PrCa cell lines. We also demonstrate that αvβ6 is efficiently transferred via exosomes from a donor cell to an αvβ6-negative recipient cell and localizes to the cell surface. De novo αvβ6 expression in an αvβ6-negative recipient cell is not a result of a change in mRNA levels but is a consequence of exosome-mediated transfer of this integrin between different PrCa cells. Recipient cells incubated with exosomes containing αvβ6 migrate on an αvβ6 specific substrate, latency-associated peptide-TGFβ, to a greater extent than cells treated with exosomes in which αvβ6 is stably or transiently down-regulated by shRNA or siRNA, respectively. Overall, this study shows that exosomes from PrCa cells may contribute to a horizontal propagation of integrin-associated phenotypes, which would promote cell migration, and consequently, metastasis in a paracrine fashion.
Collapse
Affiliation(s)
- Carmine Fedele
- From the Prostate Cancer Discovery and Development Program,; Department of Cancer Biology, Sidney Kimmel Cancer Center, and
| | - Amrita Singh
- From the Prostate Cancer Discovery and Development Program,; Department of Cancer Biology, Sidney Kimmel Cancer Center, and
| | - Brad J Zerlanko
- From the Prostate Cancer Discovery and Development Program,; Department of Cancer Biology, Sidney Kimmel Cancer Center, and
| | - Renato V Iozzo
- Department of Cancer Biology, Sidney Kimmel Cancer Center, and; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Lucia R Languino
- From the Prostate Cancer Discovery and Development Program,; Department of Cancer Biology, Sidney Kimmel Cancer Center, and
| |
Collapse
|
73
|
CXCL12 Modulates Prostate Cancer Cell Adhesion by Altering the Levels or Activities of β1-Containing Integrins. Int J Cell Biol 2014; 2014:981750. [PMID: 25580125 PMCID: PMC4279265 DOI: 10.1155/2014/981750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which prostate cancer (PCa) cell adhesion and migration are controlled during metastasis are not well understood. Here, we studied the effect of CXCL12 in PCa cell adhesion and spreading in DU145 and PC3 cell lines using as substrates collagen I, fibronectin (FN), and their recombinant fragments. CXCL12 treatment increased β1 integrin-dependent PC3 cell adhesion on FN which correlated with increased focal adhesion kinase activation. However neither α5β1 nor α4β1 subunits were involved in this adhesion. By contrast, CXCL12 decreased DU145 adhesion and spreading on FN by downregulating α5 and β1 integrin expression. To demonstrate the clinical relevance of CXCL12 in PCa, we measured CXCL12 levels in plasma by using ELISA and found that the chemokine is elevated in PCa patients when compared to controls. The high concentration of CXCL12 in patients suffering from PCa in comparison to those with benign disease or healthy individuals implicates CXCL12 as a potential biomarker for PCa. In addition these data show that CXCL12 may be crucial in controlling PCa cell adhesion on fibronectin and collagen I, possibly via crosstalk with integrin receptors and/or altering the expression levels of integrin subunits.
Collapse
|
74
|
Heß K, Böger C, Behrens HM, Röcken C. Correlation between the expression of integrins in prostate cancer and clinical outcome in 1284 patients. Ann Diagn Pathol 2014; 18:343-50. [PMID: 25305804 DOI: 10.1016/j.anndiagpath.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the expression of a panel of integrins in prostate cancer in order to explore their potential for tumor biology. Formalin-fixed and paraffin-embedded tissue samples of 1284 prostate cancer patients were retrieved from the archive of the Department of Pathology. Immunostaining was done with rabbit monoclonal antibodies directed against αvβ3, αvβ5, αvβ6, αvβ8, β3, and αv-pan. Staining results were correlated with clinicopathologic patient characteristics and patient survival. Immunostaining of tumor cells performed on whole tissue sections of 52 patients was sparse for αvβ3, αvβ6, and αvβ8, and more prevalent for αvβ5 and αv-pan. αvβ5, αvβ8, and αv-pan were selected for further analyses in tissue microarrays representing the entire study cohort. αvβ8 staining was generally observed in peripheral nerves. αvβ5 and αv-pan provided strong evidence for the differential expression of these integrins in prostate cancer. The expression was variable with regard to the histoanatomical/cytoanatomical localization, cell type, intensity of immunolabeling, and Gleason pattern. αvβ5 and αv-pan are differentially expressed in prostate cancer, and the differentiation of prostate cancer seems to influence integrin expression and subcellular distribution.
Collapse
Affiliation(s)
- Katharina Heß
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christine Böger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
75
|
Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Pers Med 2014; 7:173-91. [PMID: 25114582 PMCID: PMC4126202 DOI: 10.2147/pgpm.s61693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of eukaryotic gene expression. They have been implicated in a broad range of biological processes, and miRNA-related genetic alterations probably underlie several human diseases. Single nucleotide polymorphisms of transcripts may modulate the posttranscriptional regulation of gene expression by miRNAs and explain interindividual variability in cancer risk and in chemotherapy response. On the basis of recent association studies published in the literature, the present review mainly summarizes the potential role of miRNAs as molecular biomarkers for disease susceptibility, diagnosis, prognosis, and drug-response prediction in tumors. Many clues suggest a role for polymorphisms within the 3' untranslated regions of KRAS rs61764370, SET8 rs16917496, and MDM4 rs4245739 as SNPs in miRNA binding sites highly promising in the biology of human cancer. However, more studies are needed to better characterize the composite spectrum of genetic determinants for future use of markers in risk prediction and clinical management of diseases, heading toward personalized medicine.
Collapse
Affiliation(s)
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
76
|
Salaam AD, Hwang P, McIntosh R, Green HN, Jun HW, Dean D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:937-45. [PMID: 25161829 PMCID: PMC4142852 DOI: 10.3762/bjnano.5.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/04/2014] [Indexed: 05/23/2023]
Abstract
The field of nanomedicine has emerged as an approach to enhance the specificity and efficacy of cancer treatments as stand-alone therapies and in combination with standard chemotherapeutic treatment regimens. The current standard of care for metastatic cancer, doxorubicin (DOX), is presented with challenges, namely toxicity due to a lack of specificity and targeted delivery. Nano-enabled targeted drug delivery systems can provide an avenue to overcome these issues. Nanodiamonds (ND), in particular, have been researched over the past five years for use in various drug delivery systems but minimal work has been done that incorporates targeting capability. In this study, a novel targeted drug delivery system for bone metastatic prostate cancer was developed, characterized, and evaluated in vitro. NDs were conjugated with the Asp-Gly-Glu-Ala (DGEA) peptide to target α2β1 integrins over-expressed in prostate cancers during metastasis. To facilitate drug delivery, DOX was adsorbed to the surface of the ND-DGEA conjugates. Successful preparation of the ND-DGEA conjugates and the ND-DGEA+DOX system was confirmed with transmission electron microscopy, hydrodynamic size, and zeta potential measurements. Since traditional DOX treatment regimens lack specificity and increased toxicity to normal tissues, the ND-DGEA conjugates were designed to distinguish between cells that overexpress α2β1 integrin, bone metastatic prostate cancers cells (PC3), and cells that do not, human mesenchymal stem cells (hMSC). Utilizing the ND-DGEA+DOX system, the efficacy of 1 µg/mL and 2 µg/mL DOX doses increased from 2.5% to 12% cell death and 11% to 34% cell death, respectively. These studies confirmed that the delivery and efficacy of DOX were enhanced by ND-DGEA conjugates. Thus, the targeted ND-DGEA+DOX system provides a novel approach for decreasing toxicity and drug doses.
Collapse
Affiliation(s)
- Amanee D Salaam
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Patrick Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Roberus McIntosh
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Hadiyah N Green
- Department of Materials Science and Engineering, Tuskegee University (TU), 1200 W Montgomery Rd, Tuskegee, AL 36088, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Derrick Dean
- Department of Materials Science and Engineering, University of Alabama at Birmingham (UAB), 1530 3rd Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
77
|
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LCJ, Wollscheid B, Zhang H, Aebersold R. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 2014; 13:1753-68. [PMID: 24741114 PMCID: PMC4083113 DOI: 10.1074/mcp.m114.038273] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
The identification of biomarkers indicating the level of aggressiveness of prostate cancer (PCa) will address the urgent clinical need to minimize the general overtreatment of patients with non-aggressive PCa, who account for the majority of PCa cases. Here, we isolated formerly N-linked glycopeptides from normal prostate (n = 10) and from non-aggressive (n = 24), aggressive (n = 16), and metastatic (n = 25) PCa tumor tissues and analyzed the samples using SWATH mass spectrometry, an emerging data-independent acquisition method that generates a single file containing fragment ion spectra of all ionized species of a sample. The resulting datasets were searched using a targeted data analysis strategy in which an a priori spectral reference library representing known N-glycosites of the human proteome was used to identify groups of signals in the SWATH mass spectrometry data. On average we identified 1430 N-glycosites from each sample. Out of those, 220 glycoproteins showed significant quantitative changes associated with diverse biological processes involved in PCa aggressiveness and metastasis and indicated functional relationships. Two glycoproteins, N-acylethanolamine acid amidase and protein tyrosine kinase 7, that were significantly associated with aggressive PCa in the initial sample cohort were further validated in an independent set of patient tissues using tissue microarray analysis. The results suggest that N-acylethanolamine acid amidase and protein tyrosine kinase 7 may be used as potential tissue biomarkers to avoid overtreatment of non-aggressive PCa.
Collapse
Affiliation(s)
- Yansheng Liu
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jing Chen
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Atul Sethi
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Qing K Li
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Lijun Chen
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231
| | - Ben Collins
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ludovic C J Gillet
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bernd Wollscheid
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hui Zhang
- ¶Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21231;
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland; **Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
78
|
Barve A, Jin W, Cheng K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release 2014; 187:118-32. [PMID: 24878184 DOI: 10.1016/j.jconrel.2014.05.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 12/26/2022]
Abstract
Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to poor specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-relevant antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency.
Collapse
Affiliation(s)
- Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA.
| |
Collapse
|
79
|
Collazo J, Zhu B, Larkin S, Martin SK, Pu H, Horbinski C, Koochekpour S, Kyprianou N. Cofilin drives cell-invasive and metastatic responses to TGF-β in prostate cancer. Cancer Res 2014; 74:2362-73. [PMID: 24509905 PMCID: PMC4488067 DOI: 10.1158/0008-5472.can-13-3058] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cofilin (CFL) is an F-actin-severing protein required for the cytoskeleton reorganization and filopodia formation, which drives cell migration. CFL binding and severing of F-actin is controlled by Ser3 phosphorylation, but the contributions of this step to cell migration during invasion and metastasis of cancer cells are unclear. In this study, we addressed the question in prostate cancer cells, including the response to TGF-β, a critical regulator of migration. In cells expressing wild-type CFL, TGF-β treatment increased LIMK-2 activity and cofilin phosphorylation, decreasing filopodia formation. Conversely, constitutively active CFL (SerAla) promoted filipodia formation and cell migration mediated by TGF-β. Notably, in cocultures of prostate cancer epithelial cells and cancer-associated fibroblasts, active CFL promoted invasive migration in response to TGF-β in the microenvironment. Further, constitutively active CFL elevated the metastatic ability of prostate cancer cells in vivo. We found that levels of active CFL correlated with metastasis in a mouse model of prostate tumor and that in human prostate cancer, CFL expression was increased significantly in metastatic tumors. Our findings show that the actin-severing protein CFL coordinates responses to TGF-β that are needed for invasive cancer migration and metastasis.
Collapse
Affiliation(s)
- Joanne Collazo
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Beibei Zhu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Spencer Larkin
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Sarah K. Martin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Pu
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Craig Horbinski
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Shahriar Koochekpour
- Departments of Cancer Genetics and Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Natasha Kyprianou
- Department of Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Urology, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
80
|
Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation. Oncogene 2014; 34:1141-9. [DOI: 10.1038/onc.2014.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/11/2013] [Accepted: 12/24/2013] [Indexed: 01/18/2023]
|
81
|
Chen X, Corbin JM, Tipton GJ, Yang LV, Asch AS, Ruiz-Echevarría MJ. The TMEFF2 tumor suppressor modulates integrin expression, RhoA activation and migration of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1216-24. [PMID: 24632071 DOI: 10.1016/j.bbamcr.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/11/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023]
Abstract
Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in an increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Joshua M Corbin
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Greg J Tipton
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Adam S Asch
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria J Ruiz-Echevarría
- Department of Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
82
|
Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv 2014; 4:1527-46. [PMID: 24304250 DOI: 10.4155/tde.13.118] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted.
Collapse
|
83
|
Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One 2014; 9:e86238. [PMID: 24497940 PMCID: PMC3908921 DOI: 10.1371/journal.pone.0086238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin), tight junction formation (claudin-11) as well as insulin growth factor binding protein 3 (IGFBP-3) and the angiogenesis modulator thrombospondin 1 (TSP-1). Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM) components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK) sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.
Collapse
|
84
|
Pontes-Júnior J, Reis ST, Bernardes FS, Oliveira LCN, Barros ÉAFD, Dall'Oglio MF, Timosczuk LMS, Ribeiro-Filho LA, Srougi M, Leite KRM. Correlation between beta1 integrin expression and prognosis in clinically localized prostate cancer. Int Braz J Urol 2014; 39:335-42; discussion 343. [PMID: 23849566 DOI: 10.1590/s1677-5538.ibju.2013.03.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 11/30/2012] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED Integrins are transmembrane glycoprotein receptors that regulate cell-matrix interactions, thus functioning as sensors from the environment. They also act as cell adhesion molecules that are responsible for the maintenance of the normal epithelial phenotype. Some studies have reported a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, however its role in prostate cancer (PC) is unclear. The aim of our study was to evaluate the expression of β1 integrin in localized PC and to correlate the pattern of expression with recurrence after surgical treatment. Methods For this case-control study, we retrospectively selected surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Recurrence was defined as a PSA level exceeding 0.2 ng/mL after surgery, and the median follow-up was 123 months. Integrin expression was evaluated by immunohistochemistry in a tissue microarray containing two samples from each tumor. We employed a semiquantitative analysis and considered a case as positive when the expression was strong and diffusely present. RESULTS There was a loss of 11 cases during the tissue micro array assembling. β1 expression was positive in 79 of the 100 evaluated cases (79%). The univariate and multivariate analyses showed that the negative expression of β1 integrin was associated with biochemical recurrence (p = 0.047) and time to recurrence after radical prostatectomy (p = 0.023). When β1 was negative, the odds ratio for recurrence was 2.78 times higher than that observed in the positive cases [OR = 2.78, p = 0.047, IC 95% (1.01-7.66)]. CONCLUSIONS The loss of β1 integrin immune expression was correlated with biochemical recurrence in patients treated with radical prostatectomy for localized PC.
Collapse
Affiliation(s)
- José Pontes-Júnior
- Laboratory of Medical Investigation - LIM 55, Urology Department, University of Sao Paulo Medical, School and Universidade Nove de Julho, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Shallal HM, Minn I, Banerjee SR, Lisok A, Mease RC, Pomper MG. Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjug Chem 2014; 25:393-405. [PMID: 24410012 PMCID: PMC4112557 DOI: 10.1021/bc4005377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential expression of surface proteins on normal vs malignant cells provides the rationale for the development of receptor-, antigen-, and transporter-based, cancer-selective imaging and therapeutic agents. However, tumors are heterogeneous, and do not always express what can be considered reliable, tumor-selective markers. That suggests development of more flexible targeting platforms that incorporate multiple moieties enabling concurrent targeting to a variety of putative markers. We report the synthesis, biochemical, in vitro, and preliminary in vivo evaluation of a new heterobivalent (HtBv) imaging agent targeting both the prostate-specific membrane antigen (PSMA) and integrin-αvβ3 surface markers, each of which can be overexpressed in certain tumor epithelium and/or neovasculature. The HtBv agent was functionalized with either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or the commercially available IRDye800CW. DOTA-conjugated HtBv probe 9 bound to PSMA or αvβ3 with affinities similar to those of monovalent (Mnv) compounds designed to bind to their targets independently. In situ energy minimization experiments support a model describing the conformations adapted by 9 that enable it to bind both targets. IRDye800-conjugated HtBv probe 10 demonstrated target-specific binding to either PSMA or integrin-αvβ3 overexpressing xenografts. HtBv agents 9 and 10 may enable dual-targeted imaging of malignant cells and tissues in an effort to address heterogeneity that confounds many cancer-targeted imaging agents.
Collapse
Affiliation(s)
- Hassan M Shallal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | | | | | | | | | | |
Collapse
|
86
|
Horak P, Tomasich E, Vaňhara P, Kratochvílová K, Anees M, Marhold M, Lemberger CE, Gerschpacher M, Horvat R, Sibilia M, Pils D, Krainer M. TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep 2014; 4:3739. [PMID: 24435307 PMCID: PMC3894551 DOI: 10.1038/srep03739] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/18/2013] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is the most prevalent cancer in males in developed countries. Tumor suppressor candidate 3 (TUSC3) has been identified as a putative tumor suppressor gene in prostate cancer, though its function has not been characterized. TUSC3 shares homologies with the yeast oligosaccharyltransferase (OST) complex subunit Ost3p, suggesting a role in protein glycosylation. We provide evidence that TUSC3 is part of the OST complex and affects N-linked glycosylation in mammalian cells. Loss of TUSC3 expression in DU145 and PC3 prostate cancer cell lines leads to increased proliferation, migration and invasion as well as accelerated xenograft growth in a PTEN negative background. TUSC3 downregulation also affects endoplasmic reticulum (ER) structure and stress response, which results in increased Akt signaling. Together, our findings provide first mechanistic insight in TUSC3 function in prostate carcinogenesis in general and N-glycosylation in particular.
Collapse
Affiliation(s)
- Peter Horak
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Erwin Tomasich
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Kateřina Kratochvílová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Mariam Anees
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Maximilian Marhold
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Christof E Lemberger
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Marion Gerschpacher
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| | - Reinhard Horvat
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | - Maria Sibilia
- Institute for Cancer Research, Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Dietmar Pils
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Medical University of Vienna, Austria
| | - Michael Krainer
- Division of Oncology, Department of Internal Medicine I and Comprehensive Cancer Center Medical University of Vienna, Austria
| |
Collapse
|
87
|
Yang Y, Adelstein SJ, Kassis AI. Putative molecular signatures for the imaging of prostate cancer. Expert Rev Mol Diagn 2014; 10:65-74. [DOI: 10.1586/erm.09.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
88
|
Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y. Potential Urinary Protein Biomarker Candidates for the Accurate Detection of Prostate Cancer among Benign Prostatic Hyperplasia Patients. J Cancer 2014; 5:103-14. [PMID: 24494028 PMCID: PMC3909765 DOI: 10.7150/jca.6890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/21/2013] [Indexed: 12/23/2022] Open
Abstract
Globally, Prostate cancer (PCa) is the most frequently occurring non-cutaneous cancer, and is the second highest cause of cancer mortality in men. Serum prostate specific antigen (PSA) has been the standard in PCa screening since its approval by the American Food & Drug Administration (FDA) in 1994. Currently, PSA is used as an indicator for PCa - patients with a serum PSA level above 4ng/mL will often undergo prostate biopsy to confirm cancer. Unfortunately fewer than ~30% of these men will biopsy positive for cancer, meaning that the majority of men undergo invasive biopsy with little benefit. Despite PSA's notoriously poor specificity (33%), there is still a significant lack of credible alternatives. Therefore an ideal biomarker that can specifically detect PCa at an early stage is urgently required. The aim of this study was to investigate the potential of using deregulation of urinary proteins in order to detect Prostate Cancer (PCa) among Benign Prostatic Hyperplasia (BPH). To identify the protein signatures specific for PCa, protein expression profiling of 8 PCa patients, 12 BPH patients and 10 healthy males was carried out using LC-MS/MS. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This approach revealed that significant the down-regulation of Fibronectin and TP53INP2 was a characteristic event among PCa patients. Fibronectin mRNA down-regulation, was identified as offering improved specificity (50%) over PSA, albeit with a slightly lower although still acceptable sensitivity (75%) for detecting PCa. As for TP53INP2 on the other hand, its down-regulation was moderately sensitive (75%), identifying many patients with PCa, but was entirely non-specific (7%), designating many of the benign samples as malignant and being unable to accurately identify more than one negative.
Collapse
Affiliation(s)
- Taha A Haj-Ahmad
- 1. Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Moemen Ak Abdalla
- 2. Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| | - Yousef Haj-Ahmad
- 2. Department of Biochemistry, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
89
|
Dutta A, Li J, Lu H, Akech J, Pratap J, Wang T, Zerlanko BJ, FitzGerald TJ, Jiang Z, Birbe R, Wixted J, Violette SM, Stein JL, Stein GS, Lian JB, Languino LR. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res 2014; 74:1598-608. [PMID: 24385215 DOI: 10.1158/0008-5472.can-13-1796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular circuitries controlling osseous prostate metastasis are known to depend on the activity of multiple pathways, including integrin signaling. Here, we demonstrate that the αvβ6 integrin is upregulated in human prostate cancer bone metastasis. In prostate cancer cells, this integrin is a functionally active receptor for fibronectin and latency-associated peptide-TGF-β1; it mediates attachment and migration upon ligand binding and is localized in focal contacts. Given the propensity of prostate cancer cells to form bone metastatic lesions, we investigated whether the αvβ6 integrin promotes this type of metastasis. We show for the first time that αvβ6 selectively induces matrix metalloproteinase 2 (MMP2) in vitro in multiple prostate cancer cells and promotes osteolysis in vivo in an immunodeficient mouse model of bone metastasis through upregulation of MMP2, but not MMP9. The effect of αvβ6 on MMP2 expression and activity is independent of androgen receptor in the analyzed prostate cancer cells. Increased levels of parathyroid hormone-related protein (PTHrP), known to induce osteoclastogenesis, were also observed in αvβ6-expressing cells. However, by using MMP2 short hairpin RNA, we demonstrate that the αvβ6 effect on bone loss is due to upregulation of soluble MMP2 by the cancer cells, not due to changes in tumor growth rate. Another related αv-containing integrin, αvβ5, fails to show similar responses, underscoring the significance of αvβ6 activity. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, contributes to the cancer cell-mediated program of osteolysis by inducing matrix degradation through MMP2. Our results open new prospects for molecular therapy for metastatic bone disease.
Collapse
Affiliation(s)
- Anindita Dutta
- Authors' Affiliations: Prostate Cancer Discovery and Development Program; Departments of Cancer Biology and Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Cell Biology, Radiation Oncology, Pathology, and Orthopedics, University of Massachusetts Medical School, Worcester; Biogen Idec, Inc., Cambridge, Massachusetts; and Department of Biochemistry, The University of Vermont, Burlington, Vermont
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR. Imaging the glycosylation state of cell surface glycoproteins by two-photon fluorescence lifetime imaging microscopy. Angew Chem Int Ed Engl 2013; 52:14045-9. [PMID: 24259491 PMCID: PMC3920747 DOI: 10.1002/anie.201307512] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/27/2022]
Abstract
Glycoproteins in focus Metabolic labeling of azido sugars combined with two-photon fluorescence lifetime imaging microscopy enables the visualization of specific glycoforms of endogenous proteins. This method can be utilized to detect glycosylated proteins in both cell culture and intact human tissue slices.
Collapse
Affiliation(s)
- Brian Belardi
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Adam de la Zerda
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA). Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - David R. Spiciarich
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| | - Sophia L. Maund
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305 (USA)
| | - Carolyn R. Bertozzi
- Departments of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 (USA)
| |
Collapse
|
91
|
Belardi B, de la Zerda A, Spiciarich DR, Maund SL, Peehl DM, Bertozzi CR. Imaging the Glycosylation State of Cell Surface Glycoproteins by Two-Photon Fluorescence Lifetime Imaging Microscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
92
|
Tyagi A, Raina K, Shrestha SP, Miller B, Thompson JA, Wempe MF, Agarwal R, Agarwal C. Procyanidin B2 3,3(″)-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3, and AP1 transcription factors. Nutr Cancer 2013; 66:736-46. [PMID: 24191894 PMCID: PMC4079462 DOI: 10.1080/01635581.2013.783602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, we identified procyanidin B2 3,3(″)-di-O-gallate (B2G2) as most active constituent of grape seed extract (GSE) for efficacy against prostate cancer (PCa). Isolating large quantities of B2G2 from total GSE is labor intensive and expensive, thereby limiting both efficacy and mechanistic studies with this novel anticancer agent. Accordingly, here we synthesized gram-scale quantities of B2G2, compared it with B2G2 isolated from GSE for possible equivalent biological activity and conducted mechanistic studies. Both B2G2 preparations inhibited cell growth, decreased clonogenicity, and induced cell cycle arrest and apoptotic death, comparable to each other, in various human PCa cell lines. Mechanistic studies focusing on transcription factors involved in apoptotic and survival pathways revealed that B2G2 significantly inhibits NF-κB and activator protein1 (AP1) transcriptional activity and nuclear translocation of signal transducer and activator of transcription3 (Stat3) in PCa cell lines, irrespective of their functional androgen receptor status. B2G2 also decreased survivin expression which is regulated by NF-κB, AP1, and Stat3 and increased cleaved PARP level. In summary, we report B2G2 chemical synthesis at gram-quantity with equivalent biological efficacy against human PCa cell lines and same molecular targeting profiles at key transcription factors level. The synthetic B2G2 will stimulate more research on prostate and possibly other malignancies in preclinical models and clinical translation.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suraj Prakash Shrestha
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bettina Miller
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John A. Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
93
|
Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 2013; 6:1347-61. [PMID: 24124379 PMCID: PMC3794844 DOI: 10.2147/ott.s36109] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The chemokine CXCL12 (SDF-1) and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs), plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.
Collapse
Affiliation(s)
- Monica Cojoc
- OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Shin M, Mizokami A, Kim J, Ofude M, Konaka H, Kadono Y, Kitagawa Y, Miwa S, Kumaki M, Keller ET, Namiki M. Exogenous SPARC suppresses proliferation and migration of prostate cancer by interacting with integrin β1. Prostate 2013; 73:1159-70. [PMID: 23532895 DOI: 10.1002/pros.22664] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/26/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND The matricellular protein secreted protein acidic and rich in cysteine (SPARC) plays an important role on tumor metastasis and progression in several cancers. However, the roles of SPARC in prostate cancer (PCa) remain unclear. METHODS To identify SPARC protein in prostate tissue, immunohistochemical analysis of SPARC was conducted using human prostate tissue microarray. To detect SPARC expression in prostate cancer (LNCaP, DU145, and PC-3) and stromal cells, RT-PCR, western blot analysis, and ELISA was conducted. To reveal the function of exogenous SPARC in PCa cells, AKT phosphorylation was confirmed by western blot analysis after coculture with stromal cells. Proliferation and migration of PCa cells were examined by addition of SPARC. The interaction between SPARC and integrin β1 was confirmed by western blot analysis after immunoprecipitation. RESULTS SPARC protein was expressed well in normal tissue compared with PCa tissue. ELISA showed high secreted SPARC protein in normal prostate-derived stromal cell (PrSC) compared with PCa-derived stromal cell (PCaSC) and PCa. PCa cells cocultured with PrSC showed reduced AKT phosphorylation more than with PCaSC. PCa cells cocultured with PrSC whose SPARC was knocked-down restored AKT phosphorylation. Moreover, PCa cells treated with SPARC led to reduced AKT phosphorylation. Immunoprecipitation with SPARC revealed interaction of SPARC and integrin β1 in PCa cells. Inhibited proliferation and migration of PCa cells by SPARC was restored by integrin β1 neutralizing antibody. CONCLUSIONS Reduced SPARC secretion from stromal cells might affect PCa progression mediating through limiting AKT phosphorylation after interaction with integrin β1.
Collapse
Affiliation(s)
- Minkyoung Shin
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
L-Leucine and L-isoleucine enhance growth of BBN-induced urothelial tumors in the rat bladder by modulating expression of amino acid transporters and tumorigenesis-associated genes. Food Chem Toxicol 2013; 59:137-44. [PMID: 23747718 DOI: 10.1016/j.fct.2013.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/09/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
We investigated the underlying mechanisms of L-leucine and L-isoleucine mediated promotion of bladder carcinogenesis using an initiation-promotion model. Rats were administered N-butyl-N-(4-hydroxybutyl) nitrosamine for 4 weeks and then fed AIN-93G basal diet or diet supplemented with L-leucine or L-isoleucine for 8 weeks followed by the basal diet for another 8 weeks. At the end of the experiment, week 20, there was a significant elevation of papillary and nodular (PN) hyperplasia multiplicity in the amino acid groups. L-Leucine and L-isoleucine transporters were up-regulated in PN hyperplasias and/or bladder tumors compared with concomitant normal-appearing bladder urothelium at weeks 12 and/or 20 in all groups. In addition, in normal-appearing bladder urothelium, significantly increased mRNA levels of y+LAT1, LAT2, LAT4, and 4F2hc were observed in the amino acid groups compared with the BBN control group at both weeks 12 and 20, and increased mRNA levels of LAT1 were observed at week 20. Furthermore, up-regulation of TNF-α, c-fos, β-catenin, p53, p21(Cip1/WAF1), cdk4, cyclin D1 and caspase 3 in the amino acid groups was detected in normal-appearing bladder urothelium. Overall, our results indicate that supplementation with l-leucine or l-isoleucine enhanced growth of bladder urothelial tumors by triggering expression of amino acid transporters and tumorigenesis-associated genes.
Collapse
|
96
|
Lovaas JD, Zhu L, Chiao CY, Byles V, Faller DV, Dai Y. SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells. Prostate 2013; 73:522-30. [PMID: 23038275 PMCID: PMC3839321 DOI: 10.1002/pros.22592] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Matrix metalloproteinase-2 (MMP2) has been shown to play an important role in cancer cell invasion and the expression of MMP2 is associated with the poor prognosis of prostate cancer; however, the mechanism of MMP2 expression is largely unknown. SIRT1 is a nicotinamide adenine dinucleotide-dependent histone deacetylase (class III HDAC) that has recently been shown to have implications in regulating cancer cell growth and apoptosis. The purpose of this study is to determine the role of SIRT1 in regulating MMP2 expression and tumor invasion in prostate cancer cells. METHODS The interfering RNAi was used to knockdown SIRT1 from prostate cancer cells. Immunoblots, RT-PCR, zymographic assays, co-immunoprecipitation, analysis and transwell assays were used to examine the effects of SIRT1 silencing on MMP2 expression and activity, on SIRT1 and MMP2 interaction, and on prostate cancer cell invasion. The immuno-histochemical assay was performed to study SIRT1 expression in prostate cancer tissues. RESULTS We show that SIRT1 associates and deacetylates MMP2 and SIRT1 regulates MMP2 expression by controlling MMP2 protein stability through the proteosomal pathway. Thus, we demonstrated a novel mechanism in that MMP2 expression can be regulated at the posttranslational level by SIRT1. Furthermore, we determined that SIRT1 inhibition reduced prostate cancer cell invasion and SIRT1 is highly expressed in advanced prostate cancer tissues. CONCLUSIONS SIRT1 is an important regulator of MMP2 expression, activity, and prostate cancer cell invasion. Overexpressed SIRT1 in advanced prostate cancer may play an important role in prostate cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Dai
- Address correspondence to: Yan Dai, Ph.D: Cancer Research Center, Boston University School of Medicine, 72 E. Concord St, L913, Boston, MA 02118, Tel: (617) 638-5650. Fax: (617) 638-5609,
| |
Collapse
|
97
|
Hussain AF, Tur MK, Barth S. An aptamer-siRNA chimera silences the eukaryotic elongation factor 2 gene and induces apoptosis in cancers expressing αvβ3 integrin. Nucleic Acid Ther 2013; 23:203-12. [PMID: 23544955 DOI: 10.1089/nat.2012.0408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Small interfering RNAs (siRNAs) silence gene expression by triggering the sequence-specific degradation of mRNAs, but the targeted delivery of such reagents remains challenging and a significant obstacle to therapeutic applications. One promising approach is the use of RNA aptamers that bind tumor-associated antigens to achieve the delivery of siRNAs to tumor cells displaying specific antigens. Wholly RNA-based constructs are advantageous because they are inexpensive to synthesize and their immunogenicity is low. We therefore joined an aptamer-recognizing alpha V and integrin beta 3 (αvβ3) integrin to a siRNA that targets eukaryotic elongation factor 2 and achieved for the first time the targeted delivery of a siRNA to tumor cells expressing αvβ3 integrin, causing the inhibition of cell proliferation and the induction of apoptosis specifically in tumor cells. The impact of our results on the development of therapeutic aptamer-siRNA constructs is discussed.
Collapse
Affiliation(s)
- Ahmad Fawzi Hussain
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, Helmholtz-Institute for Biomedical Engineering, Aachen, Germany
| | | | | |
Collapse
|
98
|
Balasubramaniam S, Comstock CES, Ertel A, Jeong KW, Stallcup MR, Addya S, McCue PA, Ostrander WF, Augello MA, Knudsen KE. Aberrant BAF57 signaling facilitates prometastatic phenotypes. Clin Cancer Res 2013; 19:2657-67. [PMID: 23493350 DOI: 10.1158/1078-0432.ccr-12-3049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE BAF57, a component of the switching-defective and sucrose nonfermenting (SWI/SNF) chromatin-remodeling complex conglomerate, modulates androgen receptor activity to promote prostate cancer. However, the molecular consequences of tumor-associated BAF57 expression have remained undefined in advanced disease such as castration-resistant prostate cancer and/or metastasis. EXPERIMENTAL DESIGN Clinical human specimens of primary and metastatic prostate cancer were immunohistochemically examined for tumor-grade association of BAF57 expression. Global gene expression analyses were conducted in models mimicking tumor-associated BAF57 expression. Aberrant BAF57-dependent gene expression changes, bypass of androgen-mediated signaling, and chromatin-specific SWI/SNF complex alterations with respect to cytoskeletal remodelers such as integrins were validated. Cell migration assays were used to profile the biologic phenotypes conferred under conditions simulating tumor-derived BAF57 expression. RESULTS Immunohistochemical quantitation of primary human specimens revealed that BAF57 was significantly and aberrantly elevated as a function of tumor grade. Critically, gene expression analyses showed that BAF57 deregulation circumvented androgen-mediated signaling, elicited α2 integrin upregulation, and altered other SWI/SNF complex components at the α2 integrin locus. BAF57-dependent α2 integrin induction conferred a prometastatic migratory advantage, which was attenuated by anti-α2 integrin antibody blockade. Furthermore, BAF57 was found to be markedly upregulated in human prostate cancer metastases of the lung, lymph node, and dura. CONCLUSION The findings herein, identifying tumor-associated BAF57 perturbation as a means to bypass androgen-signaling events that facilitate novel prometastatic phenotypes, link BAF57 upregulation to tumor dissemination. These data thereby establish BAF57 as a putative marker of metastatic potential that could be leveraged for therapeutic intervention.
Collapse
|
99
|
Dorff TB, Quinn DI. Speeding dating for docetaxel and recent debutantes in castration-resistant prostate cancer: 'plus or minus' may be a minus. Ann Oncol 2013; 24:270-272. [PMID: 23341479 DOI: 10.1093/annonc/mds641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Affiliation(s)
- T B Dorff
- Division of Cancer Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, USA
| | - D I Quinn
- Division of Cancer Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, USA.
| |
Collapse
|
100
|
Goswami S. Importance of integrin receptors in the field of pharmaceutical & medical science. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.32028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|