51
|
Li K, Qin L, Jiang S, Li A, Zhang C, Liu G, Sun J, Sun H, Zhao Y, Li N, Zhang Y. The signature of HBV-related liver disease in peripheral blood mononuclear cell DNA methylation. Clin Epigenetics 2020; 12:81. [PMID: 32513305 PMCID: PMC7278209 DOI: 10.1186/s13148-020-00847-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background Hepatitis B virus (HBV)-related liver disease induces liver damage by hepatic immune and inflammatory response. The association between aberrant peripheral blood mononuclear cell (PBMC) DNA methylation and progression of liver disease and fibrosis remains unclear. Results Here we applied Infinium 450 K BeadChip investigating PBMC genome-wide methylation profiling of 48 HBV-related liver disease patients including 24 chronic hepatitis B (CHB), 14 compensated liver cirrhosis (LC), and 10 decompensated liver cirrhosis (DLC). In total, there were 7888 differentially methylated CpG sites (36.06% hypermethylation, 63.94% hypomethylation) correlate with liver disease progression. LC was difficult to be diagnosed, intermediating between CHB and DLC. We used least absolute shrinkage and selection operator (LASSO)-logistic regression method to perform a LC predictive model. The predicted probability (P) of having LC was estimated by the combined model: P = 1/(1 − e−x), where X = 11.52 − 2.82 × (if AST within the normal range − 0.19 × (percent methylation of cg05650055) − 0.21 × (percent methylation of cg17149911 ). Pyrosequencing validation and confusion matrix analysis was used for internal testing, area under receiver operating characteristic curve (AUROC) of model was 0.917 (95% CI, 0.80–0.977). On the fibrosis progress, there were 1705 genes in LC compared with CHB, whose differentially methylated CpG sites loading within the “promoter” regions (including TSS1500, TSS200, 5′UTR, and the 1st exon of genes) subject into the enrichment analysis using Ingenuity Pathway Analysis (IPA). There were 113 enriched immune-related pathways indicated that HBV-related liver fibrosis progression caused epigenetic reprogramming of the immune and inflammatory response. Conclusions These data support idea that development of HBV-related chronic liver disease is linked with robust and broad alteration of methylation in peripheral immune system. CpG methylation sites serve as relevant biomarker candidates to monitor and diagnose LC, providing new insight into the immune mechanisms understanding the progression of HBV-related liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kang Li
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Ling Qin
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China.,Schools of Basic Medical Science, Capital Medical University, Beijing, China
| | | | - Ang Li
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Chi Zhang
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Guihai Liu
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China.,University of Oxford, Oxford, UK
| | - Jianping Sun
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Huanqing Sun
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China
| | - Yan Zhao
- Clinical Laboratory Center, Beijing You'An hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Departments of Hepatobiliary Surgery, Beijing You'An Hospital, Capital Medical University, Beijing, China.
| | - Yonghong Zhang
- Biomedical Information Center, Beijing You'An Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
52
|
Tang J, Zou J, Zhang X, Fan M, Tian Q, Fu S, Gao S, Fan S. PretiMeth: precise prediction models for DNA methylation based on single methylation mark. BMC Genomics 2020; 21:364. [PMID: 32414326 PMCID: PMC7227319 DOI: 10.1186/s12864-020-6768-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background The computational prediction of methylation levels at single CpG resolution is promising to explore the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of the prediction results, especially when performing downstream analysis with high precision requirements. Results Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data (TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes (differentially methylated between the tumor and normal samples) were worthy for further biological validation. Conclusion The precise prediction of single CpG locus is important for both methylation array data expansion and downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only one significant feature, which also suggested that our precise prediction models could be probably used for reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open source tool via https://github.com/JxTang-bioinformatics/PretiMeth.
Collapse
Affiliation(s)
- Jianxiong Tang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianxiao Zou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoran Zhang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mei Fan
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuyao Fu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shihong Gao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shicai Fan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
53
|
Sinkala M, Mulder N, Martin D. Machine Learning and Network Analyses Reveal Disease Subtypes of Pancreatic Cancer and their Molecular Characteristics. Sci Rep 2020; 10:1212. [PMID: 31988390 PMCID: PMC6985164 DOI: 10.1038/s41598-020-58290-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Given that the biological processes governing the oncogenesis of pancreatic cancers could present useful therapeutic targets, there is a pressing need to molecularly distinguish between different clinically relevant pancreatic cancer subtypes. To address this challenge, we used targeted proteomics and other molecular data compiled by The Cancer Genome Atlas to reveal that pancreatic tumours can be broadly segregated into two distinct subtypes. Besides being associated with substantially different clinical outcomes, tumours belonging to each of these subtypes also display notable differences in diverse signalling pathways and biological processes. At the proteome level, we show that tumours belonging to the less severe subtype are characterised by aberrant mTOR signalling, whereas those belonging to the more severe subtype are characterised by disruptions in SMAD and cell cycle-related processes. We use machine learning algorithms to define sets of proteins, mRNAs, miRNAs and DNA methylation patterns that could serve as biomarkers to accurately differentiate between the two pancreatic cancer subtypes. Lastly, we confirm the biological relevance of the identified biomarkers by showing that these can be used together with pattern-recognition algorithms to accurately infer the drug sensitivity of pancreatic cancer cell lines. Our study shows that integrative profiling of multiple data types enables a biological and clinical representation of pancreatic cancer that is comprehensive enough to provide a foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Musalula Sinkala
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Nicola Mulder
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Darren Martin
- University of Cape Town, School of Health Sciences, Department of Integrative Biomedical Sciences, Computational Biology Division, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
54
|
Non-invasive detection of pancreatic cancer by measuring DNA methylation of Basonuclin 1 and Septin 9 in plasma. Chin Med J (Engl) 2019; 132:1504-1506. [PMID: 31205116 PMCID: PMC6629335 DOI: 10.1097/cm9.0000000000000257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
55
|
Hann A, Walter BM, Epp S, Ayoub YK, Meining A. The "Twist-Needle" - a new concept for endoscopic ultrasound-guided fine needle-biopsy. Endosc Int Open 2019; 7:E1658-E1662. [PMID: 31788549 PMCID: PMC6877432 DOI: 10.1055/a-0998-3997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
Background and study aims Endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) represents a standard method for tissue acquisition of lesions adjacent to the gastrointestinal wall. Needles of 19 gauge acquire more tissue than needles with a smaller diameter, but are often unable to penetrate solid, rigid masses. In this study we evaluated a novel prototype that links forward movement of the needle to rotation of the needle tip. Materials and methods Two needle-models that generate either a regular axial movement or a combination of axial movement with rotation of the needle tip were compared ex vivo for measurement of pressure needed to penetrate artificial tissue. Furthermore, a standard 19-gauge EUS-FNB needle was compared to a modified model ("Twist Needle") in an ex vivo model to measure the amount of tissue obtained. Results Pressure measurements using the rotating needle revealed that significantly less pressure is needed for penetration compared to the regular axial movement (mean ± SEM; 3.7 ± 0.3 N vs. 5.5 ± 0.3 N). Using the modified 19-gauge "Twist Needle" did not diminish tissue acquisition measured by surface amount compared to a standard needle (37 ± 5 mm² vs. 35 ± 6 mm²). Conclusion The method of rotation of an EUS-FNB needle tip upon forward movement requires less pressure for penetration but does not diminish tissue acquisition. Hence, the concept of our "Twist Needle" may potentially reduce some of the current limitations of standard EUS-FNB.
Collapse
Affiliation(s)
- Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany,Department of Internal Medicine I, Ulm University, Ulm, Germany,Corresponding author PD Dr. med. Alexander Hann Universitätsklinikum WürzburgMedizinische Klinik und Poliklinik II, GastroenterologieOberdürrbacher Str. 697080 Würzburg
| | | | - Sonja Epp
- Interventional and Experimental Endoscopy (InExEn), Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany,Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Alexander Meining
- Interventional and Experimental Endoscopy (InExEn), Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany,Department of Internal Medicine I, Ulm University, Ulm, Germany
| |
Collapse
|
56
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
57
|
Hann A, Epp S, Veits L, Rosien U, Siegel J, Möschler O, Bohle W, Meining A. Multicenter, randomized comparison of the diagnostic accuracy of 19-gauge stainless steel and nitinol-based needles for endoscopic ultrasound-guided fine-needle biopsy of solid pancreatic masses. United European Gastroenterol J 2019; 8:314-320. [PMID: 32213013 DOI: 10.1177/2050640619887580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The use of 19-gauge (G) stainless steel needles for endoscopic ultrasound-guided fine-needle biopsy of a pancreatic mass often results in technical difficulties due to an inability to advance the relatively rigid needle out of the endoscope. More flexible nitinol-based needles might decrease such technical difficulties and thus increase diagnostic accuracy. OBJECTIVE In this prospective multicenter randomized single-blinded study we compared the diagnostic value of those two needle types in patients with a solid pancreatic lesion. METHODS Patients with a solid pancreatic mass were diagnosed with endoscopic ultrasound-guided fine-needle biopsy using one puncture with each needle in a randomized fashion. The primary endpoint was the diagnostic accuracy of each needle. Secondary endpoints included time for puncture, amount of tumour tissue obtained, and technical failure. Histological specimens were centrally reviewed by a pathologist blinded to the final needle type and final diagnosis (ClinicalTrials.gov Identifier: NCT02909530). RESULTS Out of 46 prospectively recruited patients, central pathological examination was available for 41. Diagnostic accuracy for the two needles combined was 87.8%. Diagnostic accuracy was 66% and 68% using the stainless steel- and nitinol-based needle respectively. Time spent for puncturing was 137 ± 61 s (mean ± standard deviation) for the stainless steel and 111 ± 53 s for the nitinol-based needle (p = 0.037). Technical failure occurred in three (6.5%) cases using the stainless steel- and in none using the nitinol-based needle. CONCLUSIONS Usage of a nitinol-based 19-G needle failed to present a significant superior accuracy compared with a stainless steel needle in endoscopic ultrasound-guided fine-needle biopsy of solid pancreatic lesions.
Collapse
Affiliation(s)
- Alexander Hann
- Interventional and Experimental Endoscopy, Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Sonja Epp
- Interventional and Experimental Endoscopy, Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Lothar Veits
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Ulrich Rosien
- Department of Internal Medicine, Israelitic Hospital, Hamburg, Germany
| | - Julian Siegel
- Department of Internal Medicine, Israelitic Hospital, Hamburg, Germany
| | - Oliver Möschler
- Department of Gastroenterology, Marienhospital Osnabrück, Osnabrück, Germany
| | - Wolfram Bohle
- Department of Gastroenterology, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Alexander Meining
- Interventional and Experimental Endoscopy, Department of Internal Medicine I, Ulm University, Ulm, Germany.,Internal Medicine II, University of Würzburg, Würzburg, Germany
| |
Collapse
|
58
|
Ho AMC, Winham SJ, Armasu SM, Blacker CJ, Millischer V, Lavebratt C, Overholser JC, Jurjus GJ, Dieter L, Mahajan G, Rajkowska G, Vallender EJ, Stockmeier CA, Robertson KD, Frye MA, Choi DS, Veldic M. Genome-wide DNA methylomic differences between dorsolateral prefrontal and temporal pole cortices of bipolar disorder. J Psychiatr Res 2019; 117:45-54. [PMID: 31279243 PMCID: PMC6941851 DOI: 10.1016/j.jpsychires.2019.05.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023]
Abstract
Dorsolateral prefrontal cortex (DLPFC) and temporal pole (TP) are brain regions that display abnormalities in bipolar disorder (BD) patients. DNA methylation - an epigenetic mechanism both heritable and sensitive to the environment - may be involved in the pathophysiology of BD. To study BD-associated DNA methylomic differences in these brain regions, we extracted genomic DNA from the postmortem tissues of Brodmann Area (BA) 9 (DLPFC) and BA38 (TP) gray matter from 20 BD, ten major depression (MDD), and ten control age-and-sex-matched subjects. Genome-wide methylation levels were measured using the 850 K Illumina MethylationEPIC BeadChip. We detected striking differences between cortical regions, with greater numbers of between-brain-region differentially methylated positions (DMPs; i.e., CpG sites) in all groups, most pronounced in the BD group, and with substantial overlap across groups. The genes of DMPs common to both BD and MDD (hypothetically associated with their common features such as depression) and those distinct to BD (hypothetically associated with BD-specific features such as mania) were enriched in pathways involved in neurodevelopment including axon guidance. Pathways enriched only in the BD-MDD shared list pointed to GABAergic dysregulation, while those enriched in the BD-only list suggested glutamatergic dysregulation and greater impact on synaptogenesis and synaptic plasticity. We further detected group-specific between-brain-region gene expression differences in ODC1, CALY, GALNT2, and GABRD, which contained significant between-brain-region DMPs. In each brain region, no significant DMPs or differentially methylated regions (DMRs) were found between diagnostic groups. In summary, the methylation differences between DLPFC and TP may provide molecular targets for further investigations of genetic and environmental vulnerabilities associated with both unique and common features of various mood disorders and suggest directions of future development of individualized treatment strategies.
Collapse
Affiliation(s)
- Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic,
Rochester, MN, USA,Department of Molecular Pharmacology and Experimental
Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Stacey J. Winham
- Department of Health Science Research, Mayo Clinic,
Rochester, MN, USA
| | | | - Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic,
Rochester, MN, USA
| | - Vincent Millischer
- Department for Molecular Medicine and Surgery (MMK),
Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska University
Hospital, Stockholm, Sweden
| | - Catharina Lavebratt
- Department for Molecular Medicine and Surgery (MMK),
Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska University
Hospital, Stockholm, Sweden
| | - James C. Overholser
- Department of Psychology, Case Western Reserve University,
Cleveland, OH, USA
| | - George J. Jurjus
- Department of Psychiatry, Case Western Reserve University,
Cleveland, OH, USA,Louis Stokes Cleveland VA Medical Center, Cleveland, OH,
USA
| | - Lesa Dieter
- Department of Psychology, Case Western Reserve University,
Cleveland, OH, USA
| | - Gouri Mahajan
- Psychiatry and Human Behavior, University of Mississippi
Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi
Medical Center, Jackson, MS, USA
| | - Eric J. Vallender
- Psychiatry and Human Behavior, University of Mississippi
Medical Center, Jackson, MS, USA
| | - Craig A. Stockmeier
- Department of Psychiatry, Case Western Reserve University,
Cleveland, OH, USA,Psychiatry and Human Behavior, University of Mississippi
Medical Center, Jackson, MS, USA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental
Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic,
Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic,
Rochester, MN, USA,Department of Molecular Pharmacology and Experimental
Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
59
|
Mishra NK, Southekal S, Guda C. Survival Analysis of Multi-Omics Data Identifies Potential Prognostic Markers of Pancreatic Ductal Adenocarcinoma. Front Genet 2019; 10:624. [PMID: 31379917 PMCID: PMC6659773 DOI: 10.3389/fgene.2019.00624] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and among the deadliest of pancreatic cancers. Its 5-year survival is only ∼8%. Pancreatic cancers are a heterogeneous group of diseases, of which PDAC is particularly aggressive. Like many other cancers, PDAC also starts as a pre-invasive precursor lesion (known as pancreatic intraepithelial neoplasia, PanIN), which offers an opportunity for both early detection and early treatment. Even advanced PDAC can benefit from prognostic biomarkers. However, reliable biomarkers for early diagnosis or those for prognosis of therapy remain an unfulfilled goal for PDAC. In this study, we selected 153 PDAC patients from the TCGA database and used their clinical, DNA methylation, gene expression, and micro-RNA (miRNA) and long non-coding RNA (lncRNA) expression data for multi-omics analysis. Differential methylations at about 12,000 CpG sites were observed in PDAC tumor genomes, with about 61% of them hypermethylated, predominantly in the promoter regions and in CpG-islands. We correlated promoter methylation and gene expression for mRNAs and identified 17 genes that were previously recognized as PDAC biomarkers. Similarly, several genes (B3GNT3, DMBT1, DEPDC1B) and lncRNAs (PVT1, and GATA6-AS) are strongly correlated with survival, which have not been reported in PDAC before. Other genes such as EFR3B, whose biological roles are not well known in mammals are also found to strongly associated with survival. We further identified 406 promoter methylation target loci associated with patients survival, including known esophageal squamous cell carcinoma biomarkers, cg03234186 (ZNF154), and cg02587316, cg18630667, and cg05020604 (ZNF382). Overall, this is one of the first studies that identified survival associated genes using multi-omics data from PDAC patients.
Collapse
Affiliation(s)
- Nitish Kumar Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW The goal of this manuscript is to review the current literature related to fibrogenesis in the pancreatobiliary system and how this process contributes to pancreatic and biliary diseases. In particular, we seek to define the current state of knowledge regarding the epigenetic mechanisms that govern and regulate tissue fibrosis in these organs. A better understanding of these underlying molecular events will set the stage for future epigenetic therapeutics. RECENT FINDINGS We highlight the significant advances that have been made in defining the pathogenesis of pancreatobiliary fibrosis as it relates to chronic pancreatitis, pancreatic cancer, and the fibro-obliterative cholangiopathies. We also review the cell types involved as well as concepts related to epithelial-mesenchymal crosstalk. Furthermore, we outline important signaling pathways (e.g., TGFβ) and diverse epigenetic processes (i.e., DNA methylation, non-coding RNAs, histone modifications, and 3D chromatin remodeling) that regulate fibrogenic gene networks in these conditions. We review a growing body of scientific evidence linking epigenetic regulatory events to fibrotic disease states in the pancreas and biliary system. Advances in this understudied area will be critical toward developing epigenetic pharmacological approaches that may lead to more effective treatments for these devastating and difficult to treat disorders.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Division of Gastroenterology and Hepatology, Rochester, FL, USA
- Gastroenterology Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Rochester, FL, USA.
- Gastroenterology Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Mayo Clinic Foundation, Rochester, MN, USA.
| |
Collapse
|
61
|
Mani S, Ghosh J, Lan Y, Senapati S, Ord T, Sapienza C, Coutifaris C, Mainigi M. Epigenetic changes in preterm birth placenta suggest a role for ADAMTS genes in spontaneous preterm birth. Hum Mol Genet 2019; 28:84-95. [PMID: 30239759 DOI: 10.1093/hmg/ddy325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Preterm birth (PTB) affects approximately 1 in 10 pregnancies and contributes to approximately 50% of neonatal mortality. However, despite decades of research, little is understood about the etiology of PTB, likely due to the multifactorial nature of the disease. In this study, we examined preterm and term placentas, from unassisted conceptions and those conceived using in vitro fertilization (IVF). IVF increases the risk of PTB and causes epigenetic change in the placenta and fetus; therefore, we utilized these patients as a unique population with a potential common etiology. We investigated genome-wide DNA methylation in placentas from term IVF, preterm IVF, term control (unassisted conception) and preterm control pregnancies and discovered epigenetic dysregulation of multiple genes involved in cell migration, including members of the ADAMTS family, ADAMTS12 and ADAMTS16. These genes function in extracellular matrix regulation and tumor cell invasion, processes replicated by invasive trophoblasts (extravillous trophoblasts (EVTs)) during early placentation. Though expression was similar between term and preterm placentas, we found that both genes demonstrate high expression in first- and second-trimester placenta, specifically in EVTs and syncytiotrophoblasts. When we knocked down ADAMTS12 or ADAMTS16in vitro, there was poor EVT invasion and reduced matrix metalloproteinase activity, reinforcing their critical role in placentation. In conclusion, utilizing a population at high risk for PTB, we have identified a role for ADAMTS gene methylation in regulating early placentation and susceptibility to PTB.
Collapse
Affiliation(s)
- Sneha Mani
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Yemin Lan
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Teri Ord
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
62
|
Liu B, Pilarsky C. Analysis of DNA Hypermethylation in Pancreatic Cancer Using Methylation-Specific PCR and Bisulfite Sequencing. Methods Mol Biol 2019; 1856:269-282. [PMID: 30178258 DOI: 10.1007/978-1-4939-8751-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor and the fourth common cause of cancer death in the Western world. The lack of effective therapeutic strategies is attributed to the late diagnosis of this disease. Methylation markers could improve early detection and help in the surveillance of PDAC after treatment. Analysis of hypermethylation in the tumor tissue and tumor-derived exosomes might help to identify new therapeutic strategies and aid in the understanding of the pathophysiological changes occurring in pancreatic cancer. There are several methods for the detection of methylation events. Whereas methylation-specific PCR (MSP-PCR) is the method of choice, the cost reductions in DNA sequencing enables researchers to add bisulfite sequencing (BSS) to their repertoire if a small number of genes will be tested in a larger set of patients' samples. During the last years, several techniques to isolate and analyze DNA methylation have been proposed, but DNA modification using sodium bisulfite is still the gold standard.
Collapse
Affiliation(s)
- Bin Liu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen, Erlangen, Germany.
| |
Collapse
|
63
|
Abstract
Several challenges present themselves when discussing current approaches to the prevention or treatment of pancreatic cancer. Up to 45% of the risk of pancreatic cancer is attributed to unknown causes, making effective prevention programs difficult to design. The most common type of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), is generally diagnosed at a late stage, leading to a poor prognosis and 5-year survival estimate. PDAC tumors are heterogeneous, leading to many identified cell subtypes within one patient’s primary tumor. This explains why there is a high frequency of tumors that are resistant to standard treatments, leading to high relapse rates. This review will discuss how epigenetic technologies and epigenome-wide association studies have been used to address some of these challenges and the future promises these approaches hold.
Collapse
Affiliation(s)
- Rahul R Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, USA; (R.R.S.); (K.M.R.)
| | - Rick J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA
- Biostatistics Core Facility, North Dakota State University, Fargo, ND 58102, USA
- Center for Immunization Research and Education, North Dakota State University, Fargo, ND 58102, USA
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
64
|
Khatri I, Ganguly K, Sharma S, Carmicheal J, Kaur S, Batra SK, Bhasin MK. Systems Biology Approach to Identify Novel Genomic Determinants for Pancreatic Cancer Pathogenesis. Sci Rep 2019; 9:123. [PMID: 30644396 PMCID: PMC6333820 DOI: 10.1038/s41598-018-36328-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a 5-year survival rate of <8%. Its dismal prognosis stems from inefficient therapeutic modalities owing to the lack of understanding about pancreatic cancer pathogenesis. Considering the molecular complexity and heterogeneity of PDAC, identification of novel molecular contributors involved in PDAC onset and progression using global "omics" analysis will pave the way to improved strategies for disease prevention and therapeutic targeting. Meta-analysis of multiple miRNA microarray datasets containing healthy controls (HC), chronic pancreatitis (CP) and PDAC cases, identified 13 miRNAs involved in the progression of PDAC. These miRNAs showed dysregulation in both tissue as well as blood samples, along with progressive decrease in expression from HC to CP to PDAC. Gene-miRNA interaction analysis further elucidated 5 miRNAs (29a/b, 27a, 130b and 148a) that are significantly downregulated in conjunction with concomitant upregulation of their target genes throughout PDAC progression. Among these, miRNA-29a/b targeted genes were found to be most significantly altered in comparative profiling of HC, CP and PDAC, indicating its involvement in malignant evolution. Further, pathway analysis suggested direct involvement of miRNA-29a/b in downregulating the key pathways associated with PDAC development and metastasis including focal adhesion signaling and extracellular matrix organization. Our systems biology data analysis, in combination with real-time PCR validation indicates direct functional involvement of miRNA-29a in PDAC progression and is a potential prognostic marker and therapeutic candidate for patients with progressive disease.
Collapse
Affiliation(s)
- Indu Khatri
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
65
|
Camolotto SA, Belova VK, Snyder EL. The role of lineage specifiers in pancreatic ductal adenocarcinoma. J Gastrointest Oncol 2018; 9:1005-1013. [PMID: 30603119 DOI: 10.21037/jgo.2018.05.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, multiple genomics studies have led to the identification of discrete molecular subtypes of pancreatic ductal adenocarcinoma. A general theme has emerged that most pancreatic ductal adenocarcinoma (PDAC) can be grouped into two major subtypes based on cancer cell autonomous properties: classical/pancreatic progenitor and basal-like/squamous. The classical/progenitor subtype expresses higher levels of lineage specifiers that regulate endodermal differentiation than the basal-like/squamous subtype. The basal-like/squamous subtype confers a worse prognosis, raising the possibility that loss of these lineage specifiers might enhance the malignant potential of PDAC. Here, we discuss several of these differentially expressed lineage specifiers and examine the evidence that they might play a functional role in PDAC biology.
Collapse
Affiliation(s)
| | - Veronika K Belova
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Eric L Snyder
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
66
|
Pancreatic Cancer Related Health Disparities: A Commentary. Cancers (Basel) 2018; 10:cancers10070235. [PMID: 30021952 PMCID: PMC6070801 DOI: 10.3390/cancers10070235] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 11/27/2022] Open
Abstract
We summarize the risk factors that may significantly contribute to racial disparities in pancreatic cancer, which is now the third leading cause of cancer deaths and projected to be second around 2030 in 12 years. For decades, the incidence rate of pancreatic cancer among Blacks has been 30% to 70% higher than other racial groups in the United States and the 5-year survival rate is approximately 5%. Diabetes and obesity have been identified as potentially predisposing factors to pancreatic cancer and both are more common among Blacks. Smoking continues to be one of the most important risk factors for pancreatic cancer and smoking rates are higher among Blacks compared to other racial groups. The overall risk of pancreatic cancer due to changes in DNA is thought to be the same for most racial groups; however, DNA methylation levels have been observed to be significantly different between Blacks and Whites. This finding may underlie the racial disparities in pancreatic cancer. Identification and prevention of these factors may be effective strategies to reduce the high incidence and mortality rates for pancreatic cancer among Blacks.
Collapse
|
67
|
Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne) 2018; 5:85. [PMID: 29682505 PMCID: PMC5897590 DOI: 10.3389/fmed.2018.00085] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Today, clinical evaluation of tumor heterogeneity is an emergent issue to improve clinical oncology. In particular, intra-tumor heterogeneity (ITH) is closely related to cancer progression, resistance to therapy, and recurrences. It is interconnected with complex molecular mechanisms including spatial and temporal phenomena, which are often peculiar for every single patient. This review tries to describe all the types of ITH including morphohistological ITH, and at the molecular level clonal ITH derived from genomic instability and nonclonal ITH derived from microenvironment interaction. It is important to consider the different types of ITH as a whole for any patient to investigate on cancer progression, prognosis, and treatment opportunities. From a practical point of view, analytical methods that are widely accessible today, or will be in the near future, are evaluated to investigate the complex pattern of ITH in a reproducible way for a clinical application.
Collapse
Affiliation(s)
- Giorgio Stanta
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Serena Bonin
- DSM, Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
68
|
Zhu Y, Qiu Y, Yu H, Yi S, Su W, Kijlstra A, Yang P. Aberrant DNA methylation of GATA binding protein 3 (GATA3), interleukin-4 (IL-4), and transforming growth factor-β (TGF-β) promoters in Behcet's disease. Oncotarget 2017; 8:64263-64272. [PMID: 28969068 PMCID: PMC5610000 DOI: 10.18632/oncotarget.19500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 12/18/2022] Open
Abstract
The pathogenesis of Behcet's disease (BD) remains poorly understood. The purpose of this study was to investigate whether an aberrant DNA methylation of transcriptional and inflammatory factors, including TBX21, GATA3, RORγt, FOXP3, IFN-γ, IL-4, IL-17A and TGF-β, in CD4+T confers risk to BD. We found that the promoter methylation level of GATA3, IL-4 and TGF-β was significantly up-regulated in active BD patients and negatively correlated with the corresponding mRNA expression. The mRNA expression of GATA3 and TGF-β was markedly down-regulated in active BD patients compared to healthy individuals. Treatment with corticosteroids and cyclosporine (CsA) resulted in a decrease of the methylation level of GATA3 and TGF-β in inactive BD patients. Our results suggest that an aberrant DNA methylation of GATA3 and TGF-β is associated with their mRNA expression and participates in the pathogenesis of BD.
Collapse
Affiliation(s)
- Yunyun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Yiguo Qiu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Hongsong Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Wencheng Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| |
Collapse
|