51
|
Baum M. Effect of catecholamines on rat medullary thick ascending limb chloride transport: interaction with angiotensin II. Am J Physiol Regul Integr Comp Physiol 2010; 298:R954-8. [PMID: 20147605 DOI: 10.1152/ajpregu.00758.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that in proximal and distal tubule nephron segments, peritubular ANG II stimulates sodium chloride transport. However, ANG II inhibits chloride transport in the medullary thick ascending limb (mTAL). Because ANG II and catecholamines are both stimulated by a decrease in extracellular fluid volume, the purpose of this study was to examine whether there was an interaction between ANG II and catecholamines to mitigate the inhibition in chloride transport by ANG II. In isolated perfused rat mTAL, 10(-8) M bath ANG II inhibited transport (from a basal transport rate of 165.6 +/- 58.8 to 58.8 +/- 29.4 pmol.mm(-1).min(-1); P < 0.01). Bath norepinephrine stimulated chloride transport (from a basal transport rate of 298.1 +/- 31.7 to 425.2 +/- 45.8 pmol.mm(-1).min(-1); P < 0.05) and completely prevented the inhibition in chloride transport by ANG II. The stimulation of chloride transport by norepinephrine was mediated entirely by its beta-adrenergic effect; however, both the beta- and alpha-adrenergic agonists isoproterenol and phenylephrine prevent the ANG II-mediated inhibition in chloride transport. In the presence of 10(-5) M propranolol, the effect of norepinephrine to prevent the inhibition of chloride transport by ANG II was still present. These data are consistent with an interaction of both alpha- and beta-catecholamines and ANG II on net chloride transport in the mTAL.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA.
| |
Collapse
|
52
|
|
53
|
Baum M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am J Physiol Renal Physiol 2009; 298:F235-47. [PMID: 19794108 DOI: 10.1152/ajprenal.00288.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epidemiologic studies from several different populations have demonstrated that prenatal insults, which adversely affect fetal growth, result in an increased incidence of hypertension when the offspring reaches adulthood. It is now becoming evident that low-birth-weight infants are also at increased risk for chronic kidney disease. To determine how prenatal insults result in hypertension and chronic kidney disease, investigators have used animal models that mimic the adverse events that occur in pregnant women, such as dietary protein or total caloric deprivation, uteroplacental insufficiency, and prenatal administration of glucocorticoids. This review examines the role of the kidney in generating and maintaining an increase in blood pressure in these animal models. This review also discusses how early postnatal adverse events may have repercussions in later life. Causes for the increase in blood pressure by perinatal insults are likely multifactorial and involve a reduction in nephron number, dysregulation of the systemic and intrarenal renin-angiotensin system, increased renal sympathetic nerve activity, and increased tubular sodium transport. Understanding the mechanism for the increase in blood pressure and renal injury resulting from prenatal insults may lead to therapies that prevent hypertension and the development of chronic kidney and cardiovascular disease.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9063, USA.
| |
Collapse
|
54
|
Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through a microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol 2009; 297:F1342-52. [PMID: 19726542 DOI: 10.1152/ajprenal.90734.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
55
|
Endothelin receptor blockade does not affect blood pressure or angiotensin II levels in CYP1A1-Ren-2 transgenic rats with acutely induced hypertension. Vascul Pharmacol 2009; 50:194-9. [DOI: 10.1016/j.vph.2009.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/08/2008] [Accepted: 01/21/2009] [Indexed: 11/22/2022]
|
56
|
Velez JCQ, Ryan KJ, Harbeson CE, Bland AM, Budisavljevic MN, Arthur JM, Fitzgibbon WR, Raymond JR, Janech MG. Angiotensin I is largely converted to angiotensin (1-7) and angiotensin (2-10) by isolated rat glomeruli. Hypertension 2009; 53:790-7. [PMID: 19289651 PMCID: PMC2706530 DOI: 10.1161/hypertensionaha.109.128819] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 01/09/2023]
Abstract
Intraglomerular renin-angiotensin system enzyme activities have been examined previously using glomerular lysates and immune-based assays. However, preparation of glomerular extracts compromises the integrity of their anatomic architecture. In addition, antibody-based assays focus on angiotensin (Ang) II detection, ignoring the generation of other Ang I-derived metabolites, some of which may cross-react with Ang II. Therefore, our aim was to examine the metabolism of Ang I in freshly isolated intact glomeruli using matrix-assisted laser desorption ionization time of flight mass spectrometry as an analytic method. Glomeruli from male Sprague-Dawley rats were isolated by sieving and incubated in Krebs buffer in the presence of 1 micromol/L of Ang I for 15 to 90 minutes, with or without various peptidase inhibitors. Peptide sequences were confirmed by matrix-assisted laser desorption ionization time of flight tandem mass spectrometry or linear-trap-quadrupole mass spectrometry. Peaks were quantified using customized valine-(13)C(.15)N-labeled peptides as standards. The most prominent peaks resulting from Ang I cleavage were 899 and 1181 m/z, corresponding with Ang (1-7) and Ang (2-10), respectively. Smaller peaks for Ang II, Ang (1-9), and Ang (3-10) also were detected. The disappearance of Ang I was significantly reduced during inhibition of aminopeptidase A or neprilysin. In contrast, captopril did not alter Ang I degradation. Furthermore, during simultaneous inhibition of aminopeptidase A and neprilysin, the disappearance of Ang I was markedly attenuated compared with all of the other conditions. These results suggest that there is prominent intraglomerular conversion of Ang I to Ang (2-10) and Ang (1-7), mediated by aminopeptidase A and neprilysin, respectively. Formation of these alternative Ang peptides may be critical to counterbalance the local actions of Ang II. Enhancement of these enzymatic activities may constitute potential therapeutic targets for Ang II-mediated glomerular diseases.
Collapse
Affiliation(s)
- Juan Carlos Q Velez
- Ralph H. Johnson Veterans Affairs Medical Center, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Rosivall L. Intrarenal renin-angiotensin system. Mol Cell Endocrinol 2009; 302:185-92. [PMID: 18977408 DOI: 10.1016/j.mce.2008.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/21/2008] [Accepted: 09/22/2008] [Indexed: 12/29/2022]
Abstract
Phylogenetically the renin-angiotensin system (RAS) is an ancient regulatory system which has attracted the attention of researchers for about a century. As a result of their efforts, different types of RAS inhibitors are now widely used as therapeutic medicines. The scientific enthusiasm toward RAS remains undiminished and new findings and discoveries are to be expected. Early investigators described the role of RAS in the local control of renal hemodynamics. This correlated well with the morphology of juxtaglomerular apparatus (JGA). Recently developed imaging techniques has allowed for in vivo visualization of cellular functions and the use of molecular biological tools have shed new light on the morphology and physiology of renal RAS, especially in connection with the tubular system. RAS has gained recognition to be more than just an endocrine regulatory system for regulating hemodynamics and water/salt metabolism. RAS is a local tissue and/or cellular regulator with a wide range of effects exerted via various receptors. Local RAS is crucially involved in basic physiological processes like ontogenesis and cell proliferation as well as pathophysiological conditions such as inflammation and tissue fibrosis. These findings may open new frontiers for novel therapeutic approaches. This review focuses only on some specific - less discussed and recently described or hypothesized - morphological and functional aspects of intrarenal RAS, including in vivo imaging of RAS, its effects on juxtaglomerular apparatus and possible cooperative mechanisms among various local renal RAS systems.
Collapse
Affiliation(s)
- László Rosivall
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
58
|
Ramseyer VD, Garvin JL. Angiotensin II decreases nitric oxide synthase 3 expression via nitric oxide and superoxide in the thick ascending limb. Hypertension 2009; 53:313-8. [PMID: 19075094 PMCID: PMC2683629 DOI: 10.1161/hypertensionaha.108.124107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/17/2008] [Indexed: 11/16/2022]
Abstract
NO produced by NO synthase type 3 (NOS3) in medullary thick ascending limbs (mTHALs) inhibits Cl(-) reabsorption. Acutely, angiotensin II stimulates thick ascending limb NO production. In endothelial cells, NO inhibits NOS3 expression. Therefore, we hypothesized that angiotensin II decreases NOS3 expression via NO in mTHALs. After 24 hours, 10 and 100 nmol/L of angiotensin II decreased NOS3 expression by 23+/-9% (n=6; P<0.05) and 50+/-5% (n=7; P<0.001), respectively, in primary cultures of rat mTHALs. NO synthase inhibition by 4 mmol/L of N(G)-nitro-L-arginine methyl ester hydrochloride prevented angiotensin II from decreasing NOS3 expression (Delta=-5+/-8%; n=5). In the presence of N(G)-nitro-L-arginine methyl ester hydrochloride, the addition of exogenous NO (1 micromol/L spermine NONOate) restored the angiotensin II-induced decreases in NOS3 expression (-22+/-6%; n=7; P<0.013). In addition, NO scavenging with 10 micromol/L of carboxy-PTIO abolished the effect of angiotensin II in NOS3 expression (Delta=-1+/-8% versus carboxy-PTIO alone; n=6). Angiotensin II increases superoxide, and superoxide scavenges NO. Thus, we tested whether scavenging superoxide enhances the angiotensin II-induced reduction in NOS3 expression. Surprisingly, treatment with 100 micromol/L of Tempol, a superoxide dismutase mimetic, blocked the angiotensin II-induced decrease in NOS3 expression (Delta=-3+/-7%; n=6). This effect was not because of increased hydrogen peroxide. We concluded that angiotensin II-induced decreases in NOS3 expression in mTHALs require both NO and superoxide. Decreased NOS3 expression by angiotensin II in mTHALs could contribute to increased salt retention observed in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Vanesa D. Ramseyer
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L. Garvin
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan
- Department of Physiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
59
|
The importance of the intrarenal renin-angiotensin system. ACTA ACUST UNITED AC 2008; 5:89-100. [PMID: 19065132 DOI: 10.1038/ncpneph1015] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/29/2008] [Indexed: 12/17/2022]
Abstract
Evidence suggests that virtually every organ system in the human body possesses a local renin-angiotensin system (RAS). These local systems seem to be independently regulated and compartmentalized from the plasma circulation, perhaps with the exception of the vascular endothelial system, which is responsible for maintaining physiological plasma levels of RAS components. Among these local RASs, the kidney RAS--the focus of this Review--seems to be of critical importance for the regulation of blood pressure and salt balance. Indeed, overactivation of the intrarenal RAS in certain disease states constitutes a pathogenic mechanism that leads to tissue injury, proliferation, fibrosis and ultimately, end-organ damage. Intrarenal levels of angiotensin peptides are considerably higher than those in plasma or any other organ tissue. Moreover, the kidney has a unique capacity to degrade angiotensin peptides, perhaps to maintain its intrinsic homeostasis. Interestingly, each local RAS has a distinct enzymatic profile resulting in different patterns of angiotensin fragment generation in different tissues. A better understanding of the autocrine and paracrine mechanisms involved in the renal RAS and other local RASs might direct future organ-specific therapy.
Collapse
|
60
|
Nagami GT, Chang JA, Plato ME, Santamaria R. Acid loading in vivo and low pH in culture increase angiotensin receptor expression: enhanced ammoniagenic response to angiotensin II. Am J Physiol Renal Physiol 2008; 295:F1864-70. [DOI: 10.1152/ajprenal.90410.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proximal tubule defends the body against acid challenges by enhancing its production and secretion of ammonia. Our previous studies demonstrated an enhanced ammoniagenic response of the proximal tubule to ANG II added to the lumen in vitro after an in vivo acid challenge. The present study examined the effect of NH4Cl acid loading in vivo on renal cortical type 1 ANG II (AT1) receptor expression, the effect of low pH on AT1receptor expression in a proximal tubule cells in culture, and their response to ANG II. A short-term (18 h) NH4Cl load in vivo resulted in increased renal cortical AT1receptor mRNA expression and increased brush-border membrane AT1receptor protein expression levels. Changing the cell culture pH from 7.4 to 7.0 for at least 2 h increased cell surface expression of AT1receptors and enhanced the stimulatory effect of ANG II on ammonia production rates. This increased ammoniagenic response to ANG II and the early enhancement of cell surface expression induced by exposure of the cultured proximal tubule cells to pH 7.0 were prevented by treatment with colchicine. These results suggest that, after acid challenges, the enhanced ammoniagenic response of the proximal tubule to ANG II is, in part, mediated by increased AT1receptor cell surface expression and that the enhancement of receptor expression plays an important role in the early response of the proximal tubule to acid challenges.
Collapse
|
61
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
62
|
Abstract
BACKGROUND Disrupting the enzyme cytochrome P4a14 in mice leads to hypertension, which is more severe in male than in female mice and appears to be due to androgen excess. Androgens are known to increase expression of angiotensinogen,but the effect of androgens on proximal tubule transport is unknown. OBJECTIVE These studies aimed to determine the effect of androgens on proximal tubule transport. METHODS Proximal tubules from knockout (KKO) and wild-ttype (WWT) (SSV/1129) mice were perfused in vitro. Volume resorption (JJ v ) was measured using 3 H-methoxy inulin as a volume marker. In separate experiments, male Sprague-Dawley rats were given dihydrotestosterone (DDHT) injections IP for 10 days. Proximal tubule transport was measured in this model using in vivo microperfusion. The renal expression of angiotensinogen was measured by Northern analysis, and brush border membrane protein abundance of the sodium-hhydrogen exchanger isoform 3 (NNHE3) was measured by Western blotting in the control and DHT-ttreated rats. RESULTS Mean (SSE) Jv was significantly elevated in proximal tubules from KO mice compared with WT mice (11.11 [0.006] vs 0.77 [0.112] nL/mm . mm, respectively; P<0.05). The mean proximal tubule Jv rate was significantly higher in DHT-ttreated rats than in control rats given vehicle injections (44.57 [0.331] vs 3.31 [0.223] nL/mm . min, respectively; P<0.01). Luminal perfusion with either enalaprilat or losartan decreased the proximal tubule J v rate in DHT-ttreated rats to a greater degree than in control rats. The DHT-treated rats had higher blood pressures and lower serum angiotensin II concentrations than did the control rats. CONCLUSION Results suggest that androgens may directly upregulate the proximal tubule reninangiotensin system, increase the expression of NHE3, and increase the Jv rate, thereby increasing extracel-lular volume and blood pressure and secondarily decreasing serum angiotensin II concentrations.
Collapse
|
63
|
Cervenka L, Vanecková I, Husková Z, Vanourková Z, Erbanová M, Thumová M, Skaroupková P, Opocenský M, Malý J, Chábová VC, Tesar V, Bürgelová M, Viklický O, Teplan V, Zelízko M, Kramer HJ, Navar LG. Pivotal role of angiotensin II receptor subtype 1A in the development of two-kidney, one-clip hypertension: study in angiotensin II receptor subtype 1A knockout mice. J Hypertens 2008; 26:1379-89. [PMID: 18551014 PMCID: PMC2704388 DOI: 10.1097/hjh.0b013e3282fe6eaa] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The present study was performed to examine in two-kidney, one-clip (2K1C) Goldblatt hypertensive mice: first, the relative contribution of angiotensin II receptor subtypes 1A (AT(1A)) and 1B (AT(1B)); second, the role of angiotensin II type 2 (AT(2)) receptors in the development of hypertension in wild-type (AT(1A)+/+) and AT(1A) receptor knockout (AT(1A)-/-) mice; and third, the role of increased nitric oxide synthase activity in counteracting the hypertensinogenic action of angiotensin II in this model. METHODS AT(1A)+/+ and AT(1A)-/- mice underwent clipping of one renal artery and were infused with either saline vehicle or selective AT(2) receptor agonist CGP-42112A (CGP). Blood pressure was monitored by radiotelemetry. Blood pressure responses to the nitric oxide synthase inhibitor nitro-L-arginine-methyl-ester were evaluated. RESULTS AT(1A)+/+ mice responded to clipping by a rise in blood pressure that was not modified by CGP infusion. Clip placement caused a slight increase in blood pressure in AT(1A)-/- mice that remained significantly lower than in AT(1A)+/+ mice. Acute nitric oxide synthase inhibition caused greater increase in blood pressure in 2K1C/AT(1A)+/+ than in AT(1A)+/+ mice. CONCLUSION The present data support the critical role of AT(1A) receptors in the development of 2K1C hypertension, whereas AT(1B) receptors play only a minor role in blood pressure regulation in this model of angiotensin II-dependent hypertension. Activation of AT(2) receptors does not play an antagonistic role in the AT(1) receptor-mediated hypertensinogenic actions of angiotensin II in this model. Finally, enhanced nitric oxide synthase activity plays a protective role by counteracting the vasoconstrictor influences of angiotensin II in 2K1C hypertensive mice.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Hypertension/genetics
- Hypertension/physiopathology
- Ligation
- Male
- Mice
- Mice, Knockout
- Nitric Oxide Synthase/physiology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/physiology
- Renal Artery
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Ludek Cervenka
- Department for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Efendiev R, Budu CE, Bertorello AM, Pedemonte CH. G-protein-coupled receptor-mediated traffic of Na,K-ATPase to the plasma membrane requires the binding of adaptor protein 1 to a Tyr-255-based sequence in the alpha-subunit. J Biol Chem 2008; 283:17561-7. [PMID: 18420589 PMCID: PMC2427321 DOI: 10.1074/jbc.m709260200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/15/2008] [Indexed: 11/06/2022] Open
Abstract
Motion of integral membrane proteins to the plasma membrane in response to G-protein-coupled receptor signals requires selective cargo recognition motifs that bind adaptor protein 1 and clathrin. Angiotensin II, through the activation of AT1 receptors, promotes the recruitment to the plasma membrane of Na,K-ATPase molecules from intracellular compartments. We present evidence to demonstrate that a tyrosine-based sequence (IVVY-255) present within the Na,K-ATPase alpha1-subunit is involved in the binding of adaptor protein 1. Mutation of Tyr-255 to a phenylalanine residue in the Na,K-ATPase alpha1-subunit greatly reduces the angiotensin II-dependent activation of Na,K-ATPase, recruitment of Na,K-ATPase molecules to the plasma membrane, and association of adaptor protein 1 with Na,K-ATPase alpha1-subunit molecules. To determine protein-protein interaction, we used fluorescence resonance energy transfer between fluorophores attached to the Na,K-ATPase alpha1-subunit and adaptor protein 1. Although angiotensin II activation of AT1 receptors induces a significant increase in the level of fluorescence resonance energy transfer between the two molecules, this effect was blunted in cells expressing the Tyr-255 mutant. Thus, results from different methods and techniques suggest that the Tyr-255-based sequence within the NKA alpha1-subunit is the site of adaptor protein 1 binding in response to the G-protein-coupled receptor signals produced by angiotensin II binding to AT1 receptors.
Collapse
Affiliation(s)
- Riad Efendiev
- College of Pharmacy, University of Houston, Houston, Texas 77204, USA.
| | | | | | | |
Collapse
|
65
|
Nagami GT. Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol 2008; 294:F874-80. [DOI: 10.1152/ajprenal.00286.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acidosis and angiotensin II stimulate ammonia production and transport by the proximal tubule. We examined the modulatory effect of the type 1 angiotensin II receptor blocker losartan on the ability of metabolic acidosis to stimulate ammonia production and secretion by mouse S2 proximal tubule segments. Mice given NH4Cl for 7 days developed metabolic acidosis (low serum bicarbonate concentration) and increased urinary excretion of ammonia. S2 tubule segments from acidotic mice displayed higher rates of ammonia production and secretion compared with those from control mice. However, when losartan was coadministered in vivo with NH4Cl, both the acidosis-induced increase in urinary ammonia excretion and the adaptive increase in ammonia production and secretion of microperfused S2 segments were largely blocked. In renal cortical tissue, losartan blocked the acid-induced increase in brush-border membrane NHE3 expression but had no effect on the acid-induced upregulation of phosphate-dependent glutaminase or phosphoenolpyruvate carboxykinase 1 in cortical homogenates. Addition of angiotensin II to the microperfusion solution enhanced ammonia secretion and production rates in tubules from NH4Cl-treated and control mice in a losartan-inhibitable manner. These results demonstrate that a 7-day acid challenge induces an adaptive increase in ammonia production and secretion by the proximal tubule and suggest that during metabolic acidosis, angiotensin II signaling is necessary for adaptive enhancements of ammonia excretion by the kidney and ammonia production and secretion by S2 proximal tubule segments, as mediated, in part, by angiotensin receptor-dependent enhancement of NHE3 expression.
Collapse
|
66
|
|
67
|
Padia SH, Kemp BA, Howell NL, Fournie-Zaluski MC, Roques BP, Carey RM. Conversion of renal angiotensin II to angiotensin III is critical for AT2 receptor-mediated natriuresis in rats. Hypertension 2007; 51:460-5. [PMID: 18158338 DOI: 10.1161/hypertensionaha.107.103242] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the kidney, angiotensin II (Ang II) is metabolized to angiotensin III (Ang III) by aminopeptidase A (APA). In turn, Ang III is metabolized to angiotensin IV by aminopeptidase N (APN). Renal interstitial (RI) infusion of Ang III, but not Ang II, results in angiotensin type-2 receptor (AT(2)R)-mediated natriuresis. This response is augmented by coinfusion of PC-18, a specific inhibitor of APN. The present study addresses the hypotheses that Ang II conversion to Ang III is critical for the natriuretic response. Sprague-Dawley rats received systemic angiotensin type-1 receptor (AT(1)R) blockade with candesartan (CAND; 0.01 mg/kg/min) for 24 hours before and during the experiment. After a control period, rats received either RI infusion of Ang II or Ang II+PC-18. The contralateral kidney received a RI infusion of vehicle in all rats. Mean arterial pressure (MAP) was monitored, and urinary sodium excretion rate (U(Na)V) was calculated separately from experimental and control kidneys for each period. In contrast to Ang II-infused kidneys, U(Na)V from Ang II+PC-18-infused kidneys increased from a baseline of 0.03+/-0.01 to 0.09+/-0.02 micromol/min (P<0.05). MAP was unchanged by either infusion. RI addition of PD-123319, an AT(2)R antagonist, inhibited the natriuretic response. Furthermore, RI addition of EC-33, a selective APA inhibitor, abolished the natriuretic response to Ang II+PC-18. These data demonstrate that RI addition of PC-18 to Ang II enables natriuresis mediated by the AT(2)R, and that conversion of Ang II to Ang III is critical for this response.
Collapse
Affiliation(s)
- Shetal H Padia
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1414, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Zhou Y, Boron WF. Role of endogenously secreted angiotensin II in the CO2-induced stimulation of HCO3 reabsorption by renal proximal tubules. Am J Physiol Renal Physiol 2007; 294:F245-52. [PMID: 17913836 DOI: 10.1152/ajprenal.00168.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies demonstrated that the proximal tubule (PT) responds to isolated increases in basolateral ([CO(2)](BL)) or "bath" CO(2) concentration by increasing the HCO(3)(-) reabsorption rate (J(HCO(3))). Blockade of the rabbit apical AT(1) receptor or knockout of the mouse AT(1A) receptor eliminates these effects, demonstrating a requirement for luminal ANG II that the PT itself synthesizes. In the present study, we examined the effects of the ACE inhibitor lisinopril on J(HCO(3)) in isolated perfused rabbit PTs (S2 segment), using out-of-equilibrium solutions to make isolated changes in [CO(2)](BL) at a fixed baseline HCO(3)(-) concentration of 22 mM and fixed baseline pH of 7.4. Adding 60 or 240 nM lisinopril (in vitro K(i): 0.5 or 1.2 nM) to the lumen had no effect. These results are not consistent with the hypothesis that the PT secretes either angiotensinogen or ANG I. However, adding 60 nM basolateral lisinopril significantly decreased J(HCO(3)) at a [CO(2)](BL) of 20%. Moreover, 240 nM basolateral lisinopril decreased baseline (i.e., at 5% CO(2)) J(HCO(3)) by one-half and completely eliminated the response to altering [CO(2)](BL) from 0 to 20%, but left intact the stimulatory effect of 10(-11) M basolateral ANG II. At extremely high concentrations (i.e., 100 microM), luminal lisinopril replicated the effects of 240 nM basolateral lisinopril. Our data are consistent with the hypothesis that lisinopril readily crosses the basolateral (but not apical) membrane to block ACE in a vesicular compartment. We conclude that the isolated PT predominantly secretes preformed ANG II, rather than angiotensinogen or ANG I.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
69
|
Cohen EP, Fish BL, Sharma M, Li XA, Moulder JE. Role of the angiotensin II type-2 receptor in radiation nephropathy. Transl Res 2007; 150:106-15. [PMID: 17656330 PMCID: PMC2034340 DOI: 10.1016/j.trsl.2007.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 01/08/2023]
Abstract
Experimental studies have shown that blockade of the angiotensin II type-1 (AT(1)) receptor is effective in the mitigation and treatment of radiation-induced chronic renal failure. Also, blockade of the angiotensin II type-2 (AT(2)) receptor with PD-123319 also had a modest, but reproducible, beneficial effect in experimental radiation nephropathy, and it might augment the efficacy of an AT(1) blocker (L-158,809). Those studies could not exclude the possibility that the effects of AT(2) blockade were nonspecific. The current studies confirm the efficacy of AT(2) blockade for mitigation of experimental radiation nephropathy but paradoxically find no detectable level of AT(2) receptor binding in renal membranes. However, the results of a bioassay showed that the circulating levels of the AT(2) blocker were orders-of-magnitude too low to block AT(1) receptors. The effect of AT(2) blockade in radiation nephropathy cannot be explained by binding to the AT(1) receptor, and the efficacy of the AT(1) blockade in the same model cannot be explained by unopposed overstimulation of the AT(2) receptor.
Collapse
Affiliation(s)
- Eric P Cohen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
70
|
Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA. Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 2007; 18:2085-93. [PMID: 17561490 DOI: 10.1681/asn.2006070753] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Final urinary acidification is mediated by the action of vacuolar H(+)-ATPases expressed in acid-secretory type A intercalated cells (A-IC) in the collecting duct. Angiotensin II (AngII) has profound effects on renal acid-base transport in the proximal tubule, distal tubule, and collecting duct. This study investigated the effects on vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts. AngII (10 nM) stimulated concanamycin-sensitive vacuolar H(+)-ATPase activity in A-IC in freshly isolated mouse outer medullary collecting ducts via AT(1) receptors, which were also detected immunohistochemically in A-IC. AngII increased intracellular Ca(2+) levels transiently. Chelation of intracellular Ca(2+) with BAPTA and depletion of endoplasmic reticulum Ca(2+) stores prevented the stimulatory effect on H(+)-ATPase activity. The effect of AngII on H(+)-ATPase activity was abolished by inhibitors of small G proteins and phospholipase C, by blockers of Ca(2+)-dependent and -independent isoforms of protein kinase C and extracellular signal-regulated kinase 1/2. Disruption of the microtubular network and cleavage of cellubrevin attenuated the stimulation. Finally, AngII failed to stimulate residual vacuolar H(+)-ATPase activity in A-IC from mice that were deficient for the B1 subunit of the vacuolar H(+)-ATPase. Thus, AngII presents a potent stimulus for vacuolar H(+)-ATPase activity in outer medullary collecting duct IC and requires trafficking of stimulatory proteins or vacuolar H(+)-ATPases. The B1 subunit is indispensable for the stimulation by AngII, and its importance for stimulation of vacuolar H(+)-ATPase activity may contribute to the inappropriate urinary acidification that is seen in patients who have distal renal tubular acidosis and mutations in this subunit.
Collapse
Affiliation(s)
- Florina Rothenberger
- Institute of Physiology and Centre for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
71
|
Zhuo JL, Li XC. Novel roles of intracrine angiotensin II and signalling mechanisms in kidney cells. J Renin Angiotensin Aldosterone Syst 2007; 8:23-33. [PMID: 17487823 PMCID: PMC2276849 DOI: 10.3317/jraas.2007.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin II (Ang II) has powerful sodium-retaining, growth-promoting and pro- inflammatory properties in addition to its physiological role in maintaining body salt and fluid balance and blood pressure homeostasis. Increased circulating and local tissue Ang II is one of the most important factors contributing to the development of sodium and fluid retention, hypertension and target organ damage. The importance of Ang II in the pathogenesis of hypertension and target organ injury is best demonstrated by the effectiveness of angiotensin- converting enzyme (ACE) inhibitors and AT1-receptor antagonists in treating hypertension and progressive renal disease including diabetic nephropathy. The detrimental effects of Ang II are mediated primarily by the AT1-receptor, while the AT2-receptor may oppose the AT1-receptor. The classical view of the AT1-receptor-mediated effects of Ang II is that the agonist binds its receptors at the cell surface, and following receptor phosphorylation, activates downstream signal transduction pathways and intracellular responses. However, evidence is emerging that binding of Ang II to its cell surface AT1-receptors also activates endocytotic (or internalisation) processes that promote trafficking of both the effector and the receptor into intracellular compartments. Whether internalised Ang II has important intracrine and signalling actions is not well understood. The purpose of this article is to review recent advances in Ang II research with focus on the mechanisms underlying high levels of intracellular Ang II in proximal tubule cells and the contribution of receptor-mediated endocytosis of extracellular Ang II. Further attention is devoted to the question whether intracellular and/or internalised Ang II plays a physiological role by activating cytoplasmic or nuclear receptors in proximal tubule cells. This information may aid future development of drugs to prevent and treat Ang II-induced target organ injury in cardiovascular and renal diseases by blocking intracellular and/or nuclear actions of Ang II.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Henry Ford Hospital, and Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48202, USA.
| | | |
Collapse
|
72
|
Husková Z, Kramer H, Vanourková Z, Thumová M, Malý J, Opocenský M, Skaroupková P, Kolský A, Vernerová Z, Cervenka L. Effects of Dietary Salt Load and Salt Depletion on the Course of Hypertension and Angiotensin II Levels in Male and Female Heterozygous Ren-2 Transgenic Rats. Kidney Blood Press Res 2007; 30:45-55. [PMID: 17259738 DOI: 10.1159/000099028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 12/12/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the present study we evaluated plasma and kidney angiotensin II (ANG II) levels in female and male Ren-2 transgenic rats (TGR) in comparison to age-matched female and male normotensive Hannover Sprague-Dawley rats. METHODS The rats were maintained on a normal sodium (NS) diet (0.6% NaCl) or fed a high sodium (HS) diet (2% NaCl) for 4 days or were sodium depleted by administration of 40 mg furosemide per liter drinking water overnight followed by 3 days of low sodium diet (0.01% NaCl) (LS + F). ANG II levels were determined by radioimmunoassay. RESULTS Female TGR at the age of 38 days were already hypertensive and had developed cardiac hypertrophy, whereas male TGR at this age still exhibited a normotensive phenotype. HS diet increased the blood pressure (BP) but did not alter the ANG II levels in TGR at any age. LS + F decreased the BP without significant change in ANG II concentrations in TGR. Female TGR responded to salt loading and salt depletion by more pronounced changes in BP than male TGR. CONCLUSIONS Female TGR develop hypertension more rapidly and the salt-sensitive component of hypertension is more pronounced in female than in male TGR.
Collapse
Affiliation(s)
- Zuzana Husková
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Mitchell KD, Bagatell SJ, Miller CS, Mouton CR, Seth DM, Mullins JJ. Genetic clamping of renin gene expression induces hypertension and elevation of intrarenal Ang II levels of graded severity in Cyp1a1-Ren2 transgenic rats. J Renin Angiotensin Aldosterone Syst 2007; 7:74-86. [PMID: 17083061 DOI: 10.3317/jraas.2006.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Transgenic rats with inducible angiotensin II (Ang II)-dependent hypertension (strain name: TGR[Cyp1a1-Ren2]) were generated by inserting the mouse Ren2 renin gene, fused to the cytochrome P450 1a1 (Cyp1a1) promoter, into the genome of the rat. The present study was performed to characterise the changes in plasma and kidney tissue Ang II levels and in renal haemodynamic function in Cyp1a1-Ren2 rats following induction of either slowly developing or malignant hypertension in these transgenic rats. MATERIALS AND METHODS Arterial blood pressure (BP) and renal haemodynamics and excretory function were measured in pentobarbital sodium-anaesthetised Cyp1a1- Ren2 rats fed a normal diet containing either a low dose (0.15%, w/w for 1415 days) or high dose (0.3%, w/w for 1112 days) of the aryl hydrocarbon indole-3-carbinol (I3C) to induce slowly developing and malignant hypertension, respectively. In parallel experiments, arterial blood samples and kidneys were harvested for measurement of Ang II levels by radioimmunoassay. RESULTS Dietary I3C increased plasma renin activity (PRA), plasma Ang II levels, and arterial BP in a dose-dependent manner. Induction of different fixed levels of renin gene expression and PRA produced hypertensive phenotypes of varying severity with rats developing either mild or malignant forms of hypertensive disease. Administration of I3C, at a dose of 0.15% (w/w), induced a slowly developing form of hypertension whereas administration of a higher dose (0.3%) induced a more rapidly developing hypertension and the clinical manifestations of malignant hypertension including severe weight loss. Both hypertensive phenotypes were characterised by reduced renal plasma flow, increased filtration fraction, elevated PRA, and increased plasma and intrarenal Ang II levels. These I3C-induced changes in renal haemodynamics, PRA and kidney Ang II levels were more pronounced in Cyp1a1-Ren2 rats with malignant hypertension. Chronic administration of the AT1-receptor antagonist, hypertension, the associated changes in renal haemodynamics, and the augmentation of intrarenal Ang II levels. CONCLUSIONS Activation of AT1-receptors by Ang II generated as a consequence of induction of the Cyp1a1-Ren2 transgene mediates the increased arterial pressure and the associated reduction of renal haemodynamics and enhancement of intrarenal Ang II levels in hypertensive Cyp1a1-Ren2 transgenic rats.
Collapse
Affiliation(s)
- Kenneth D Mitchell
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Vanourková Z, Kramer HJ, Husková Z, Vanecková I, Opocenský M, Chábová VC, Tesar V, Skaroupková P, Thumová M, Dohnalová M, Mullins JJ, Cervenka L. AT1 receptor blockade is superior to conventional triple therapy in protecting against end-organ damage in Cyp1a1-Ren-2 transgenic rats with inducible hypertension. J Hypertens 2006; 24:2465-72. [PMID: 17082731 DOI: 10.1097/01.hjh.0000251909.00923.22] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE In the present study we compared the effects of treatment with the AT1 receptor antagonist candesartan and of 'triple therapy' (hydralazine, hydrochlorothiazide, reserpine) on the course of blood pressure, cardiac hypertrophy and angiotensin II concentrations after induction of hypertension in transgenic rats with inducible expression of the mouse renin gene (Cyp1a1-Ren-2 rats). METHODS Hypertension was induced in Cyp1a1-Ren-2 rats through dietary administration of the natural xenobiotic indole-3-carbinol (I3C, 0.3%) for 4 days. Starting on the day before administration of I3C, rats were treated either with candesartan or received triple therapy for 9 days. Systolic blood pressure was measured in conscious animals. Rats were decapitated and angiotensin II levels in plasma and in whole kidney and left ventricular tissues were determined by radioimmunoassay. RESULTS Administration of I3C resulted in the development of severe hypertension and cardiac hypertrophy that was accompanied by marked elevations of plasma and tissue angiotensin II concentrations. Candesartan treatment prevented the development of hypertension and cardiac hypertrophy and was associated with a reduction of tissue angiotensin II concentrations. In contrast, triple therapy, despite maintaining systolic blood pressure in the normotensive range, did not prevent the development of cardiac hypertrophy and tissue angiotensin II augmentations. CONCLUSIONS Our findings indicate that hypertension in Cyp1a1-Ren-2 rats is a clearly angiotensin II-dependent model of hypertension with elevated circulating and tissue angiotensin II concentrations, and that antihypertensive treatment with AT1 receptor blockade is superior to conventional triple therapy in effective protection against hypertension-induced end-organ damage in this rat model.
Collapse
Affiliation(s)
- Zdenka Vanourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Activation of D
3
Dopamine Receptor Decreases Angiotensin II Type 1 Receptor Expression in Rat Renal Proximal Tubule Cells. Circ Res 2006; 99:494-500. [PMID: 16902178 DOI: 10.1161/01.res.0000240500.96746.ec] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dopaminergic and renin angiotensin systems interact to regulate blood pressure. Disruption of the D
3
dopamine receptor gene in mice produces renin-dependent hypertension. In rats, D
2
-like receptors reduce angiotensin II binding sites in renal proximal tubules (RPTs). Because the major D
2
-like receptor in RPTs is the D
3
receptor, we examined whether D
3
receptors regulate angiotensin II type 1 (AT
1
) receptors in rat RPT cells. The effect of D
3
receptors on AT
1
receptors was studied in vitro and in vivo. The D
3
receptor agonist PD128907 decreased AT
1
receptor protein and mRNA in WKY RPT cells and increased it in SHR cells. PD128907 increased D
3
receptors in WKY cells but had no effect in SHR cells. D
3
/AT
1
receptors colocalized in RPT cells; D
3
receptor stimulation decreased the percent amount of D
3
receptors that coimmunoprecipitated with AT
1
receptors to a greater extent in WKY than in SHR cells. However, D
3
receptor stimulation did not change the percent amount of AT
1
receptors that coimmunoprecipitated with D
3
receptors in WKY cells and markedly decreased the coimmunoprecipitation in SHR cells. The D
3
receptor also regulated the AT
1
receptor in vivo because AT
1
receptor expression was increased in kidneys of D
3
receptor–null mice compared with wild type littermates. D
3
receptors may regulate AT
1
receptor function by direct interaction with and regulation of AT
1
receptor expression. One mechanism of hypertension may be related to increased renal expression of AT
1
receptors due decreased D
3
receptor regulation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Benzopyrans/pharmacology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Oxazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/deficiency
- Receptors, Dopamine D3/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Shaltout HA, Westwood BM, Averill DB, Ferrario CM, Figueroa JP, Diz DI, Rose JC, Chappell MC. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol 2006; 292:F82-91. [PMID: 16896185 DOI: 10.1152/ajprenal.00139.2006] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the evidence that angiotensin-converting enzyme (ACE)2 is a component of the renin-angiotensin system (RAS), the influence of ACE2 on angiotensin metabolism within the kidney is not well known, particularly in experimental models other than rats or mice. Therefore, we investigated the metabolism of the angiotensins in isolated proximal tubules, urine, and serum from sheep. Radiolabeled [(125)I]ANG I was hydrolyzed primarily to ANG II and ANG-(1-7) by ACE and neprilysin, respectively, in sheep proximal tubules. The ACE2 product ANG-(1-9) from ANG I was not detected in the absence or presence of ACE and neprilysin inhibition. In contrast, the proximal tubules contained robust ACE2 activity that converted ANG II to ANG-(1-7). Immunoblots utilizing an NH(2) terminal-directed ACE2 antibody revealed a single 120-kDa band in proximal tubule membranes. ANG-(1-7) was not a stable product in the tubule preparation and was rapidly hydrolyzed to ANG-(1-5) and ANG-(1-4) by ACE and neprilysin, respectively. Comparison of activities in the proximal tubules with nonsaturating concentrations of substrate revealed equivalent activities for ACE (ANG I to ANG II: 248 +/- 17 fmol x mg(-1) x min(-1)) and ACE2 [ANG II to ANG-(1-7): 253 +/- 11 fmol x mg(-1) x min(-1)], but lower neprilysin activity [ANG II to ANG-(1-4): 119 +/- 24 fmol x mg(-1) x min(-1); P < 0.05 vs. ACE or ACE2]. Urinary metabolism of ANG I and ANG II was similar to the proximal tubules; soluble ACE2 activity was also detectable in sheep serum. In conclusion, sheep tissues contain abundant ACE2 activity that converts ANG II to ANG-(1-7) but does not participate in the processing of ANG I into ANG-(1-9).
Collapse
Affiliation(s)
- Hossam A Shaltout
- Department of Obstetrics and Gynecology, Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1095, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Li XC, Carretero OA, Navar LG, Zhuo JL. AT1 receptor-mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol 2006; 291:F375-83. [PMID: 16478976 PMCID: PMC2276851 DOI: 10.1152/ajprenal.00405.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Long-term angiotensin II (ANG II) administration is associated with increased ANG II accumulation in the kidney, but intrarenal compartment(s) involved in this response remains to be determined. We tested the hypothesis that 1) extracellular ANG II is taken up by proximal tubule cells (PTCs) through AT(1) receptor-mediated endocytosis, 2) this process is regulated by cytoskeleton microtubule- and tyrosine phosphatase-dependent mechanisms, and 3) AT(1) receptor-mediated endocytosis of ANG II has a functional relevance by modulating intracellular cAMP signaling. In cultured PTCs, [(125)I]Tyr-labeled ANG II and fluorescein labeled-ANG II were internalized in a time-dependent manner and colocalized with the endosome marker Alexa Fluor 594-transferrin. Endocytosis of extracellular ANG II was inhibited by the AT(1) receptor blocker losartan (16.5 +/- 4.6%, P < 0.01 vs. ANG II, 78.3 +/- 6.2%) and by the tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 30.0 +/- 3.5%, P < 0.05 vs. ANG II). Intracellular ANG II levels were increased by approximately 58% (basal, 229.8 +/- 11.4 vs. ANG II, 361.3 +/- 11.8 pg ANG II/mg protein, P < 0.01), and the responses were blocked by losartan (P < 0.01), the cytoskeleton microtubule inhibitor colchicine (P < 0.05), and PAO (P < 0.01), whereas depletion of clathrin-coated pits with hyperosmotic sucrose had no effect (356.1 +/- 25.5 pg ANG II/mg protein, not significant). ANG II accumulation was associated with significant inhibition of both basal (control, 15.5 +/- 2.8 vs. ANG II, 9.1 +/- 2.4 pmol/mg protein, P < 0.05) and forskolin-stimulated cAMP signaling (forskolin, 68.7 +/- 8.6 vs. forskolin + ANG II, 42.8 +/- 13.8 pmol/mg protein, P < 0.01). These effects were blocked by losartan and PAO. We conclude that extracellular ANG II is internalized in PTCs through AT(1) receptor-mediated endocytosis and that internalized ANG II may play a functional role in proximal tubule cells by inhibiting intracellular cAMP signaling.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Arsenicals/pharmacology
- Cells, Cultured
- Colchicine/pharmacology
- Colforsin/pharmacology
- Cyclic AMP/physiology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Endocytosis/physiology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/physiology
- Imidazoles/pharmacology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/metabolism
- Losartan/pharmacology
- Microtubules/drug effects
- Microtubules/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/physiology
- Pyridines/pharmacology
- Rabbits
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/analysis
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/physiology
- Signal Transduction/physiology
- Sucrose/pharmacology
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit 48202, USA
| | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Matthew E Dickson
- Medical Scientist Training Program and Genetics Program, Carver College of Medicine, University of Iowa, Iowa City, Ia 52242, USA
| | | |
Collapse
|
79
|
Thomson SC, Deng A, Wead L, Richter K, Blantz RC, Vallon V. An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. J Clin Invest 2006; 116:1110-6. [PMID: 16557296 PMCID: PMC1409739 DOI: 10.1172/jci26092] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 02/07/2006] [Indexed: 12/15/2022] Open
Abstract
We set out to confirm the long-held, but untested, assumption that dietary salt affects proximal reabsorption through reciprocal effects on the renin-angiotensin system in a way that facilitates salt homeostasis. Wistar rats were fed standard or high-salt diets for 7 days and then subjected to renal micropuncture for determination of single-nephron GFR (SNGFR) and proximal reabsorption. The tubuloglomerular feedback (TGF) system was used as a tool to manipulate SNGFR in order to distinguish primary changes in net proximal reabsorption (Jprox) from changes due to glomerulotubular balance. The influence of Ang II over Jprox was determined by the sensitivity of Jprox to the AT1 receptor antagonist, losartan. Plasma, whole kidneys, and fluid from midproximal tubules were assayed for Ang II content by radioimmunoassay. In rats on the standard diet, losartan reduced Jprox by 25% and reduced the maximum range of the TGF response by 50%. The high-salt diet suppressed plasma and whole-kidney Ang II levels. But the high-salt diet failed to reduce the impact of losartan on Jprox or the TGF response and actually caused tubular fluid Ang II content to increase. The persistent effect of Ang II on Jprox prevented a major rise in late proximal flow rate in response to the high-salt diet. These observations challenge the traditional model and indicate that the role of proximal tubular Ang II in salt-replete rats is to stabilize nephron function rather than to contribute to salt homeostasis.
Collapse
Affiliation(s)
- Scott C Thomson
- Department of Medicine, Division of Nephrology - Hypertension, University of California, San Diego, California 92161, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Hartner A, Porst M, Klanke B, Cordasic N, Veelken R, Hilgers KF. Angiotensin II formation in the kidney and nephrosclerosis in Ren-2 hypertensive rats. Nephrol Dial Transplant 2006; 21:1778-85. [PMID: 16522658 DOI: 10.1093/ndt/gfl065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ren-2 transgenic hypertensive rats develop malignant hypertensive nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin. We tested the hypothesis that local angiotensin II formation occurs at sites of renal vascular and interstitial injury in this model. METHODS Heterozygous Ren-2 transgenic rats were compared with normotensive Sprague-Dawley-Hannover control rats and Ren-2 transgenic rats treated with a very low dose of an angiotensin II type 1 (AT1) receptor antagonist, 1 mg/kg/day losartan, for 4 weeks. Blood pressure measurements, quantifications of urinary albumin, plasma and tissue angiotensin II as well as immunohistochemical analyses were performed. RESULTS Systolic blood pressure was not affected by losartan during the study but intra-arterial recordings revealed a decrease of blood pressure. Losartan reduced albumin excretion, cell proliferation, macrophage influx, collagen I and collagen IV deposition. Plasma angiotensin II was decreased, while kidney tissue angiotensin II content was increased in Ren-2 transgenic rats compared with control rats. In Ren-2 transgenic rats, juxtaglomerular renin and angiotensin II staining were reduced, but there was a marked angiotensin II staining at foci of tubulo-interstitial fibrosis and at proliferative malignant vascular lesions. CONCLUSION We conclude that local angiotensin II formation is increased in proliferative or fibrotic kidney lesions in the Ren-2 transgenic rat. Local angiotensin II formation may help to explain why the AT1 receptor antagonist prevents or ameliorates this transgenic model of malignant nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin.
Collapse
Affiliation(s)
- Andrea Hartner
- University Hospital for Children and Adolescents, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
81
|
Siragy HM. Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 2006; 15:50-3. [PMID: 16340666 DOI: 10.1097/01.mnh.0000196148.42460.4f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW All components of the renin-angiotensin-aldosterone system are present within the kidney. Renin, renin receptor, angiotensinogen and angiotensin AT1 and AT2 receptor and aldosterone synthase messenger RNA and protein are present in close proximity to the renal vasculature and tubules. The interaction between the different components of the renin-angiotensin-aldosterone system determines the level of activity of this system and in turn may influence the regulation of blood pressure and renal sodium handling. RECENT FINDINGS Angiotensin through the stimulation of its subtype AT2 receptor regulates sodium excretion, renin synthesis and secretion. Aldosterone synthase mRNA and protein are expressed in glomeruli, renal vasculature and tubules, and are regulated by angiotensin AT1 receptor, diabetes and salt. Although aldosterone is known to influence renal tubular channels with the subsequent enhancement of sodium reabsorption, it is not clear if the renally produced aldosterone also influences renal sodium handling or blood pressure regulation. In addition, angiotensin II influences kidney function and structure through the stimulation of renal inflammation. New data suggest that the renal AT1 receptor plays an important role in the determination of blood pressure levels, and this effect is unique and non-redundant in the actions of extrarenal AT1 receptors. SUMMARY The finding of new functions and components of the renin-angiotensin-aldosterone system clearly adds new knowledge to our understanding of how angiotensin II influences the kidney and blood pressure.
Collapse
Affiliation(s)
- Helmy M Siragy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1409, USA.
| |
Collapse
|
82
|
Hiranyachattada S, Saetew S, Harris PJ. Acute effects of candesartan on rat renal haemodynamics and proximal tubular reabsorption. Clin Exp Pharmacol Physiol 2005; 32:714-20. [PMID: 16173927 DOI: 10.1111/j.1440-1681.2005.04253.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The effects of the specific angiotensin II receptor type I (AT1) antagonist candesartan on renal proximal tubular sodium transport were studied using lithium clearance. The effects of candesartan on mean arterial blood pressure (MABP), renal plasma flow (RPF), glomerular filtration rate (GFR) and sodium and potassium excretion were also investigated. 2. Male Wistar rats were anaesthetized with Inactin (thiobutabarbital sodium; Sigma, St Louis, MO, USA). Clearance markers (8% polyfructosan, 1% para-aminohippuric acid and 4 mmol/l lithium chloride) were given into a jugular vein at the rate of 1.6 mL/h per 100 g bodyweight. Candesartan was given as bolus injection (0.01, 0.1, 0.2, 0.5 and 1.0 mg/kg) followed by 60 min continuous infusion at a rate of 0.5, 5, 10, 25 and 50 microg/min per kg, respectively. 3. The non-depressor dose of candesartan (0.01 mg/kg) did not alter RPF or GFR, whereas diuresis, natriuresis and kaliuresis were observed. The higher doses of candesartan reduced MABP, RPF and GFR, although diuresis, natriuresis and kaliuresis were still observed. 4. Renal tubular sodium and water reabsorption were inhibited after intravenous administration of candesartan independently of an alteration in arterial pressure. Lithium clearance data indicate that the site of inhibition was in the proximal nephron segment.
Collapse
Affiliation(s)
- Siriphun Hiranyachattada
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hatyai, Songkla, Thailand.
| | | | | |
Collapse
|
83
|
Zeng C, Wang Z, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA. Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 2005; 46:799-805. [PMID: 16172423 DOI: 10.1161/01.hyp.0000184251.01159.72] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The dopaminergic and renin-angiotensin systems regulate blood pressure, in part, by affecting sodium transport in renal proximal tubules (RPTs). We have reported that activation of a D1-like receptor decreases AT1 receptor expression in the mouse kidney and in immortalized RPT cells from Wistar-Kyoto (WKY) rats. The current studies were designed to test the hypothesis that activation of the AT1 receptor can also regulate the D1 receptor in RPT cells, and this regulation is aberrant in spontaneously hypertensive rats (SHRs). Long-term (24 hours) stimulation of RPT cells with angiotensin II, via AT1 receptors increased total cellular D1 receptor protein in a time- and concentration-dependent manner in WKY but not in SHR cells. Short-term stimulation (15 minutes) with angiotensin II did not affect total cellular D1 receptor protein in either rat strain. However, in the short-term experiments, angiotensin II decreased cell surface membrane D1 receptor protein in WKY but not in SHR cells. D1 and AT1 receptors colocalized (confocal microscopy) and their coimmunoprecipitation was greater in WKY than in SHRs. However, AT1/D1 receptor coimmunoprecipitation was decreased by angiotensin II (10(-8) M/24 hours) to a similar extent in WKY (-22+/-8%) and SHRs (-22+/-12%). In summary, these studies show that AT1 and D1 receptors interact differently in RPT cells from WKY and SHRs. It is possible that an angiotensin II-mediated increase in D1 receptors and dissociation of AT1 from D1 receptors serve to counter regulate the long-term action of angiotensin II in WKY rats; different effects are seen in SHRs.
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.
| | | | | | | | | | | | | |
Collapse
|
84
|
Zeng C, Wang Z, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA. Aberrant ETB receptor regulation of AT1 receptors in immortalized renal proximal tubule cells of spontaneously hypertensive rats. Kidney Int 2005; 68:623-31. [PMID: 16014039 DOI: 10.1111/j.1523-1755.2005.00440.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The renin-angiotensin and endothelin systems interact to regulate blood pressure, in part, by affecting sodium transport in the kidney. Because angiotensin II type 1 (AT(1)) receptor activation increases ETB receptor expression in renal proximal tubule cells from Wistar-Kyoto (WKY) rat, we hypothesize that ETB receptor activation may also regulate AT(1) receptor expression. Furthermore, ETB receptor regulation of the AT(1) receptor may be different in the WKY and spontaneously hypertensive rat (SHR). METHOD AT(1) and ETB receptors were studied in immortalized renal proximal tubule cells from WKY and SHRs, using immunoblotting, confocal microscopic colocalization, and immunoprecipitation. RESULTS In WKY renal proximal tubule cells, an ETB receptor agonist, BQ3020, decreased AT(1) receptor protein in a time- and concentration-dependent manner [median effective concentration (EC(50)) = 3.2 x 10(-10) mol/L, t(1/2)= 15 hours]. The inhibitory effect of BQ3020 (10(-8) mol/L/24 hours) on AT(1) receptor protein was blocked by an ETB receptor antagonist (BQ788). However, BQ3020 (10(-8) mol/L/24 hours) increased ETB receptor protein in WKY renal proximal tubule cells. In contrast, in SHR renal proximal tubule cells, BQ3020 (10(-8) mol/L/24 hours) no longer affected AT(1) or ETB receptor protein. AT(1)/ETB receptors colocalized and coimmunoprecipitated in WKY and SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment had no effect on AT(1)/ETB coimmunoprecipitation in WKY but decreased it in SHRs. BQ3020 (10(-8) mol/L/15 minutes) treatment increased AT(1) receptor phosphorylation in WKY, but decreased it in SHRs. CONCLUSION ETB receptors regulate AT(1) receptors by direct physical receptor interaction and receptor expression. An impaired ETB receptor regulation of the AT(1) receptor may participate in the pathogenesis of high blood pressure in the SHR.
Collapse
MESH Headings
- Animals
- Cell Line, Transformed
- Endothelins/pharmacology
- Hypertension, Renal/metabolism
- Immunoprecipitation
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Peptide Fragments/pharmacology
- Phosphorylation/drug effects
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Endothelin B/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
85
|
Shin GT, Kim WH, Yim H, Kim MS, Kim H. Effects of suppressing intrarenal angiotensinogen on renal transforming growth factor-beta1 expression in acute ureteral obstruction. Kidney Int 2005; 67:897-908. [PMID: 15698429 DOI: 10.1111/j.1523-1755.2005.00154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) mediates the up-regulation of fibrogenic factors such as transforming growth factor-beta1 (TGF-beta1) in chronic renal diseases. In addition, it has been proposed that the intrarenal renin-angiotensin system (RAS) is as important as the systemic RAS in kidney disease progression. METHODS We suppressed angiotensinogen (AGT) gene expression in the kidney by transferring recombinant adenoviral vectors carrying a transgene expressing AGT antisense mRNA, and determined the effect of the local inhibition of the RAS on TGF-beta1 synthesis in the kidneys of rats with unilateral ureteral obstruction (UUO). Immediately after UUO, recombinant adenovirus vectors were injected intraparenchymally into the cortex of obstructed kidneys. RESULTS beta-galactosidase (beta-gal)-stained kidney sections revealed the efficient transduction of the recombinant adenoviral vectors into tubular epithelial cells. Kidney cortex injected with AGT antisense showed significantly lower native AGT mRNA and protein expressions than control UUO kidneys at 24 hours and 5 days post-UUO. TGF-beta1 was significantly up-regulated in the renal cortex 24 hours and 5 days post-UUO, whereas AGT antisense-injected UUO rats showed significantly reduced TGF-beta1 expression compared to control UUO rats. Both fibronectin and collagen type I expressions were increased 24 hours and 5 days post-UUO, and these augmentations were considerably reduced by AGT antisense RNA treatment. CONCLUSION This study demonstrates that the suppression of intrarenal RAS prevents the formation of renal cortical TGF-beta1, and of related fibrogenic factors, in early UUO.
Collapse
Affiliation(s)
- Gyu-Tae Shin
- Department of Nephrology, Ajou University School of Medicine, Suwon, South Korea.
| | | | | | | | | |
Collapse
|
86
|
Brewster UC, Perazella MA. Can dual blockade of the renin–angiotensin system reduce progression of kidney disease beyond monotherapy? Expert Opin Drug Saf 2005; 3:9-23. [PMID: 14680458 DOI: 10.1517/14740338.3.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well-accepted that therapies directed at the renin-angiotensin system (RAS) reduce the progression of chronic kidney disease. Angiotensin-converting enzyme (ACE) inhibitors and the angiotensin receptor blockers (ARBs) are currently available to interrupt this cascade. Their positive actions result from better blood pressure control, a reduction in glomerular capillary pressure and a decrease in proteinuria. Blockade of the RAS may also reduce renal scarring by blunting direct pro-fibrotic effects of angiotensin II and aldosterone. Although these drugs successfully reduce urinary protein excretion and improve renal survival, a significant number of patients continue to progress to end stage renal disease. It is possible, however, that dual blockade of the RAS with an ACE inhibitor and an ARB might offer further benefit beyond using either agent alone. Optimally, the goal should be to completely halt the progression of kidney disease. With these concepts in mind, this paper will review the RAS and its effects on the kidney. The efficacy and safety of dual RAS blockade in proteinuric renal diseases will be examined. Finally, recommendations for utilising combined therapy with ACE inhibitors and ARBs will be provided.
Collapse
Affiliation(s)
- Ursula C Brewster
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, LMP 2071, 333 Cedar Street, New Haven, CT 06520-8029, USA.
| | | |
Collapse
|
87
|
|
88
|
Gociman B, Rohrwasser A, Lantelme P, Cheng T, Hunter G, Monson S, Hunter J, Hillas E, Lott P, Ishigami T, Lalouel JM. Expression of angiotensinogen in proximal tubule as a function of glomerular filtration rate. Kidney Int 2004; 65:2153-60. [PMID: 15149328 DOI: 10.1111/j.1523-1755.2004.00635.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Proximal tubule (PT) angiotensinogen (AGT) is part of a tubular renin-angiotensin system (RAS) that participates in the regulation of sodium reabsorption along the entire nephron. Physiologic maneuvers affecting AGT expression in PT also affect systemic RAS. Here, we tested the hypothesis that PT AGT is regulated by increased glomerular filtration rate (GFR). METHODS Complete unilateral nephrectomy (UNX) in mice was used to induce a sustained increase in GFR in the remaining kidney. AGT expression was monitored by quantitative reverse transcription-polymerase chain reaction (RT-PCR). AGT protein in PT was investigated by semiquantitative histology. We also measured AGT concentration in plasma and in 24-hour urine by a specific enzyme-linked immunosorbent assay (ELISA). RESULTS Seven weeks after nephrectomy, UNX animals exhibited a 2-fold increase in tubular AGT mRNA (P <.001) compared with sham-operated control animals. The proportion of PT sections exhibiting AGT immunostaining was significantly increased at day 3 (P <.05), and remained elevated at seven weeks (UNX = 0.63 +/- 0.09, sham = 0.38 +/- 0.02, P <.01), revealing recruitment of AGT-producing cells along the PT. AGT excretion in final urine corrected for creatinine and kidney weight was also elevated by UNX at seven weeks (UNX = 209 +/- 42 pmol/mg/g, sham = 147 +/- 29 pmol/mg/g, P <.05), with no difference in plasma AGT between UNX and control animals. CONCLUSION These observations suggest that AGT expression in PT adapts in the long-term to changes in GFR. In the UNX model, urinary AGT excretion is also elevated as a consequence of increase in net tubular flow.
Collapse
Affiliation(s)
- Barbu Gociman
- Department of Human Genetics, University of Utah, Health Sciences Center, Salt Lake City, 84112, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Recent studies have reported that intrarenal angiotensin II content and angiotensin II concentrations in the proximal tubular fluid and renal interstitial fluid are much greater than the circulating angiotensin II levels. These high intrarenal angiotensin II levels are responsible for regulating renal hemodynamics and tubular transport. RECENT FINDINGS Intrarenal angiotensin II levels have been assessed from total tissue contents as well as renal interstitial fluid and proximal tubular fluid concentrations. Total tissue contents expressed per gram of tissue weight are greater than plasma angiotensin II concentrations; tubular fluid concentrations and renal interstitial fluid concentrations are even greater in the range of 3-10 pmoles/ml. In hypertensive states, there is also an increased intracellular accumulation of angiotensin II mediated by angiotensin type 1 receptor-dependent endocytosis. The high intrarenal angiotensin II levels are also caused by the presence of angiotensinogen messenger RNA and protein in the proximal tubule cells. Furthermore, there is positive amplification by which increases in circulating angiotensin II stimulate increased production and secretion of angiotensinogen, which is also manifested as an increased urinary excretion rate. SUMMARY The ability of the kidney to generate high intratubular and interstitial concentrations allows the kidney to regulate intrarenal levels in accord with the homeostatic needs for the regulation of renal hemodynamics and tubular reabsorption and the regulation of sodium balance. When inappropriately stimulated, high intrarenal angiotensin II levels contribute to excessive salt and water retention, the development of hypertension, and long-term proliferative effects leading to renal injury.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University Health Scences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
91
|
Nagami GT. Ammonia production and secretion by S3 proximal tubule segments from acidotic mice: role of ANG II. Am J Physiol Renal Physiol 2004; 287:F707-12. [PMID: 15345494 DOI: 10.1152/ajprenal.00189.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ANG II has potent effects on ammonia production and secretion rates by the proximal tubule and is found in substantial concentrations in the lumen of the proximal tubule in vivo. Because our previous studies demonstrated that acid loading enhanced the stimulatory effects of ANG II on ammonia production and secretion by S2 proximal tubule segments, we examined the effect of ANG II on ammonia production and secretion by isolated, perfused S3 segments from nonacidotic control mice and acidotic mice given NH4Cl for 7 days. In the absence of ANG II, ammonia production and secretion rates were no different in S3 segments from acidotic and control mice. By contrast, when ANG II was present in the luminal perfusion solution, ammonia production and secretion rates were stimulated, in a losartan-inhibitable manner, to a greater extent in S3 segments from acidotic mice. Ammonia secretion rates in S3 segments were largely inhibited by perfusion with a low-sodium solution containing amiloride in the presence or absence of ANG II. These results demonstrated that isolated, perfused mouse S3 proximal tubule segments produce and secrete ammonia, that NH4Cl-induced acidosis does not affect the basal rates of ammonia production and secretion, and that ANG II, added to the luminal fluid, stimulates ammonia production and secretion to a greater extent in S3 segments from acidotic mice. These findings suggest that S3 segments, in the presence of ANG II, can contribute to the enhanced renal excretion that occurs with acid loading.
Collapse
Affiliation(s)
- Glenn T Nagami
- Nephrology Section, Medical Research Services, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
92
|
Affiliation(s)
- L Gabriel Navar
- Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
93
|
Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol 2004; 288:F420-7. [PMID: 15467006 DOI: 10.1152/ajprenal.00243.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Megalin is an abundant membrane protein heavily involved in receptor-mediated endocytosis. The major functions of megalin in vivo remain incompletely defined as megalin typically faces specialized milieus such as glomerular filtrate, airways, epididymal fluid, thyroid colloid, and yolk sac fluid, which lack many of its known ligands. In the course of studies on ANG II internalization, we were surprised when only part of the uptake of labeled ANG II into immortalized yolk sac cells (BN-16 cells) was blocked by specific peptide inhibitors and direct competitors of the angiotensin type 1 receptor. This led us to test if megalin was a receptor for ANG II. Four lines of direct evidence demonstrate that megalin and, to a lesser extent, its chaperone protein cubilin are receptors for ANG II. First, in BN-16 cells anti-megalin and anti-cubilin antisera interfere with ANG II uptake. Second, also in BN-16 cells, pure ANG II competes for uptake of a known megalin ligand. Third, in proximal tubule cell brush-border membrane vesicles extracted from mice, anti-megalin antisera interfere with ANG II binding. Fourth, purified megalin binds ANG II directly in surface plasmon resonance experiments. The finding that megalin is a receptor for ANG II suggests a major new function for the megalin pathway in vivo. These results also indicate that ANG II internalization in some tissues is megalin dependent and that megalin may play a role in regulating proximal tubule ANG II levels.
Collapse
Affiliation(s)
- Romer Gonzalez-Villalobos
- Tulane Hypertension and Renal Center of Excellence and Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
94
|
Abstract
Macula densa cells couple renal haemodynamics, glomerular filtration and renin release with tubular fluid salt and water reabsorption. These cells detect changes in tubular fluid composition through a complex of intracellular signalling events that are mediated by membrane transport pathways. Increases in luminal fluid sodium chloride concentration result in alterations in cell sodium chloride concentration, cytosolic calcium, cell pH, basolateral membrane depolarization and cell volume. Macula densa signalling then involves the production and release of specific paracrine signalling molecules at their basolateral membrane. Upon moderate increases in luminal sodium chloride concentration macula densa cells release increasing amounts of ATP and decreasing amounts of prostaglandin E(2), thereby increasing afferent arteriolar tone and decreasing the release of renin from granular cells. On the other hand, further increases in luminal concentration stimulate the release of nitric oxide, which serve to prevent excessive tubuloglomerular feedback vasoconstriction. Paracrine signalling by the macula densa cells therefore controls juxtaglomerular function, renal vascular resistance and participates in the regulation of renin release.
Collapse
Affiliation(s)
- P Komlosi
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
95
|
Loghman-Adham M, Soto CE, Inagami T, Cassis L. The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2004; 287:F775-88. [PMID: 15187005 DOI: 10.1152/ajprenal.00370.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypertension is a common complication of autosomal dominant polycystic kidney disease (ADPKD), often present before the onset of renal failure. A role for the renin-angiotensin system (RAS) has been proposed, but studies of systemic RAS have failed to show a correlation between plasma renin activity and blood pressure in ADPKD. Ectopic renin expression by cyst epithelium was first reported in 1992 (Torres VE, Donovan KA, Sicli G, Holley KE, Thibodeau ST, Carretero OA, Inagami T, McAteer JA, and Johnson CM. Kidney Int 42: 364-373, 1992). It is not known, however, whether other RAS components are also expressed by cysts in ADPKD. We show that, in addition to renin, angiotensinogen (AGT) is produced by some cysts and dilated tubules. Angiotensin-converting enzyme, ANG II type 1 receptor, and ANG II peptide are also present within cysts and in many tubules; and some cyst fluids contain high ANG II concentrations. Additionally, cyst-derived cells in culture continue to express the components of the RAS at both the protein and mRNA levels. We further show that renin is expressed primarily in cysts of distal tubule origin and in cyst-derived cells with distal tubule characteristics, whereas AGT is expressed primarily in cysts of proximal tubule origin and in cyst-derived cells with proximal tubule characteristics. Renin production by cyst-derived cells appears to be regulated by extracellular Na+ concentration. Based on these observations, we propose a model of an autocrine/paracrine RAS in polycystic kidney disease, whereby overactivity of the intrarenal system results in sustained increases in intratubular ANG II concentrations.
Collapse
MESH Headings
- Angiotensin II/genetics
- Angiotensin II/immunology
- Angiotensin II/metabolism
- Angiotensinogen/genetics
- Angiotensinogen/immunology
- Angiotensinogen/metabolism
- Animals
- Antibodies
- Blotting, Western
- Cells, Cultured
- Humans
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Kidney/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Peptidyl-Dipeptidase A/metabolism
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/physiopathology
- RNA, Messenger/analysis
- Rabbits
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
- Renin/genetics
- Renin/immunology
- Renin/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Mahmoud Loghman-Adham
- Department of Pediatrics and Pediatric Research Institute, Saint Louis University, St. Louis, Missouri 07920, USA.
| | | | | | | |
Collapse
|
96
|
Sorensen CM, Leyssac PP, Salomonsson M, Skott O, Holstein-Rathlou NH. ANG II-induced downregulation of RBF after a prolonged reduction of renal perfusion pressure is due to pre- and postglomerular constriction. Am J Physiol Regul Integr Comp Physiol 2004; 286:R865-73. [PMID: 14715487 DOI: 10.1152/ajpregu.00424.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous experiments from our laboratory showed that longer-lasting reductions in renal perfusion pressure (RPP) are associated with a gradual decrease in renal blood flow (RBF) that can be abolished by clamping plasma ANG II concentration ([ANG II]). The aim of the present study was to investigate the mechanisms behind the RBF downregulation in halothane-anesthetized Sprague-Dawley rats during a 30-min reduction in RPP to 88 mmHg. During the 30 min of reduced RPP we also measured glomerular filtration rate (GFR), proximal tubular pressure (Pprox), and proximal tubular flow rate (QLP). Early distal tubular fluid conductivity was measured as an estimate of early distal [NaCl] ([NaCl]ED), and changes in plasma renin concentration (PRC) over time were measured. During 30 min of reduced RPP, RBF decreased gradually from 6.5 ± 0.3 to 6.0 ± 0.3 ml/min after 5 min (NS) to 5.2 ± 0.2 ml/min after 30 min ( P < 0.05). This decrease occurred in parallel with a gradual increase in PRC from 38.2 ± 11.0 × 10-5to 87.1 ± 25.1 × 10-5Goldblatt units (GU)/ml after 5 min ( P < 0.05) to 158.5 ± 42.9 × 10-5GU/ml after 30 min ( P < 0.01). GFR, Pprox, and [NaCl]EDall decreased significantly after 5 min and remained low. Estimates of pre- and postglomerular resistances showed that the autoregulatory mechanisms initially dilated preglomerular vessels to maintain RBF and GFR. However, after 30 min of reduced RPP, both pre- and postglomerular resistance had increased. We conclude that the decrease in RBF over time is caused by increases in both pre- and postglomerular resistance due to rising plasma renin and ANG II concentrations.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Dept. of Medical Physiology, The Panum Institute, 10.5, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
97
|
Quan A, Chakravarty S, Chen JK, Chen JC, Loleh S, Saini N, Harris RC, Capdevila J, Quigley R. Androgens augment proximal tubule transport. Am J Physiol Renal Physiol 2004; 287:F452-9. [PMID: 15100096 DOI: 10.1152/ajprenal.00188.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proximal tubule contains an autonomous renin-angiotensin system that regulates transport independently of circulating angiotensin II. Androgens are known to increase expression of angiotensinogen, but the effect of androgens on proximal tubule transport is unknown. In this in vivo microperfusion study, we examined the effect of androgens on proximal tubule transport. The volume reabsorptive rate in Sprague-Dawley rats given dihydrotestosterone (DHT) injections was significantly higher than in control rats given vehicle injections (4.57 +/- 0.31 vs. 3.31 +/- 0.23 nl x min(-1) x mm(-1), P < 0.01). Luminally perfusing with either enalaprilat (10(-4) M) to inhibit production of angiotensin II or losartan (10(-8) M) to block the angiotensin receptor decreased the proximal tubule volume reabsorptive rate in DHT-treated rats to a significantly greater degree than in control vehicle-injected rats. The renal expression of angiotensinogen was shown to be higher in the DHT-treated animals, using Northern blot analysis. The expression of angiotensin receptors, determined by specific binding of angiotensin II, was not different in the two groups of animals. Brush-border membrane protein abundance of the Na/H exchanger, a membrane transport protein under angiotensin II regulation, was also higher in DHT-treated rats vs. control rats. Rats that received DHT had higher blood pressures than the control rats but had no change in their glomerular filtration rate. In addition, serum angiotensin II levels were lower in DHT-treated vs. control rats. These results suggest that androgens may directly upregulate the proximal tubule renin-angiotensin system, increase the volume reabsorptive rate, and thereby increase extracellular volume and blood pressure and secondarily decrease serum angiotensin II levels.
Collapse
Affiliation(s)
- Albert Quan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lerolle N, Bourgeois S, Leviel F, Lebrun G, Paillard M, Houillier P. Angiotensin II inhibits NaCl absorption in the rat medullary thick ascending limb. Am J Physiol Renal Physiol 2004; 287:F404-10. [PMID: 15100097 DOI: 10.1152/ajprenal.00265.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT(1)) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption (J(Cl)) as well as transepithelial voltage (V(te)) were measured. Luminal or peritubular 10(-11) and 10(-10) M angiotensin II had no effect on J(Cl) or V(te). However, 10(-8) M luminal or peritubular angiotensin II reversibly decreased both J(Cl) and V(te). The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10(-6) M). By contrast, PD-23319, an AT(2)-receptor antagonist, did not alter the inhibitory effect of 10(-8) M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT(1) receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.
Collapse
Affiliation(s)
- Nicolas Lerolle
- Institut National de la Santé et de la Recherche Médicale U356, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
99
|
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Bäcker A, Bader M, Ganten D, Cervenka L. Plasma and kidney angiotensin II levels and renal functional responses to AT1 receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens 2004; 22:819-25. [PMID: 15126925 DOI: 10.1097/00004872-200404000-00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The first aim of the present study was to assess plasma and kidney angiotensin II (ANG II) levels and renal cortical ANG II receptor subtype 1A (AT1A) mRNA expression in hypertensive Ren-2 transgenic rats (TGR) and in normotensive Hannover Sprague-Dawley (HanSD) rats. The second aim was to investigate potential differences between TGR and HanSD in blood pressure (BP) and renal functional responses to either intravenous (i.v.), i.e. systemic, or intrarenal (i.r.) AT1 receptor blockade with candesartan. METHODS Rats were anesthetized and prepared for clearance experiments. In series 1, ANG II concentrations were assayed by radioimmunoassay and renal cortical AT1A mRNA expression by semiquantitative reverse transcriptase-polyacrylamide gel electrophoresis. In series 2, BP and renal functional responses were evaluated after either i.v. or i.r. bolus administration of candesartan. RESULTS Plasma and kidney ANG II levels were significantly lower in TGR than in HanSD (39 +/- 5 versus 107 +/- 19 fmol/ml and 251 +/- 41 versus 571 +/- 95 fmol/g, respectively, P < 0.05). Renal AT1A mRNA expression was not different between TGR and HanSD. Intravenous candesartan caused comparable decreases in BP in TGR and HanSD and did not change renal plasma flow (RPF) or absolute and fractional sodium excretion in HanSD. In contrast, i.v. candesartan significantly increased RPF (+27 +/- 6%, P < 0.05) and absolute and fractional sodium excretion (+49 +/- 10 and + 42 +/- 9%, respectively P < 0.05) in TGR without changing glomerular filtration rate (GFR). Acute i.r. candesartan increased RPF by +36 +/- 6% (P < 0.05) in TGR but not in HanSD with a greater rise in absolute and fractional sodium excretion in TGR (+124 +/-8 and 97 +/- 9%, respectively) than in HanSD (+81 +/- 9 and +69 +/- 8%, respectively) (P < 0.05). CONCLUSIONS The enhanced responses of RPF and sodium excretion to AT1 receptor blockade in TGR suggest that renal hemodynamics and sodium excretion in TGR are under strong ANG II influence. The compromised ability of the kidney to respond to BP elevations by appropriate increases in sodium excretion may contribute to the maintenance of high BP in TGR. Thus, the present findings provide new insights into the pathophysiology of hypertension in this model.
Collapse
Affiliation(s)
- Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídenská, CZ-140 21 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Liu R, Persson AEG. Angiotensin II Stimulates Calcium and Nitric Oxide Release From Macula Densa Cells Through AT1Receptors. Hypertension 2004; 43:649-53. [PMID: 14744924 DOI: 10.1161/01.hyp.0000116222.57000.85] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fluorescent nitric oxide (NO) indicator, 4,5-diaminofluorescein diacetate, and the calcium indicator, indo-1, with 488 nm and 364 nm UV confocal laser scanning microscopy were used to detect NO and calcium concentration in rabbit macula densa (MD) cells challenged by angiotensin II (Ang II). Glomeruli with attached thick ascending limbs with the MD plaque were isolated and perfused. Ang II concentration from 10(-9) to 10(-5) progressively increased MD cell calcium and NO to peak values at 10(-6) and 10(-7), respectively. Ang II (10(-6) M) caused the cytosolic calcium concentration ([Ca(2+)](i)) to increase by 125.8+/-16.3 nM (n=17) from the bath and by 52.3+/-11.5 nM (n=18) from the lumen. AT(1) antagonist CV-11974 (10(-6) M) blocked the Ang II-induced calcium responses from bath and lumen, but AT(2) antagonist PD-123319 (10(-6) M) did not. AT(2) agonist CGP-42112A (10(-6) M) did not affect [Ca(2+)](i) in MD cells from either side. Ang II (10(-6) M) increased the NO production by 16%+/-3.4% (n=26) from the bath and by 18%+/-3.1% (n=24) from the lumen. CV-11974 (10(-6) M) blocked the NO responses from both sides, but PD-123319 (10(-6) M) did not on either side. CGP-42112A (10(-6) M) had no effect on NO in MD cells. In calcium-free experiments there was no difference from the result in normal calcium solutions. In conclusion, we found that Ang II increased [Ca(2+)](i) and stimulated NO production in MD cells from the basolateral and luminal sides through AT(1) receptors.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Medical Cell Biology, Uppsala University, BMC Box 571, S-75123 Uppsala, Sweden.
| | | |
Collapse
|